六、静力触探试验
- 格式:docx
- 大小:148.23 KB
- 文档页数:6
静力触探试验报告一、引言静力触探试验是土力学中常用的一种地质勘探方法,用于评估地下土壤的承载力和变形特性。
本报告旨在对某地区进行的静力触探试验进行详细分析和总结,进一步了解地下土壤的力学性质。
二、试验目的通过静力触探试验,我们的目的是:1. 评估地下土壤的承载力,为工程设计提供依据;2. 分析土壤的变形特性,为地基处理提供参考。
三、试验方法本次试验采用以下方法进行:1. 使用静力触探仪器,将尖端锥形探头嵌入地下土壤中,逐层进行探测;2. 每隔一定深度记录探头阻力、侧壁摩阻力和套管摩阻力,并测量同时所受到的垂直位移。
四、试验结果分析根据试验数据,我们对结果进行了详细分析和总结,得出以下结论:1. 静力触探曲线中的阻力峰值反映了土层的承载力大小,峰值越大,承载能力越高;2. 侧壁摩阻力主要反映了土层的摩擦性质,其大小与土层的抗剪强度相关;3. 套管摩阻力主要与土层的密实性和黏聚性有关,提供了土层的有关特性参数;4. 通过测量的垂直位移数据,可以对土层的变形特性进行分析,提供了土壤的压缩指数等参数。
五、试验结论根据试验结果分析,我们得出以下结论:1. 土层的承载能力在不同深度处存在差异,需要根据实际情况进行设计和施工;2. 土层的摩擦性质和剪切强度对工程的稳定性和安全性有重要影响,需要针对具体情况进行地基处理;3. 土壤的变形特性对工程的变形管控和设计补偿有重要作用,需要进行合理的压缩计算和应力分析。
六、存在问题和建议在试验过程中,我们也发现了一些问题,并提出了相应的建议:1. 由于实际地质情况的复杂性,试验数据可能存在一定的误差,需要结合现场实际情况进行综合分析;2. 静力触探试验虽然能提供有关土壤力学性质的指标,但无法完全代替其他地质勘探方法,应结合其他数据进行分析;3. 样本数量和取样深度应根据工程的具体要求进行合理确定。
七、结语静力触探试验是一种有效且常用的地质勘探方法,可以提供重要的土壤力学性质参数,为工程设计和施工提供依据。
标准贯入试验、静力触探、动力初探对比1、名词解释:标准贯入试验:质量为63.5kg的穿心锤,以76cm的落距自由下落,将标准规格的贯入器自钻孔孔底预打15cm,测记再打入30cm的锤击数的原位试验方法。
静力触探试验:以静压力将一定规格的锥形探头压入土层,根据其所受阻抗力大小评价土层力学性质,并间接估计土层各深度处的承载力、变形模量和进行土层划分的原位试验方法。
动力触探试验:用一定质量的击锤,以一定的自由落距将一定规格的圆锥探头打入土中,根据打入土中的一定深度所需的锤击数,判定土的性质的原位试验方法。
2、解析:标准贯入试验:动力触探的一种,是在现场测定砂土或黏性土的地基承载力的一种方法。
它利用一定的锤击功能将一定规格的对开管式贯入器打入钻孔孔底的土中,根据打入土中的贯入阻抗判别土层的变化及土的工程性质。
静力触探试验:采用静力方式均匀地将标准规格的探头压入土中,通过量测探头贯入阻力以测定土的力学特性的原位测试方法。
一般在黏性土、粉土和砂土及相应的处理土地基中较为适用,对于含少量碎石土层,其适用性应根据碎石含量、粒径级配等条件而定。
静力触探试验能较为直观地评价土的均匀性和地基处理效果,结合载荷试验成果或地区工程实践经验,能推定土的承载力及变形参数。
动力触探试验:用标准质量的重锤,以一定高度的自由落距,将标准规格的圆锥形探头贯入土中,根据打入土中一定距离所需的锤击数,判定土的力学特性。
共分为轻型动力触探、重型动力触探和超重型动力触探三种:轻型动力触探试验适用于评价黏性土、粉土、粉砂、细砂地基及其人工地基土形状、地基处理效果和判定地基承载力;重型动力触探试验适用于评价黏性土、粉土、砂土、中密以下的碎石土及其人工地基以及极软岩的地基土性状、地基处理效果和判定地基承载力,也可用于检验砂石桩和初凝状态的水泥搅拌桩、旋喷桩、灰土桩、夯实水泥土桩、注浆加固地基的成桩质量、处理效果以及评价强夯置换效果及置换墩着底情况;超重型动力触探试验适用于评价碎石土、极软岩和软岩等地基土性状和判定地基承载力,也可用于评价强夯置换效果及置换墩着底情况。
六、静力触探试验1. 试验的目的及意义通过静力触探试验,了解双桥经理处探探头的构造和标定方法,掌握试验的操作步骤及技术要求,处理试验数据得到地基土的锥尖阻力q 、侧壁摩阻力f 及摩阻比R ,并对地基csf土进行分层及土类鉴别。
