3.4函数的应用(习题课)
- 格式:pptx
- 大小:2.01 MB
- 文档页数:17
高等数学理工类第三版上册(吴赣昌著)课后答案下载高等数学理工类第三版上册(吴赣昌著)内容提要绪言第1章函数、极限与连续1.1 函数1.2 初等函数1.3 数列的极限1.4 函数的极限1.5 无穷小与无穷大1.6 极限运算法则1.7 极限存在准则两个重要极限1.8 无穷小的比较1.9 函数的连续与间断1.10 连续函数的运算与性质总习题数学家简介第2章导数与微分2.1 导数概念2.2 函数的求导法则2.3 高阶导数2.4 隐函数的导数2.5 函数的微分总习题二数学家简介第3章中值定理与导数的应用3.1 中值定理3.2 洛必达法则3.3 泰勒公式3.4 函数的单调性、凹凸性与极值 3.5 数学建模——最优化3.6 函数图形的描绘3.7 曲率总习题三数学家简介第4章不定积分4.1 不定积分的概念与性质4.2 换元积分法4.3 分部积分法4.4 有理函数的积分总习题四数学家简介第5章定积分5.1 定积分概念5.2 定积分的性质5.3 微积分基本公式5.4 定积分的换元积分法和分部积分法 5.5 广义积分总习题五数学家简介第6章定积分的应用6.1 定积分的微元法6.2 平面图形的面积6.3 体积6.4 平面曲线的弧长6.5 功、水压力和引力总习题六第7章微分方程7.1 微分方程的基本概念7.2 可分离变量的微分方程7.3 一阶线性微分方程7.4 可降阶的二阶微分方程7.5 二阶线性微分方程解的结构7.6 二阶常系数齐次线性微分方程7.7 二阶常系数非齐次线性微分方程7.8 欧拉方程7.9 常系数线性微分方程组7.10 数学建模——微分方程的应用举例总习题七附录Ⅰ预备知识附录Ⅱ常用曲线附录Ⅲ利用Excel软件做线性回归习题答案第1章答案第2章答案第3章答案第4章答案第5章答案第6章答案第7章答案高等数学理工类第三版上册(吴赣昌著)目录本书根据高等院校理工类本科专业高等数学课程的教学大纲编写而成,并在第二版的基础上进行了修订和完善。
《函数的基本性质习题课》教学设计教学重点:理解函数的基本性质,应用函数的性质进行运算求解、推理论证. 教学难点:应用函数的性质进行运算求解、推理论证.用软件制作动画;PPT 课件.一、复习导入问题1:请同学们梳理第3.2节(课本P 76~P 85)的内容,回答以下几个问题: (1)函数的基本性质有哪些?你能依次从图象特征和代数符号的角度叙述这些性质吗?(2)你能说说研究函数的性质的方法吗?师生活动:学生先独立阅读思考,老师根据学生的回答补充. 预设的答案:(1)的答案见表1:表1表1中,函数y =f (x )的定义域为I ,区间D ⊆I .(2)先观察具体函数图象,分析图象特征,形成对函数性质的感性认识;再结合解析式从代数的角度定量刻画函数性质,抽象出一般概念;最后应用概念分析解决问题.设计意图:通过复习帮助学生梳理学习方法,构建函数基本性质的知识结构. 引语:我们在第3.2节主要学习了三种函数性质,本节课我们一起来深入体会这些性质的作用.(板书:函数的基本性质习题课)二、新知探究1.单调性的应用例1 (习题3.2 P 86第8题)(1)根据函数单调性的定义证明函数y =x +9x 在区间(3,+∞)上单调递增;(2)讨论函数y =x +9x 在区间(0,+∞)上的单调性;(1)证明:∀x 1,x 2∈(3,+∞),且x 1<x 2,有 y 1-y 2=(x 1+9x 1)-(x 2+9x 2)=(x 1-x 2)+(9x 1-9x 2)=(x 1-x 2)+9(x 2-x 1)x 1x 2 =(x 1-x 2)-9(x 1-x 2)x 1x 2 =(x 1-x 2)(1-9x 1x 2)=(x 1-x 2)(x 1x 2-9x 1x 2)由x 1,x 2∈(3,+∞),得x 1>3,x 2>3,所以x 1x 2>9,x 1x 2-9>0. 由x 1<x 2,得x 1-x 2<0,于是(x 1-x 2)(x 1x 2-9x 1x 2)<0,即y 1<y 2.所以,函数y =x +9x在区间(3,+∞)上的单调递增.增.2.单调性与奇偶性的综合应用例2(习题3.2P86第11题)已知函数f(x)是定义域为R的奇函数,当x≥0时,f(x)=x(1+x).画出函数f(x)的图象,并求出函数的解析式.追问1:求f(-1).(f(1)=1×(1+1)=2,又因为函数f(x)是奇函数,所以f(-1)=-f(1)=-2.)追问2:求f(t).(当t≥0时,f(t)=t(1+t);当t<0时,-t>0,f(-t)=-t×(1+(-t))=-t(1-t),又因为函数f(x)是奇函数,所以f(t)=-f(-t)=t(1-t).)师生活动:学生先独立地根据奇偶性画出函数的图象,体会该函数在定义域R内的不同范围内的对应关系不同,明确所求函数是分段函数.求解解析式对于大多数高一学生来说)追问4:在例2与追问3中,分别判断在(-∞,0)上的单调性,据此你能得到奇函数和偶函数单调性的哪些特点?(例2中,函数在(-∞,0)上单调递增;追问3中,函数在(-∞,0)上单调递减.据此得到猜想:奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反.)追问5:下面的命题是真命题吗?如果是请你证明,如果不是,请你举出反例:已知函数f(x)是偶函数,而且在[a,b]上单调递减,则f(x)在[-b,-a]上单调递增.(这是个真命题.证明:∀x1,x2∈[-b,-a],且x1<x2,由-b≤x1<x2≤-a,得a≤-x2<-x1≤b,由f(x)在[a,b]上单调递减,得f(-x2)>f(-x1),即f(-x1)-f(-x2)<0,得f(x1)-f(x2)=f(-x1)-f(-x2)<0,所以,函数f(x)在[-b,-a]上单调递增.)