建筑物理声学
- 格式:ppt
- 大小:2.37 MB
- 文档页数:98
1.吸声材料和吸声结构的分类?①多孔材料,板状材料,穿孔板,成型顶棚吸声板,膜状材料,柔性材料吸声结构:共振吸声结构,包括1。
空腔共振吸声结构,2。
薄膜,薄板共振吸声结构。
其他吸声结构:空间吸声体,强吸声结构,帘幕,洞口,人和家具,空气吸收(空气热传导性,空气的黏滞性和分子的弛豫现象,前两种比第三种的吸收要小得多)。
吸声与隔声有什么区别?吸声量与隔声量如何定义?它们与那些因素有关?答:吸声指声波在传播途径中,声能被传播介质吸收转化为热能的现象。
隔声指防止声波从构件一侧传向另一侧。
吸声量:指材料的吸声面积与其吸声系数的乘积,单位为m2。
隔声量:指建筑构件的传声损失,,单位为(dB)。
它们主要与构件的透射系数有关,和构件的反射系数和吸声系数有关。
2. 衍射的定义:当声波在传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。
影响因素:障碍物的尺寸或缝孔的宽度与波长接近或更小时,才能观察到明显的衍射现象,不是决定衍射能否发生的条件,仅是使衍射现象明显表现的条件,波长越大,越容易发生衍射现象。
3.解释“波阵面”的概念,在建筑声学中引入“声线”有什么作用?答:声波从声源发出,在某一介质内向某一方向传播,在同一时刻,声波到达空间各点的包迹面称为“波阵面”,或“波前”。
“声线”主要是可以较方便地表示出声音的传播方向;利用作图法确定反射板位置和尺寸。
波阵面为平面的称为“平面波”,波阵面为球面的称为“球面波”。
4.什么是等响线?从等响线图说明人耳对声音的感受特性。
答:等响线是指响度相同的点所组成的频谱特征曲线,从等响线图可知:1.人耳在高声压级下,对声音频率的响应较一致;2.在低声压级下,人耳对于低于1000Hz的声音和高于4000Hz的声音较不敏感,而对1000Hz~ 4000Hz的声音感受最为敏锐;3.在同一频率下,声压级提高10dB,相对响度提高一倍。
基础知识建筑物声学设计声学设计是建筑物设计中的重要组成部分,它涉及到声音的传播、隔音和吸声等方面。
在建筑物声学设计中,需要考虑到各种因素,如建筑结构、材料选择、空间布局等,以实现理想的声学效果。
一、声学设计的基础知识声学是研究声音的学科,声学设计是在建筑物设计中应用声学原理的过程。
了解声学的基础知识对于进行有效的声学设计至关重要。
1.声音的特性声音是一种机械波,由声源产生并通过介质传播。
声波的重要特性包括频率、振幅、声速和波长等。
频率决定了声音的音调,振幅则决定了声音的音量。
2.声学参数声学设计中常用的参数包括声音的分贝级别、各种声学参数、各种声学指标等。
这些参数能够 quantitatively 描述声音的特性,帮助声学设计师进行有效的设计。
二、声音的传播与隔音设计在建筑物的声学设计中,声音的传播和隔音是需要重点考虑的问题。
声音的传播可以通过合适的建筑结构和材料选择来控制,而隔音设计则可以实现不同空间的声音隔离。
1.建筑结构设计建筑结构是影响声音传播的关键因素之一。
墙体、地板、天花板等结构的材料和厚度会影响声音的传播效果。
对于需要保持私密性的空间,如会议室和办公室,需要采用隔音效果更好的墙体结构。
2.隔音材料的选择隔音材料在声学设计中起到重要的作用。
吸音材料能够吸收声音能量,减少声音的反射,适用于音乐厅和录音棚等需要良好音质的场所。
隔音材料则可以阻止声音的传播,常用于电影院和酒店客房等需要隔音的场所。
3.空间布局设计合理的空间布局有助于控制声音的传播。
对于大型剧院和会议中心等场所,需要考虑到座位的排布和声音的扩散。
而在教室和图书馆等场所,需要考虑到声音的集中和传播。
三、吸声设计与音质控制除了声音的传播和隔音设计外,声学设计还需要考虑吸声设计和音质控制。
这些因素对于建筑物的音质、舒适性和人的健康都有重要影响。
1.吸声设计吸声设计旨在减少声音的反射和共振,提高音质和减少噪音。
常见的吸声材料包括吸音板、吸音瓷砖和吸音布料等。