2. 试验的适用范围静力触探试验适应于软土、粘性上、粉土、砂类土和含有少量碎石的土层。
与传统的钻探方法相比,静力触探试验具有速度快、劳动强度低、清洁、经济等优点,而且可连续获得地层的强度和其他方面的信息。
不受取样扰动等人为因索的影响。
这对于地基土在竖向变化比较复杂,而用其他常规勘探试验手段能大密度取土或测试来査明土层变化;对于在饱和砂土、砂质粉土及高灵敏性软土中的钻探取样往往不易达到技术要求,或者无法取样的情况。
静力触探试验均具有它独特的优越性。
因此,在适宜于使用静力触探的地区,该技术普遍受到欢迎。
但是,静力射探试验中不能对上进行直接的观察、鉴别,而且不适用于含较多碎石、砾石的土层和很密实的砂层。
3. 试验的基本原理静力触探试验是利用准静力以恒定的贯入速率将一定规格和形状的圆锥探头通过一系列探杆压入土中,同时测记贯入过程中探头所受到的阻力,根据测得的贯入阻力大小来间接判定土的物理力学性质的现场试验方法。
静力触探试验所能获得的土层信息与探头的性能有很大的关系。
单桥探头测得圆锥所受土体总的阻力,即贯入比阻力p ,双桥探头同时测得锥尖阻力q 和侧壁摩阻力f,这些scs 参数广泛用于桩基承载力设计中。
孔压探头是在双桥探头基础上增加了孔压测量传感器,因此测试过程中除了能够获得锥尖阻力q 和侧壁摩阻力f之外,还可以获得孔压u ,并可在静止状态下在某一深度进行孔cs压消散试验,得到土层固结特性。
4.试验仪器及制样工具静力触探试验设备主要包括探头、贯入主机、反力装置、探杆和记录仪组成•试验中采用设备如下:探头:多功能无绳静力触探探头,除了可以量测锥尖阻力和侧壁摩阻力外,还可以测得孔压、贯入深度和钻杆倾斜度;试验前需要在标定架上对静力触探探头进行标定,得到相应的标定系数。
标准贯入试验、静力触探试验、动力触探试验现场操作规程一、标准贯入试验1. 先用钻具钻至试验土层标高以上0.15m处,清除残土。
清孔时应避免试验土层受到扰动。
当在地下水位以下的土层进行试验时,应使孔内水位高于地下水位,以免出现涌砂和坍孔。
必要时应下套管或用泥浆护臂。
2. 贯入应拧紧钻杆接头,将贯入器放入孔内,避免冲击孔底,注意保持贯入器、钻杆、导向杆联接后的垂直度。
孔口宜加导向器,以保证穿心锤中心施力。
注:贯入器放入孔内,测定其深度,要求残土厚度不大于0.1m。
3.采用自动落锤法,将贯入器以每分钟15~30击打入土中0.15m后,开始记录每打入0.10m的锤击数,累计0.30m的锤击数为标准贯入击数N,并记录贯入深度与试验情况。
若遇密实土层,贯入0.3吗锤击数超过50击时,不应强行打入,记录50击的贯入深度。
4.旋转钻杆,然后提出贯入器,取贯入器中的土样进行鉴别、描述、记录,并量测其长度。
将需要保存的土样仔细包装、编号,以备试验之用。
5.重复以上步骤,进行下一深度的贯入试验,直到所需深度。
二、静力触探试验1.平整实验场地,设置反力装置。
将触探主机对准孔位,调平机座(用分度值为1mm的水准尺校准),并紧固在反力装置上。
2.将已穿入探杆内的传感器引线按要求接到量测仪器上,打开电源开关,预热并调试到正常工作状态。
3.贯入前应试压探头,检查顶柱、锥头、摩擦筒等部件工作是否正常。
当测孔隙压力时,应使孔压传感器透水面饱和。
正常后将连接探头的探杆插入导向器内,调整垂直并紧固导向装置,必须保证探头垂直贯入土中。
启动动力设备并调整到正常工作状态。
4.采用自动记录仪时,应安装深度转换装置,并检查卷纸机构运转是否正常;采用电阻应变仪或数字测力仪时,应设置深度标尺。
5.将探头按1.2±0.3m/min匀速贯入土中0.5~1.0m左右(冬季应超过冻结线),然后稍许提升,使探头传感器处于不受力状态,待探头温度与低温平衡后(仪器零位基本稳定),将仪器调零或记录初始读数,即可进行正常贯入。
10种地基承载力检测方法地基承载力地基土单位面积上随荷载增加所发挥的承载潜力,常用单位kPa,是评价地基稳定性的综合性用词。
应该指出,地基承载力是针对地基基础设计提出的为方便评价地基强度和稳定的实用性专业术语,不是土的基本性质指标。
土的抗剪强度理论是研究和确定地基承载力的理论基础。
在荷载作用下,地基要产生变形。