设计意图:追问1,2是引导学生从具体的函数求值入手过渡到一般的函数求值,然后比较自然地求解例2,追问3巩固例2中所学的思路与方法,提升学生的逻辑推理和数学运算素养.追问4,5引导学生体会单调性与奇偶性之间的关系,提升学生的直观想象和逻辑推理素养.三、归纳小结,布置作业问题2:回忆本节课的内容,请你回答以下几个问题:(1)奇偶性与单调性如何互相影响?(2)应用奇偶性和单调性的定义,我们可以解决什么问题?师生活动:师生一起总结.预设的答案:(1)如果函数是奇函数,则在对称区间上的单调性是相同的;如果函数是偶函数,则在对称区间上的单调性是相反的.(2)利用单调性定义,可以用于证明一些图象已知的函数的单调性,还可以用于判定图象未知的函数的单调性.利用奇偶性定义,可以判定奇偶性,还可以解决对称区间上的函数求值问题.设计意图:通过梳理本节课的内容,让学生明确函数性质的各种作用.作业布置:教科书复习参考题3第3,4,9,12题.四、目标检测设计1.已知f(x)=2xx2+1,x∈R.(1)求证:f(x)在区间[-1,1]上单调递增;(2)你还能得到函数的哪些性质?设计意图:考查函数单调性、奇偶性、最值等性质.2.已知函数f(x)是定义域为R的偶函数,当x<0时,f(x)=x(x+1),则当x>0时,f(x)=________.设计意图:考查运用奇偶性的定义求解析式.3.函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上单调递减,则a的取值范围是______.设计意图:考查单调性的应用.参考答案:1.(1)∀x1,x2∈[-1,1],且x1<x2,则f(x1)-f(x2)=2(x2-x1)(x1x2-1) (x12+1)(x22+1),因为x2-x1>0,x1x2-1<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)=2x x2+1在区间[-1,1]上单调递增.(2)①f(x)在区间(-∞,-1]和[1,+∞)上单调递减;②f(x)是奇函数;③值域为[-1,1].2.x(x-1).3.(-∞,-5].。
高一数学新授课课时安排表课程内容:高一(上)普通高中课程标准实验教科书数学必修1第一章集合与函数概念 8课时(包含习题课)1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ) 6课时(包含习题课)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用 4课时(包含习题课)3.1 函数与方程3.2函数模型及其应用小结:总结+习题 2课时普通高中课程标准实验教科书数学必修2第一章空间几何体 4课时(包含习题课)1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系 4课时(包含习题课)2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程 6课时(包含习题课)3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程 6课时(包含习题课)4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结:总结+习题 2课时高一(下)普通高中课程标准实验教科书数学必修3第一章算法初步 4课时(包含习题课)1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计 4课时(包含习题课)2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率 6课时(包含习题课)3.1 随机事件的概率3.2 古典概型3.3 几何概型小结+习题 4课时普通高中课程标准实验教科书数学必修4第一章三角函数 8课时(包含习题课)1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量 8课时(包含习题课)2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换 4课时(包含习题课)3.1 两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换小结+习题 4课时。
3.4 函数的应用(一)1.函数的意义;2. 一次函数模型;3. 二次函数模型;4. 分段函数模型;5.生产生活中的“最优化”问题一、单选题1.(2020·浙江高一课时练习)某种商品进货价为每件200元,售价为进货价的125%,因库存积压,若按9折出售,每件还可获利( )A.45元B.35元C.25元D.15元2.(2020·浙江高一课时练习)一水池有两个进水口,一个出水口,每个进水口的进水速度如图甲所示.出水口的出水速度如图乙所示,某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是()A.①B.①②C.①③D.①②③3.(2020·浙江高一课时练习)用一段长为8cm的铁丝围成一个矩形模型,则这个模型的最大面积为()A.25cm16cm C.29cm B.24cm D.24.(2020·浙江高一课时练习)某厂印刷某图书总成本y(元)与图书日印量x(本)的函数解析式为y=5x+3000,而图书出厂价格为每本10元,则该厂为了不亏本,日印图书至少为()A.200本B.400本C.600本D.800本5.(2020·浙江高一课时练习)某市出租车起步价为5元(起步价内行驶里程为3 km),以后每1 km价为1.8元(不足1 km按1 km计价),则乘坐出租车的费用y(元)与行驶的里程x(km)之间的函数图像大致为()A .B .C .D .6.