初三数学反比例函数图像和性质8[北师版]
- 格式:pdf
- 大小:754.85 KB
- 文档页数:9
反比例函数【学习目标】1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.4. 会解决一次函数和反比例函数有关的问题.【要点梳理】要点一、反比例函数的定义一般地,形如kyx= (k为常数,0k≠)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.要点进阶:(1)在kyx=中,自变量x是分式kx的分母,当0x=时,分式kx无意义,所以自变量x的取值范围是,函数y的取值范围是0y≠.故函数图象与x轴、y轴无交点.(2)kyx= ()可以写成()的形式,自变量x的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)kyx= ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数kyx=中,只有一个待定系数k,因此只需要知道一对x y、的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:kyx= (0k≠);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值;(4)把求得的k值代回所设的函数关系式kyx=中.要点三、反比例函数的图象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.要点进阶:(1)若点(a b ,)在反比例函数k y x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠) 中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.3、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;要点进阶:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.要点四:反比例函数()中的比例系数k 的几何意义过双曲线xk y =(0k ≠) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线x k y =(0k ≠) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k . 要点进阶:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.【典型例题】类型一、反比例函数定义例1、当k 为何值时22(1)k y k x -=-是反比例函数?类型二、确定反比例函数解析式例2、正比例函数y=2x 与双曲线的一个交点坐标为A (2,m ).(1)求出点A 的坐标;(2)求反比例函数关系式.举一反三:【变式】已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x =1时,y =7;当x =2时,y=8.(1) y 与x 之间的函数关系式;(2)自变量的取值范围;(3)当x =4时,y 的值.类型三、反比例函数的图象和性质例3、正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2举一反三:【变式】已知四个函数y=﹣x+1,y=2x﹣1,y=﹣,y=,其中y随x的增大而减小的有()个.A.4B. 3C. 2D. 1类型四、反比例函数综合=+的图象交于M(2,m),N(-1,-4)两点.4、如图所示,反比例函数的图象与一次函数y ax b(1)求反比例函数和一次函数的关系式;(2)根据图象写出使反比例函数的值大于一次函数值的x的取值范围.【变式】如图所示,已知正比例函数y ax =的图象与反比例函数k y x=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)M(m n ,)是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.一.选择题1. 在反比例函数12m y x -=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( ) A .0m < B .0m > C .12m <D .12m >2. 如图所示的图象上的函数关系式只能是( ) .A. y x =B. 1y x= C. 21y x =+ D. 1||y x =3. 已知0ab <,点P(a b ,)在反比例函数a y x =的图像上,则直线y ax b =+不经过的象限是( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. 在函数21a y x --=(a 为常数)的图象上有三个点1(1)y -,,21()4y -,,31()2y ,,则函数值1y 、2y 、3y 的大小关系是( ).A .2y <3y <1yB .3y <2y <1yC .1y <2y <3yD .3y <1y <2y5.如图,直线x=t (t >0)与反比例函数y=(x >0)、y=(x >0)的图象分别交于B 、C 两点,A 为y 轴上任意一点,△ABC 的面积为3,则k 的值为( )A.2B.3C.4D.56. 如图,点A 、C 为反比例函数y=图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为时,k 的值为( )A .4B .6C .﹣4D .﹣6二.填空题7. 如图所示是三个反比例函数x k y 1=、x k y 2=、xk y 3=的图象,由此观察得到1k 、2k 、3k 的大小关系是____________________(用“<”连接).8. 如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数6y x=(x >0)的图象上,则点C 的坐标为 _________ .9. 已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,),则8k 1+5k 2的值为 .10.已知A (11,x y ),B (22,x y )都在6y x =图象上.若123x x =-,则12y y 的值为 _________ . 11. 如图,正比例函数3y x =的图象与反比例函数k y x =(k >0)的图象交于点A ,若k 取1,2,3…20,对应的Rt △AOB 的面积分别为12320,,....,S S S S ,则1220....S S S +++= ________.12. 如图所示,点1A ,2A ,3A 在x 轴上,且11223OA A A A A ==,分别过点1A ,2A ,3A 作y 轴的平行线,与反比例函数y =8x(x >0)的图象分别交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别于y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为____________.三.解答题13. 已知反比例函数的图象经过点P (2,﹣3).(1)求该函数的解析式;(2)若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移n (n >0)个单位得到点P ′,使点P ′恰好在该函数的图象上,求n 的值和点P 沿y 轴平移的方向.14. 如图所示,已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴交于x轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.15.如图,已知点A(﹣8,n),B(3,﹣8)是一次函数y=kx+b的图象和反比例函数myx=图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积,(3)求方程kx+b﹣mx=0的解(请直接写出答案);(4)求不等式kx+b﹣mx>0的解集(请直接写出答案).。