随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。
当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度极限时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。
这种小范围的剪切破坏区,称为塑性区(Plastic Zone)。
地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。
但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。
当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。
此时地基达到极限承载力。
地基承载力检测方法部分原位测试方法原理图1.平板荷载试验适用于各类土、软质岩和风化岩体。
平板荷载试验是一项使用最早、应用最广泛的原位试验方法,该试验是在一定尺寸的刚性承压板上分级施加荷载,观测各级荷载作用下天然地基土随压力而变形的原位试验,它可用于:根据荷载-沉降关系线(曲线)确定地基的承载力;设计土的变形模量;估算土的不排水抗剪强度及极限填土高度。
2.螺旋板荷载试验适用于软土、一般粘性土、粉土及砂类土。
螺旋板载荷试验(SPLT)是将一螺旋形的承压板用人力或机械旋入地面以下的预定深度,通过传力杆向螺旋形承压板施加压力,测定承压板的下沉量。
3.标准贯入试验适用于一般粘性土、粉土及砂类土。
标准贯入试验(standard penetration test,SPT)是动力触探的一种,是在现场测定砂或粘性土的地基承载力的一种方法。
这一方法已被列入中国国家《工业与民用建筑地基基础设计规范》中。
静力触探试验(原理和应用)静力触探是指利用压力装置将有触探头的触探杆压入试验土层,通过量测系统测土的贯入阻力,可确定土的某些基本物理力学特性,如土的变形模量、土的容许承载力等。
静力触探加压方式有机械式、液压式和人力式三种。
静力触探在现场进行试验,将静力触探所得比贯入阻力(Ps)与载荷试验、土工试验有关指标进行回归分析,可以得到适用于一定地区或一定土性的经验公式,可以通过静力触探所得的计算指标确定土的天然地基承载力。
静力触探的贯入机理与建筑物地基强度和变形机理存在一定差异性,故不常使用。
基本原理静力触探的基本原理就是用准静力(相对动力触探而言,没有或很少冲击荷载)将一个内部装有传感器的触探头以匀速压入土中,由于地层中各种土的软硬不同,探头所受的阻力自然也不一样,传感器将这种大小不同的贯入阻力通过电信号输入到记录仪表中记录下来,再通过贯入阻力与土的工程地质特征之间的定性关系和统计相关关系,来实现取得土层剖面、提供浅基承载力、选择桩端持力层和预估单桩承载力等工程地质勘察目的。
静力触探主要适用于粘性土、粉性土、砂性土。
就黄河下游各类水利工程、工业与民用建筑工程、公路桥梁工程而言,静力触探适用于地面以下50m内的各种土层,特别是对于地层情况变化较大的复杂场地及不易取得原状土的饱和砂土和高灵敏度的软粘土地层的勘察,更适合采用静力触探进行勘察。
静力触探既是一种原位测试手段,也是一种勘探手段,它和常规的钻探——取样——室内试验等勘探程序相比,具有快速、精确、经济和节省人力等特点。
此外,在采用桩基工程勘察中,静力触探能准确地确定桩端持力层等特征也是一般常规勘察手段所不能比拟的。
探头的尺寸和加工精度,直接影响着触探资料的准确性。
统一探头几何尺寸的目的是为了使触探试验资料能够相互引用与对比。
规定的加工精度是为了保证探头的几何尺寸,限制探头几何尺寸的误差,同时也是为了使探头各部件能够正常工作。
选用的探头几何尺寸及加工精度必须符合我国规定的标准。
静力触探试验静力触探试验是用静力将探头以一定的速率压入土中,利用探头内的力传感器,通过电子量测仪器将探头受到的贯入阻力记录下来。
由于贯入阻力的大小与土层的性质有关,因此通过贯入阻力的变化情况,可以达到了解土层的工程性质的目的。
静力触探试验可根据工程需要采用单桥探头、双桥探头或带孔隙水压力量测的单、双桥探头,可测定比贯入阻力(ps)、锥尖阻力(qc)侧壁阻力(fs)和贯入时的孔隙水压力(u)。