(2020·浙江高一课时练习)面积为S 的长方形的某边长度为x ,则该长方形的周长L 与x 的函数关系为A .(0)SL x x x =+> B .(0)SL x x S x =+<<C .22(0)SL x x x =+>D .22(0)SL x x S x=+<<7.(2020·上海高一课时练习)甲、乙两人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后两人同时到达B 地.已知甲骑自行车比乙骑自行车快.若每人离开甲地的距离S 与所用时间t 的函数用图象表示,则甲、乙对应的图象分别是( )A .甲是(1),乙是(2)B .甲是(1),乙是(4)C .甲是(3),乙是(2)D .甲是(3),乙是(4)8.(2020·陕西长安一中高一开学考试)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( ).A .x =15,y =12B .x =12,y =15C.x=14,y=10D.x=10,y=149.(2020·全国高一专题练习)某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30 000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒()A.2 000套B.3 000套C.4 000套D.5 000套10.(2020·四川省乐山沫若中学高一月考)2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括:①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元,新的个税政策的税率表部分内容如下:现有李某月收入为18000元,膝下有一名子女在读高三,需赡养老人,除此之外无其它专项附加扣除,则他该月应交纳的个税金额为()A.1800B.1000C.790D.560二、多选题11.(2019·山东牡丹菏泽一中高一月考)在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量y(单位:千克)与时间x(单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是().A.在前三小时内,每小时的产量逐步增加B.在前三小时内,每小时的产量逐步减少C.最后一小时内的产量与第三小时内的产量相同D.最后两小时内,该车间没有生产该产品12.(2020·全国)某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费:超过8km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是( ) A .出租车行驶2km ,乘客需付费8元 B .出租车行驶4km ,乘客需付费9.6元 C .出租车行驶10km ,乘客需付费25.45元D .某人乘出租车行驶5km 两次的费用超过他乘出租车行驶10km 一次的费用 E.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km13.(2020·全国)甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km .如图所示表示甲同学从家出发到乙同学家经过的路程y (km )与时间x (min )的关系,下列结论正确的是( )A .甲同学从家出发到乙同学家走了60minB .甲从家到公园的时间是30minC .甲从家到公园的速度比从公园到乙同学家的速度快D .当030x ≤≤时,y 与x 的关系式为115y x =E.当3060x ≤≤时,y 与x 的关系式为1210y x =- 14.(2019·全国高一课时练习)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用1y (千元)乙厂的总费用2y (千元)与印制证书数量x (千个)的函数关系图分别如图中甲、乙所示,则( )A .甲厂的制版费为1千元,印刷费平均每个为0.5元B .甲厂的费用1y 与证书数量x 之间的函数关系式为10.51y x =+C .当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元D .当印制证书数量超过2千个时,乙厂的总费用2y 与证书数量x 之间的函数关系式为21542y x =+ E.若该单位需印制证书数量为8千个,则该单位选择甲厂更节省费用 三、填空题15.(2020·全国高一课时练习)甲、乙两人在一次赛跑中,从同一地点出发,路程S 与时间t 的函数关系如图所示,则下列说法正确的是________.(填序号)①甲比乙先出发;②乙比甲跑的路程多;③甲、乙两人的速度相同;④甲比乙先到达终点.16.(2020·浙江高一课时练习)已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t 的函数,表达式为__________.17.(2019·北京丰台)某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.四、双空题18.(2020·邢台市第二中学高一开学考试)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.19.(2020·浙江高一单元测试)某品牌连锁便利店有n个分店,A,B,C三种商品在各分店均有销售,这三种商品的单价和重量如表1所示:表1某日总店向各分店分配的商品A,B,C的数量如表2所示:表2表3表示该日分配到各分店去的商品A,B,C的总价和总重量:表3则a=__________ ;b=__________ .20.