一注建筑物理声学公式建筑物理声学是研究建筑环境中声音传播、声学特性和建筑声学设计的学科。
声学公式是描述声学现象和计算声学参数的数学公式。
以下是一些常见的建筑物理声学公式。
1.声压级(SPL):声压级是描述声音强度的物理量,以分贝(dB)为单位。
声压级可以通过以下公式计算:Lp = 20 * log10(P/ Pref)其中,Lp表示声压级,P表示声压,Pref表示参考声压(通常设为20微帕)。
2.分贝级差公式:用于计算两个声音源之间的分贝级差。
分贝级差公式如下:L1 - L2 = 10 * log10(I1/ I2)其中,L1和L2表示两个声音源的声压级,I1和I2表示两个声音源的声强。
3.音量与声级:音量是指感觉到的声音的强度,可以通过声级来描述。
声级与音量的关系可以通过以下公式计算:音量 = 10 * log10(I/I0)其中,I是声音的声强,I0是参考声强。
4.声速公式:声速是声音传播的速度,可以通过以下公式计算:c=λ*f其中,c表示声速,λ表示波长,f表示频率。
5.工作点频率:工作点频率是指在特定的条件下,建筑物的振动频率,可以通过以下公式计算:f=1/2π*√(k/m)其中,f表示工作点频率,k表示弹性系数,m表示质量。
6.斯托克斯公式:斯托克斯公式用于计算空气中声音的衰减系数,公式如下:α = 20 * log10(4π * f * r/ c)其中,α表示衰减系数,f表示频率,r表示距离,c表示声速。
7.传声器的灵敏度:传声器灵敏度是指传声器输出信号与输入声压级之间的关系。
传声器的灵敏度可以通过以下公式计算:S = 20 * log10(Vout/ Vref)其中,S表示传声器的灵敏度,Vout表示传声器的输出电压,Vref 表示参考电压。
以上是一些常见的建筑物理声学公式,它们用于描述声学现象、计算声学参数和设计建筑声学。
这些公式在建筑环境中的声学研究和设计中起到重要的作用,能够帮助我们更好地理解和控制声学特性,提供舒适和健康的建筑环境。
建筑物理声学1. 概述建筑物理声学是研究建筑中声学特性及其对人类生活、工作产生的影响的学科,主要包括建筑声学、环境声学和室内声学三个分支。
建筑声学研究建筑结构在声场中的传递、反射、吸收等特性,以及建筑在城市环境中的声环境的特性和标准。
环境声学则是研究环境中噪声的来源、传播规律以及对人类生活、通讯等各个方面的影响,并探讨并制定相应的标准和规范。
室内声学研究室内声场的特性及其对声学环境的影响,以及室内声环境的规划和设计。
建筑物理声学在建筑设计、施工、使用、维护等方面都具有重要意义。
一方面,建筑声学能够为建筑的设计提供依据,如声隔声设计、室内音响设计、构件表面吸声设计等。
另一方面,环境声学能够为城市建设和交通规划提供科学依据,如道路交通噪声控制、工厂噪声标准等。
2. 建筑声学建筑声学主要研究建筑结构的声学特性,如声隔声、声吸声、声反射等特性。
影响建筑声学的因素主要包括建筑的结构形式、围护结构、材料、窗户和门,以及周围环境的声场特性等。
建筑声学中的重要参数包括隔声指数、吸声系数、反射系数等。
隔声指数是指隔声墙体能够隔离低于该值的声音。
吸声系数是指固体材料表面能够吸收入射声波的能力。
反射系数是指物体表面能够反射入射声波的能力。
在建筑声学设计中,通过合理配置各个参数,能够达到声学环境良好的目的。
3. 环境声学环境噪声是指环境中任何超过背景声值的声音,包括交通噪声、建筑施工噪声、工业噪声等。
环境噪声对人类健康和心理状态都有一定的影响,如产生头痛、心跳加速等不适症状,长期暴露更会导致听力损失、睡眠障碍、心理抑郁等疾病。
为了控制环境噪声,环境声学专家通常使用噪声等级、等效声级等参数进行测量和分析,并以此为基础制定相应的标准和规范。
例如,交通噪音影响评价标准GB/T 15173-2017标准就规定了不同区域和不同时间段内允许的最大噪声限值。
4. 室内声学室内声学是研究室内声场特性及其对室内环境的影响的学科。
室内声学对于音响系统的设计、噪声控制、声学隔离等方面都有重要作用。