静力触探试验适用于软土、一般粘性土、粉土、砂土和含少量碎石的土。
一、静力触探的试验设备静力触探设备试验由加压装置、反力装置、探头及量测记录仪器等四部分组成:(一)加压装置加压装置的作用是将探头压入土层中,按加压方式可分为下列几种。
1.手摇式轻型静力触探。
利用摇柄、链条、齿轮等用人力将探头压入土中。
用于较大设备难以进入的狭小场地的浅层地基土的现场测试。
2.齿轮机械式静力触探。
主要组成部件有变速马达(功率2.8~3kW)、伞形齿轮、丝杆、稻香滑块、支架、底板、导向轮等。
其结构简单,加工方便,既可单独落地组装,也可装在汽车上,但贯入力小,贯入深度有限。
3.全液压传动静力触探。
分单缸和双缸两种。
主要组成部件有:油缸和固定油缸底座、油泵、分压阀、高压油管、压杆器和导向轮等。
目前在国内使用液压静力触探仪比较普遍,一般最大贯入力可达200kN。
(二)反力装置静力触探的反力用三种形式解决:1.利用地锚作反力。
当地表有一层较硬的粘性土覆盖层时,可以是使用2~4个或更多的地锚作反力,视所需反力大小而定。
锚的长度一般1.5m左右,叶片的直径可分成多种,如25、30、35、40cm,以适应各种情况。
2.用重物作反力。
如地表土为砂砾、碎石土等,地锚难以下入,此时只有采用压重物来解决反力问题,即在触探架上压以足够的重物,如钢轨、钢锭、生铁块等。
软土地基贯入30m以内的深度,一般需压重物40~50kN。
3.利用车辆自重作反力。
将整个触探设备装在载重汽车上,利用载重汽车的自重作反力。
动力触探仪检测地基承载力试验方法
1、静力触探试验:
指通过一定的机械装置,将某种规格的金属触探头用静力压、静力触探试验入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。
静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。
(多为设计单位采用)。
2、动力触探试验:
对
R-
的穿
y-
3
标准贯入仪试验是动力触探类型之一,其利用质量为63.5kg的标准贯入试验:穿心锤,以76cm 的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30cm,用此30cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。
锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法
轻型动力触探
轻型圆锥动力触探是利用一定的锤击能量(锤重10kg),将一定规格的圆锥探头打入土中,根据贯入锤击数判别土层的类别,确定土的工程性质,对地基土做出综合评价。
目录
长沙市某楼盘,位于浏阳河畔,地势起伏相对较小,大部分是耕地和农田,耕地和农田的土质为耕植土和淤泥层(耕地0-30cm为耕植土,农田0-80cm为淤泥层,饱和、软塑-流塑,颜色为黑色-灰色),底层土质为粉质粘土,颜色为灰色、硬塑。
、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。
静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。
(多为设计单位采用)。
2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。
动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。
目前承建单位一般选用轻型和重型。
①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简单,省人省力,记录每打入30cm的锤击次数,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。
②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,以76cm的落距,将触探头打入土中,记录打入10cm的锤击数,代用公式为y=35.96x+23.8( y-地基容许承载力Kpa , x-重型触探锤击数)。