(2019·广东南沙高一期中)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为70元/盒、65元/盒、85元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到128元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当15x =时,顾客一次购买草莓和西瓜各1盒,需要支付______元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为______. 21.(2020·海南高一期末)某种商品在第()*130,x x x ≤≤∈N天的销售价格(单位:元)为102,110()135,10302x x f x x x +≤≤⎧⎪=⎨-<≤⎪⎩,第x 天的销售量(单位:件)为()30g x x =-,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元. 五、解答题22.(2020·全国高一课时练习)某列火车从A 地开往B 地,全程277km .火车出发10min 开出13km 后,以120km /h 的速度匀速行驶试写出火车行驶的总路程s 与匀速行驶的时间t 之间的关系,并求离开A 地2h 时火车行驶的路程.23.(2020·全国高一课时练习)一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半票优惠.”乙旅行社说:“家庭旅行为集体票,按原价23优惠.”这两家旅行社的原价是一样的.试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠. 24.(2019·浙江南湖 嘉兴一中高一月考)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G(x )(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本 = 固定成本 + 生产成本);销售收入R(x )(万元)满足:20.4 4.20.8(05)()10.2(5)x x x R x x ⎧-+-≤≤=⎨>⎩,假定该产品产销平衡,那么根据上述统计规律:(Ⅰ)要使工厂有赢利,产量x 应控制在什么范围? (Ⅰ)工厂生产多少台产品时,可使赢利最多?25.(2020·全国高一课时练习)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似表示为24880005x y x =-+,已知此生产线年产量最大为210吨,若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少? 26.(2020·荆州市北门中学高一期末)十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x (百辆),需另投入成本()C x 万元,且()21010004010000501450040x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,,.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.(1)求出2018年的利润L (x )(万元)关于年产量x (百辆)的函数关系式;(利润=销售额-成本) (2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.27.(2020·全国高一课时练习)某旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。
第三章《函数》教材分析本章为函数,共6节,内容如下映射、函数、作函数图像的描点法、函数的性质、反函数、函数的应用举例.函数是数学的重要的基础概念之一进一步学习的数学分析,包括极限理论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本概念和研究对象的其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具函数的教学内容蕴涵着极其丰富的辩证思想,是对学生进行辩证唯物主义观点教育的好素材函数的思想方法也广泛地诊透到中学数学的全过程和其他学科中函数是中学数学的主体内容它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用后续内容的极限、微积分初步知识等都是函数的内容数列可以看作整标函数,等差数列的通项反映的点对(n,an)都分布在直线y=kx+b的图象上,等差数列的前n项和公式也可以看作关于n(n∈N)的二次函数关系式,等比数列的内容也都属于指数函数类型的整标函数中学的其他数学内容也都与函数内容有关函数在中学教材中是分三个阶段安排的第一阶段是在初中代数课本内初步讨论了函数的概念、函数的表示方法以及函数图象的绘制等,并具体地讨论正比例函数、反比例函数、一次函数、二次函数等最简单的函数,通过计算函数值、研究正比例函数、反比例函数、一次函数、二次函数的慨念和性质,理解函数的概念,并用描点法可以绘制相应函数图象本章以及第四章三角函数的内容是中学函数教学的第二阶段,也就是函数概念的再认识阶段,即用集合、映射的思想理解函数的一般定义,加深对函数概念的理解,在此基础上研究了指数函数、对数函数、三角函数等基本初等函数的概念、图象和性质,从而使学生在第二阶段函数的学习中获得较为系统的函数知识,并初步