建筑声学第3.1章 建筑声学基本知识一、声音的基本性质声源是辐射声音的振动物体。
声波是纵波。
人耳可听到的声波频率范围是20-20000Hz 。
介质的密度越大,声音的传播速度越快,声音在空气中的传播速度为340 m/s 。
将声音的频率范围划分为若干个区段,称频带。
声学设计和测量中常用倍频带和1/3倍频带。
倍频带的中心频率有11个:16、31.5、63、125、250、500、1000、2000、4000、8000Hz 、16kHz 。
小于200 Hz 为低频,500~1000Hz 为中频,大于2000Hz 为高频。
声波从声源出发,在介质中传播,声波同一时刻所到达的各点的包络面称波阵面。
声线表示声波的传播方向和途径。
声波可分为球面波、平面波和拄面波。
声波在传播过程中会发生反射(镜像反射和扩散反射)、绕射(声波绕过障蔽边缘进入声影区的现象)、干涉(相同频率、相位的两列波在叠加区域内引起的振动加强和削弱的现象)。
材料的反射系数r 、透射系数τ和吸收系数α分别表示被反射、透过和吸收的声能占总声能的比例。
τ小的材料就是隔声材料,α> 0.2的材料就是吸声材料。
二、声音的计量声功率W :声源在单位时间内向外辐射的声能。
声强I :单位时间,垂直于声波传播方向上单位面积通过的声能。
点声源 24/r W I π=声压p :介质有无声波传播时压强的改变量。
自由声场中 c p I 02/ρ=声能密度E :单位体积内声能的强度。
c I E /=级的概念,声压级0/lg 20p p L p =;声强级0/lg 10I I L I =;声功率级0/lg 10W W L W =(其中p 0=2×10-5Pa ;I 0=10-12W/m 2;W 0=10-12W );几个等声压级的叠加n p p L p lg 10lg 200+=。
两个等声压级叠加时,总声压级比一个声压级增加3dB ,两声 级之差超过10dB 时,附加值可忽略不计,总声压级等于最大声压级。
建筑物理声学总结归纳建筑物理声学是研究建筑环境中声音传播、吸声、隔声等现象的学科。
在建筑设计与施工过程中,充分考虑建筑物理声学问题,可以提供良好的声学环境,提高建筑空间的舒适性。
本文将对建筑物理声学的相关概念、作用以及调控方法进行总结归纳。
一、建筑物理声学概念建筑物理声学是以声学理论和实验为基础,研究建筑空间内声波的传播、吸声和隔声等现象的学科。
建筑物理声学涉及的主要概念包括声压级、声能级、声速、声波传播路径等。
1. 声压级(Sound Pressure Level,SPL):声压级是描述声音强弱的物理量,用单位分贝(dB)表示。
声压级的高低直接影响建筑内部的声音感知。
2. 声能级(Sound Energy Level,SEL):声能级是描述声音总能量的物理量,单位同样为分贝(dB)。
声能级的高低与声音的持续时间和强度有关。
3. 声速(Speed of Sound):声速是声音在介质中传播的速度,与介质的密度和弹性有关。
不同介质中的声速存在差异,对声音传播具有重要影响。
二、建筑物理声学的作用1. 提供舒适的声学环境:合理控制建筑内部的声音传播和回声,创造出舒适的听觉感受。
在住宅、办公室等场所,保证语音的清晰传递是一个重要目标。
2. 保护隐私:通过隔声设计,在密闭空间内避免室内外声音干扰,确保私密性。
这在酒店客房、医院病房等场所尤为重要。
3. 助于声学表演:在剧院、音乐厅等场所,正确调整声音的吸收和反射方式,能够提高表演的音质和声场效果。
4. 防止噪声污染:通过合理的隔声设计,减少建筑内外噪声的传播,保障周边环境的安宁。
三、建筑物理声学调控方法1. 吸声处理:通过合适的吸声材料和结构设计,减少声音的反射和回声,降低噪音和噪声对人体的影响。
常用的吸声材料包括吸声板、吸声瓦、吸声窗帘等。
2. 隔声设计:采用适当的隔声结构和隔音材料,阻断声音传播路径,减少建筑内外的噪声干扰。
隔声设计中常用的材料包括隔声墙体、隔声门窗以及隔声隔板等。