3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为63.5 kg 的穿心锤,以76cm的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30 cm,用此30 cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。
锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法。
引言:地基承载力是指土地基在承受荷载时所能承受的最大力量。
土地基的承载力是确定房屋或其他结构物基础是否能承受荷载的重要指标。
地基承载力试验检测是评估地基承载力的一种常见方法。
本文将继续介绍地基承载力试验检测的静力触探法。
1. 静力触探法的概述1.1 钻孔准备在进行静力触探试验前,需要先进行钻孔准备。
钻孔准备包括选择试验点、选取合适的钻孔方式和确定钻孔深度等。
通常情况下,试验点的选择需要考虑土层的一致性和地表承载力的要求。
1.2 钢管安放在选定的试验点上,需要将钢管安放到钻孔孔底,以便进行后续的试验操作。
钢管的直径和长度应根据试验要求确定,并且需要保证安放时的垂直度。
1.3 钻杆安装钻杆的安装是静力触探试验的重要环节。
钻杆需要通过钢管,并延伸至地表。
选择适当的钻杆直径和长度,确保其稳定性和可靠性。
1.4 荷载施加在钻杆安装完成后,需要施加荷载。
通常使用油压机或液压系统施加荷载。
通过施加荷载,可以测得地基的变形和应力数据,进而计算地基的承载力。
1.5 数据记录和分析在进行荷载施加的过程中,需要记录相应的数据,并进行后续的分析。
数据记录可以包括地基的沉降量、钻杆的伸长量、荷载施加量等。
通过对这些数据的分析,可以计算地基的承载力。
2. 静力触探法的优势2.1 非破坏性静力触探法是一种非破坏性的地基承载力试验方法。
在试验过程中,不会对地基结构产生破坏,可以保持地基的完整性。
2.2 简便快捷相比其他地基承载力试验方法,静力触探法具有简便快捷的特点。
试验过程简单,可以在较短的时间内完成。
2.3 数据准确性高静力触探法通过直接测定地基的变形和应力数据,可以更加准确地评估地基的承载力。
数据的准确性对于设计和施工具有重要的指导意义。
2.4 成本相对较低相对于其他地基承载力试验方法,静力触探法的设备和人力成本相对较低。
这降低了地基承载力试验的成本,使其更适用于各种规模的工程项目。
2.5 应用范围广静力触探法适用于各种类型的地基和土壤情况。
静力触探试验静力触探(CPT)是用静力将探头以一定的速率压入土中,利用探头内的传感器,通过电子量测器将探头受到的贯入阻力记录下来。
由于贯入阻力的大小与土层的性质有关,因此通过贯入阻力的变化情况,可以达到了解土层工程性质的目的。
第一节静力触探的贯入设备一、加压装置加压装置的作用是将探头压入土层中,按加压方式可分为下列几种:1、手摇式轻型静力触探:利用摇柄、链条、齿轮等用人力将探头压入土中。
适用于较大设备难以进入的狭小场地的浅层地基现场测试。
2、齿轮机械式静力触探:主要组成部件有:变速马达(功率2.8~3.0kW)、伞形齿轮、丝杆、导向滑块、支架、底板、导向轮等。
因其结构简单,加工方便,既可单独落地组装,也可装在汽车上,但贯入力较小,贯入深度有限。
3、全液压传动静力触探:分单缸和双缸两种。
主要组成部件有:油缸和固定油缸底座、油泵、分压阀、高压油管、压杆器和导向轮等。
目前在国内使用液压静力触探仪比较普遍,一般是将载重卡车改装成轿车型静力触探车,其动力来源既可使用汽车本身动力,也可使用外接电源,工作条件较好,最大贯入力可达200kN。
二、反力装置静力触探的反力有三种形式:1、利用地锚作反力:当地表有一层较硬的黏性土覆盖层时,可使用2~4个或更多的地锚作反力,视所需反力大小而定。
锚的长度一般为1.50m左右,应设计成可以拆卸式的,并且以单叶片为好。
叶片的直径可分成多种,如25、30、35、40cm,以适应各种情况。
地锚通常用液压拧锚机下入土中,也可用机械或人力下入。
手摇式轻型静力触探设备采用的地锚,因其所需反力较小,锚的长度也较短,为1.20m,叶片直径则为20cm。
2、用重物作反力:如表层土为砂砾、碎石土等,地锚难以下入,此时只有用压重物来解决反力问题,在触探架上压以足够的重物,如钢轨、钢锭、生铁块等。