培养了学生的函数的应用意识,为今后学习打下良好的基础第二阶段的主要内容在本章教学中完成第三阶段的函数教学是在高中三年级数学的限定选修课中安排的,选修Ⅰ的内容有极限与导数,选修Ⅱ的内容有极限、导数、积分,这些内容是函数及其应用研究的深化和提高,也是进一步学习和参加工农业生产需要具备的基础知识(一)内容安排本章的函数是用初中代数中的“对应”来描述的函数概念,这两个函数定义反映了函数概念发展的不同阶段高一学生的数学知识较少,接受能力有限,用原始概念“对应”一词来描述函数定义是合适的而且有利于初中和高中知识的自然过渡和衔接映射是在学习完集合与函数的基本概念之后学习的它是两个集合的元素与元素的对应关系的一个基本概念学习集合的映射概念的目的主要为了进一步理解函数的定义映射中涉及的“原象的集合A”“象的集合B”以及“从集合A到集合B的对应法则f”可以更广泛的理解集合A、B不仅仅是数集,还可以是点集、向量的集合等,本章主要是指数的集合随着内容的增多和深入,可以逐渐加深对映射概念的理解,例如实数对与平面点集的对应,曲线- 1 -与方程的对应等都是映射的例子映射是现代数学的一个基本概念函数的单调性函数的重要性质之一,中学函数教材研究的函数性质主要有单调性、奇偶性、周期性以及连续性等,本章研究的单调性是从观察函数图象的特性,然后给出一般的定义,作为代数方面证明的开始和基础这也是学生接受的难点所在奇偶性、周期性是结合三角函数内容讲授的,连续性安排在函数极限之后学习这样一是为了分散难点,另外一方面结合具体函数讲授能够直接应用,也有利于巩固这些知识的学习反函数也是函数,因为它符合函数的定义反函数的概念只能以变量及对应关系来说明它的含义中学里讲授的函数内容主要以解析式表示的函数为主,因此,求反函数主要借助初中学习的方程知识来解决,函数与反函数的图象间的关系是观察具体函数的图象给出了结论,学生接受起来也不难函数应用举例是本章教材的最后一节,是全章综合知识的运用函数的应用是极其广泛的,这里只通过几个简单的例题予以说明应用意识的培养和应用能力的提高是高中数学教学培养能力的总的目的之一,应该贯穿于数学教学的全过程本节的教学要求是通过几何图形的函数关系建立、增长率的计算、物理大气压强公式的运用等实际问题的教学,以及课后配备的练习、习题的训练,初步培养学生用数学的意识,逐步提高分析问题、解决实际问题的能力(二)教学要求1.理解函数概念,了解映射的概念;2.理解函数的单调性概念,掌握判断一些简单函数的单调性的方法,并能利用函数的性质简化函数图象的绘制过程;3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;4.在解题和证题过程中,通过运用有关的概念和运用函数的性质,培养学生的思维能力和运算能力;通过揭示互为反函数的两个函数之间的内在联系,对学生进行辩证唯物主义观点的教育;通过联系实际地引入问题和解决简单的带有实际意义的某些问题,培养学生用数学的意识,提高分析问题和解决实际问题的能力二、教学中应该注意的问题(一)注意与初中内容的衔接如果初中代数中的内容没有学习好或遗忘的过多,学习本章就有障碍本章很多内容都是在初中的基础上讲授的,如函数概念,要在讲授之前复习好初中函数及其图象的主要内容,包括函数的概念、函数图象的描绘,一次函数、二次函数的性质等等;因此在本章教学中要注意与初中所学的有关内容的联系,做好初、高中数学的衔接和过渡工作(二)注意数形结合本章的内容中图象占有相当大的比重,函数图象对于研究函数的性质起到很重要的作用通过观察函数图象的变化趋势,可以总结出函数的性质函数与反函数的函数图象的关系也是通过图象变化特点来归纳的性质,所以在本章教学中要特别注意利用函数图象,使学生不仅能从图象观察得到相应的性质,同时在研究性质时也要有函数图象来印证的思维方式在教学过程中要注意培养学生绘制某些简单函数图象的技能,记住某些常见的函数图象的草图,养成利用函数图象来说明函数的性质和分析问题的习惯(三)注意与其他章内容的联系本章是在集合与简易逻辑之后学习的,映射概念本身就属于集合的知识因此,要经常联系前一章的内容来学习本章,又如学会二次不等式解集的表示就要用到求函数的定义域或表示值域等知识上来简易逻辑中的充要条件在本章中就要用到内容也要经常用到因此,要注意与其他章节的联系,也要注意联系物理、化学等学科的知识内容来丰富和巩固本章的内容- 2 -。
人教版中职数学基础模块上册《函数的应用》教案 (一)人教版中职数学基础模块上册《函数的应用》教案是一份非常重要的教学资源,它是中职数学教学过程中介绍函数概念、使用函数解决实际问题的重要教学内容之一。
本教案将帮助学生深入了解函数及其应用,并提供了大量的练习题,有助于学生掌握应用函数解决实际问题的方法和技能。
一、教学目标本教案的目标是使学生对函数的概念和应用有更深刻的理解,了解函数的分类、性质和应用场景,能够运用函数知识解决实际问题。
二、课程设置1.函数的定义及类型首先讲解函数的定义及分类,包括一次函数、二次函数、指数函数、对数函数等等,让学生了解函数的基本特征。
2.函数的性质及应用通过实际问题引导学生了解函数的性质和应用,如最大值、最小值、单调增减、奇偶性等。
3.应用题的讲解根据学生的实际水平和能力进行不同难度的应用题讲解,帮助学生学习如何将函数应用于解决实际问题,如利用函数求解最优解、预测数据趋势等等。
4.练习题提供大量的练习题供学生练习,让学生通过练习加深对函数的理解,并提高运用函数解决实际问题的能力。
三、教学方法和评价方式本教案采用多媒体课件、展示板、讲解、互动练习等多种教学方法,通过生动的实例和具体的应用,让学生更好地理解并掌握函数的应用。
同时利用不同难度的测试和作业评估学生的学习成果,帮助学生找出自身需要加强的地方,加强学习效果。
四、总结人教版中职数学基础模块上册《函数的应用》教案是对学生掌握函数理论及其应用提供了很好的帮助,通过分析、解决应用题目,培养了学生独立思考解决问题的能力。
同时,老师也应加强课堂互动,不断调整教学方法和手段,为学生提供更好的教学体验。
《函数的应用》教学设计方案(第一课时)一、教学目标1. 理解函数的概念,掌握函数的定义域和值域。
2. 学会运用函数知识解决简单的实际问题。
3. 培养数学思维和解决问题的能力。
二、教学重难点1. 重点:函数的概念和性质。
2. 难点:将实际问题转化为数学问题,建立函数模型。
三、教学准备1. 准备教学用具:黑板、粉笔、函数图象工具软件。
2. 准备教学材料:相关实际问题案例,函数模型建立方法。
3. 设计教学活动:引导学生通过实际例子,引入函数概念,讲解函数性质,引导学生建立函数模型解决实际问题。
4. 预习提示:学生预习内容,准备相关实际例子,提出疑问。
四、教学过程:(一)导入新课1. 复习提问:请学生回顾初中学习的函数概念,请学生列举生活中的函数关系式。
2. 引出课题:今天我们一起来学习中职数学课程《函数的应用》。
(二)教学实施任务一:理解函数的概念1. 教师介绍函数的定义,并引导学生理解定义中的三个要素:定义域、值域、对应法则。
2. 教师举例说明函数的应用,如:一次函数、二次函数、指数函数、对数函数等的应用场景。
3. 学生小组讨论,分享生活中的函数实例。
4. 分享与讨论:请学生分享自己搜集的函数实例,并讨论函数的用途和特点。
任务二:构建函数模型1. 教师介绍常见的函数模型及其应用场景,如:一次函数模型在市场营销中的应用,指数函数模型在经济增长中的应用等。
2. 教师引导学生思考如何构建适合的函数模型来解决实际问题。
3. 学生尝试构建函数模型,并尝试用函数解决实际问题。
4. 成果展示与交流:请学生展示自己的成果,并分享构建函数模型和解决问题的思路和方法。
任务三:应用函数的优化与决策1. 教师引导学生分析如何根据函数的性质进行优化和决策,如:利用函数的单调性、奇偶性、周期性等性质进行决策。
2. 学生尝试利用函数进行优化和决策,并与其他同学分享自己的方法和心得。
(三)课堂小结1. 请学生回顾本节课学习的内容,包括函数的概念、构建函数模型的方法和利用函数进行优化决策的思路等。
3.4 函数的应用(一)课后训练巩固提升1.从装满20 L 纯酒精的容器中倒出1 L 酒精,然后用水加满,再倒出1 L 酒精溶液,再用水加满,照这样的方法继续下去,如果倒第k 次时前k 次共倒出纯酒精x L,倒第(k+1)次时前(k+1)次共倒出纯酒精f(x) L,则f(x)的解析式是( )A.f(x)=1920x+1 B.f(x)=120x+1 C.f(x)=1920(x+1) D.f(x)=120xk 次时共倒出纯酒精xL,所以第k 次后容器中含纯酒精(20-x)L,第(k+1)次倒出的纯酒精是20-x 20L,故f(x)=x+20-x 20=1920x+1.2.某商品的进货价为40元/件,当售价为50元/件时,一个月能卖出500件.通过市场调查发现,该商品的单价每提高1元,该商品一个月的销售量就会减少10件,为使销售该商品的月利润最高,商店应将每件商品定价为( )A.45元B.55元C.65元D.70元50元的基础上提高x元,x∈N,每月的月利润为y元,则y与x 的函数解析式为y=(500-10x)·(50+x-40)=-10x2+400x+5000,x∈N,其图象的对称轴为直线x=20,故每件商品的定价为70元时,月利润最高.3.(多选题)甲、乙两人同时从A地赶往B地,甲先骑自行车到两地的中点再改为跑步;乙先跑步到两地的中点再改为骑自行车,最后两人同时到达B地.已知甲骑自行车比乙骑自行车的速度快,且两人骑车的速度均大于跑步的速度.现将两人离开A地的距离s与所用时间t的函数关系用图象表示如下:则上述四个函数图象中,表示甲、乙两人运动的函数关系的图象对应正确的是( )A.甲对应图①B.甲对应图③C.乙对应图②D.乙对应图④,知前半程的速度大于后半程的速度,则前半程的直线的斜率大于后半程直线的斜率.乙是先跑步,到中点后改为骑自行车,则前半程的直线的斜率小于后半程直线的斜率.因为甲骑自行车比乙骑自行车的速度快,则甲前半程的直线的斜率大于乙后半程直线的斜率,所以甲是①,乙是④.4.一批商品按期望获得50%的利润定价,结果只销售出70%的商品,为了尽早销售完剩下的商品,商场决定按定价打折出售,这样所获得的全部利润是原来所期望利润的82%,则应打( )A.六折B.七折C.八折D.九折a,商品打x折,-a)×30%=0.5a×82%-0.5a×70%,解得x=8.即商品由题意,得(1.5a·x10应打八折.5.已知直角梯形OABC中,AB∥OC,BC⊥OC,AB=1,OC=BC=2,直线x=t截这个梯形位于此直线左方的图形的面积(图中阴影部分)为y,则函数y=f(t)的大致图象为( )0≤t≤1时,f(t)=12t·2t=t2;当1<t≤2时,f(t)=12×1×2+(t-1)×2=2t-1,故当t∈[0,1]时,函数的图象是抛物线的一部分,当t∈(1,2]时,函数的图象是一条线段,故选C.6.将边长为1 m的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,设S=(梯形的周长)2梯形的面积,则S的最小值是.,根据题意,得S(x)=√3·(3-x)21-x2(0<x<1),令3-x=t,则t∈(2,3),1t ∈(13,12),则S=√3·t2-t2+6t-8=√3·1-8t2+6t-1,故当1t =38,即x=13时,S有最小值,最小值是32√33.7.有一种新型的洗衣液,去污效果特别好.已知在装有一定量水的洗衣机中投放k(1≤k≤4,且k∈R)个单位的洗衣液时,它在水中释放的浓度y(单位:克/升)随着时间x(单位:分钟)变化的函数解析式近似为y=kf(x),其中f(x)={248-x-1(0≤x≤4),7-12x(4<x≤14).若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k个单位的洗衣液,第2分钟时水中洗衣液的浓度为3克/升,求k的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.由题意知,k(248-2-1)=3,解得k=1.(2)因为k=4,所以y={968-x -4,0≤x≤4,28-2x,4<x≤14.当0≤x≤4时,由968-x-4≥4,解得-4≤x<8,所以0≤x≤4;当4<x≤14时,由28-2x≥4,解得x≤12,所以4<x≤12.综上,当y≥4时,0≤x≤12.故只投放一次4个单位的洗衣液的有效去污时间可达12分钟.(3)能.理由:在第12分钟时,水中洗衣液的浓度为2×(7-12×12)+1×[248-(12-10)-1]=5(克/升),因为5>4,所以在第12分钟时还能起到有效去污的作用.8.在经济学中,函数f(f(x)定义为Mf(x)=f(x+1)-f(x).某公司每月最多生产100台报警系统装置,生产x台(x>0)报警系统装置的收益函数为R(x)=3 000x-20x2(单位:元),其成本函数为C(x)=500x+4 000(单位:元).(1)求生产P(P(P(x)取得最大值时的实际意义是什么?由题意,得P(x)=R(x)-C(x)=(3000x-20x2)-(500x+4000)=-20x2+2500x-4000,其中P(x)=P(x+1)-P(x)=-20(x+1)2+2500(x+1)-4000-(-20x2+2500x-4000)=248 0-40x,其中x∈[1,99],且x∈N*.(2)由(1)知P(x)=-20x2+2500x-4000=-20(x-1252)2+74125.由x∈N*,知当x=62或x=63时,P(a P(x)=2480-40x,该函数是减函数,即随着产量的增加,每台报警系统装置与前一台相比较,利润在减小,故当x=1时,MP(P(x)取得最大值时的实际意义是生产第2台报警系统装置与生产第1台的总利润差最大.。
高教版中职数学(基础模块)课时安排及目录课时安排第三版上册第1章集合与充要条件1.1 集合的概念1.2 集合之间的关系1.3 集合的运算1.4 充要条件复习题1现代信息技术应用1 如何在Word文档中录入数学公式阅读与欣赏康托尔与集合论第2章不等式2.1 不等式的基本性质2.2 区间2.3 一元二次不等式2.4 含绝对值的不等式复习题2现代信息技术应用2 利用Excel软件解一元二次方程阅读与欣赏数学家华罗庚第3章函数3.1 函数的概念及表示法3.2 函数的性质3.3 函数的实际应用举例复习题3现代信息技术应用3 利用几何画板作函数图像(静态)阅读与欣赏个人所得税计算方法解析第4章指数函数与对数函数4.1 实数指数幂4.2 指数函数4.3 对数4.4 对数函数复习题4现代信息技术应用4 利用几何画板作函数图像(动态)阅读与欣赏声音的计量及噪音第5章三角函数5.1. 角的概念推广5.2 弧度制5.3 任意角的正弦函数、余弦函数和正切函数5.4 同角三角函数的基本关系5.5 诱导公式5.6 三角函数的图像和性质5.7 已知三角函数值求角复习题5现代信息技术应用5 利用几何画板作函数图像(从轨迹角度)阅读与欣赏光周期现象及其应用附录1 预备知识附录2 教材使用的部分数学符号下册第6 章数列6.1 数列的概念6.2 等差数列6.3 等比数列复习题6现代信息技术应用6 编制利用Excel软件进行数列相关计算的工作表阅读与欣赏堆垛中的数学计算第7章平面向量7.1 平面向量的概念及线性运算7.2 平面向量的坐标表示7.3 平面向量的内积复习题7现代信息技术应用7 利用几何画板软件绘图1阅读与欣赏牛顿第8章直线和圆的方程8.1 两点间的距离与线段中点的坐标8.2 直线的方程8.3 两条直线的位置关系8.4 圆复习题8现代信息技术应用8 利用几何画板软件绘图2阅读与欣赏解析几何的创始人———笛卡儿第9 章立体几何9.1 平面的基本性质9.2 直线与直线、直线与平面、平面与平面平行的判定与性质绪言第1章集合1.1 集合及其表示1.1.1 集合的概念1.1.2 集合的表示法1.2 集合之间的关系1.3 集合的运算1.3.1 交集1.3.2 并集1.3.3 补集趣味数学神奇的心灵魔术数学文化无限集的奥秘信息技术应用元素与集合(列表) 第2章不等式2.1 不等式的基本性质2.1.1 实数的大小2.1.2 不等式的性质数学文化从弦图看基本不等式2.2 区间2.3 一元二次不等式2.4 含绝对值的不等式2.5 不等式应用举例数学文化等号与不等号的来历信息技术应用四个“二次”第3章函数3.1 函数的概念3.2 函数的表示方法3.3 函数的性质3.3.1 函数的单调性3.3.2 函数的奇偶性3.3.3 几种常见的函数信息技术应用“心形”曲线与函数3.4 函数的应用趣味数学百钱买百鸡数学文化中国古代数学的发展期——魏晋南北朝第4章三角函数4.1 角的概念的推广4.1.1 任意角4.1.2 终边相同的角4.2 弧度制4.3 任意角的三角函数4.3.1 任意角的三角函数定义4.3.2 单位圆与三角函数4.4 同角三角函数的基本关系4.5 诱导公式4.6 正弦函数的图像和性质4.6.1 正弦函数的图像4.6.2 正弦函数的性质4.7 余弦函数的图像和性质4.8 已知三角函数值求角趣味数学地球的周长数学文化sin 的由来信息技术应用三角函数的定义域新版下册课时安排第5章指数函数与对数函数5.1 实数指数幂5.1.1 有理数指数幂5.1.2 实数指数幂5.2 指数函数5.3对数5.3.1对数的概念5.3.2 积、商、幂的对数数学文化对数简史5.4 对数函数5.5 指数函数与对数函数的应用趣味数学神奇的对数速算信息技术应用运用指数函数比较值的大小第6章直线与圆的方程6.1 两点间距离公式和线段的中点坐标公式6.2 直线的方程6.2.1 直线的倾斜角与斜率6.2.2 直线的点斜式方程与斜截式方程6.2.3 直线的一般式方程6.3 两条直线的位置关系6.3.1 两条直线平行6.3.2 两条直线相交6.3.3 点到直线的距离6.4 圆6.4.1 圆的标准方程6.4.2 圆的一般方程6.5 直线与圆的位置关系6.6 直线与圆的方程应用举例趣味数学数形结合,相辅相成数学文化笛卡儿坐标系的产生信息技术应用用GeoGebra判断直线与圆的位置关系第7章简单几何体7.1.1 棱柱7.1.2 直观图的画法7.1.3 棱锥7.2 旋转体7.2.1 圆柱7.2.2 圆锥7.2.3 球7.3 简单几何体的三视图数学文化祖暅原理信息技术应用正方体的十一种平面展开图第8章概率与统计初步8.1 随机事件8.1.1 随机事件的概念8.1.2 频率与概率8.3 概率的简单性质8.4 抽样方法8.4.1 简单随机抽样8.4.2 系统抽样8.4.3 分层抽样8.5 统计图表8.6 样本的均值和标准差趣味数学圆周率π中各数码出现的概率相同吗?拓展延伸大数据信息技术应用数据统计分析。
习题课【学习要求】1.进一步掌握常用的函数模型,并会应用它们来解决实际问题;2.提高在面临实际问题时,通过自己建立函数模型来解决问题的能力.试一试:双基题目、基础更牢固1.某商店出售A、B两种价格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23元售出,若商店同时售出这两种商品各一件,则与价格不升不降时的情况比较,商店盈利情况是()A.多赚约6元B.少赚约6元C.多赚约2元D.盈利相同2.某地区植被破坏、土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则下列函数中与沙漠增加数y万公顷关于年数x的函数关系较为相似的是()A. y=0.2xB. y=110(x2+2x) C. y=2x10 D. y=0.2+log16x3.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,则这个人应得稿费(扣税前) ()A. 2 800元B. 3 000元C. 3 800元D. 3 818元4.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=______,经过5小时,1个病毒能繁殖为______个.研一研:题型解法、解题更高效题型一二次函数模型的应用例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关小结:有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最值问题.利用二次函数求最值时特别注意取得最值时的自变量与实际意义是否相符.跟踪训练1某农家旅游公司有客房300间,每间日房租为20元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?题型二选择函数的拟合问题例2(1)与身高x (cm)的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175 cm,体重为78 kg的在校男生的体重是否正常?小结:依据问题给出的数据,建立反映数据变化规律的函数模型的探索方法为:(1)首先建立直角坐标系,画出散点图;(2)根据散点图设出比较接近的可能的函数模型的解析式;(3)利用待定系数法求出各解析式;(4)对模型拟合程度进行检验,若拟合程度差,重新选择拟合函数,若拟合程度好,符合实际问题,就用这个函数模型解释实际问题.跟踪训练2为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x与当年灌溉面积y.现有连续(1);(3)根据所建立的函数模型,若今年最大积雪深度为25 cm,可以灌溉土地多少公顷?题型三指数型函数模型的应用例3人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:y=y0e rt,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.000 1),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表中的增长趋势,大约在哪一年我国的人口达到13亿?小结:(1)已给出函数模型的实际应用题时,关键是考虑该题考查的是何种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答.(2)判断所得到的数学模型是否拟合,必须使所有数据基本接近数学模型,对于一般的应用问题,不会让数学模型完全符合,只是基本符合,对此,无最优解,只有满意解.跟踪训练3已知1650年世界人口为5亿,当时人口的年增长率为0.3%;1970年世界人口为36亿,当时人口的年增长率为2.1%.(1)用马尔萨斯人口模型计算,什么时候世界人口是1650年的2倍?什么时候世界人口是1970年的2倍?(2)实际上,1850年以前世界人口就超过了10亿;而2003年世界人口还没有达到72亿.你对同样的模型得出的两个结果有何看法?课堂小结:1.函数模型的应用实例主要包括三个方面(1)利用给定的函数模型解决实际问题;(2)建立确定性的函数模型解决问题;(3)建立拟合函数模型解决实际问题.2.函数拟合与预测的一般步骤(1)能够根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.。