软土地基贯入30m以内的深度,一般需压重4~5t。
3、利用车辆自重作反力:将整个触探设备装在载重汽车上,利用载重汽车的自重作反力,如反力仍不足时,可在汽车上装上拧锚机,可下入4~6个地锚,也可在车上装载一厚度较大的钢板或其它重物,以增加触探车本身的重量。
静力触探试验操作规程1000字静力触探试验是一种土工测试方法,用于测定土层的密实度和板层的分布情况。
本文将介绍静力触探试验的操作规程。
一、试验前准备工作1、调查土层情况在进行静力触探试验之前,首先要进行土层的调查。
调查内容包括土层的层位、厚度、性质、含水量等。
根据调查结果确定试验点位。
2、检查仪器设备检查静力触探试验仪及其相关配件和工具,包括传感器、控制器、导线、侧向力传感器和责任针头等是否完好,并校准仪器。
3、安装试验固定架或支撑架根据试验点实际情况选择固定架或支撑架,并将其安装在试验点上。
确保架子的稳定性和垂直性。
4、准备触探头选择合适的触探头(钢筒或责任针头),并进行清洁和消毒。
二、试验操作过程1、安装触探头将触探头安装在相应的钻杆中,并与传感器相连。
2、放置传感器将传感器放置在试验固定架或支撑架上,并将导线连接到控制器。
3、改变机械振动频率选择合适的机械振动频率和振动幅度,根据试验点和土层情况进行适当调整。
4、开始触探将触探头插入土壤中,并逐步增加振动频率和幅度,直到触碰到板层或达到设定深度。
5、记录触探数据获得触探数据后,记录钻杆的深度、振动频率、振动幅度、击数、阻力(或地位)等试验参数,并将数据保存在静力触探试验数据表中。
根据需要可以使用录音或视频方式记录完整的试验数据过程。
6、停止试验当试验完成时,减小振动幅度,将触探头卸下。
三、试验后处理工作1、分析处理数据对试验数据进行分析处理,得到每层土壤性质和板层分布情况等信息。
2、统计和绘制曲线统计和绘制每层土壤的阻力和击数曲线,根据曲线观察土层分布情况,评估土层的稠密度和强度等指标。
3、撤回试验固定架或支撑架在试验完成后,撤回试验固定架或支撑架并进行清洁和消毒。
四、注意事项1、在试验前必须进行地质勘察,了解土层的情况,选择合适的试验点。
2、在试验过程中,必须遵守规定的操作时序和方法。
3、仪器设备必须保持清洁、完整和正常工作状态,每次使用前要进行检查并进行校准。
动力触探仪检测地基承载力的试验方法1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压、静力触探试验入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。
静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。
(多为设计单位采用) 。
2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。
动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土。
动力触探仪分为:轻型触探仪、重型触探仪及超重型触探仪三类。
目前承建单位一般选用轻型和重型。
①轻型触探仪适用于:砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石) ,轻型触探仪设备轻便,操作简单,省人省力,记录每打入30cm 的锤击次数,代用公式为:R=(0.8×N-2)×9.8 (1)R-地基容许承载力 Kpa ,N-轻型触探锤击数。
②重型触探仪适用于:各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为 63.5kg 的穿心锤,以 76cm 的落距,将触探头打入土中,记录打入 10cm 的锤击数,代用公式为:y=35.96x+23.8 (2)y-地基容许承载力 Kpa , x-重型触探锤击数。
3、标准贯入试验:标准贯入仪试验是动力触探类型之一,其利用质量为 63.5kg 的标准贯入试验:穿心锤,以 76cm 的恒定高度上自由落下,将一定规格的触探头打入土中 15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中 30 cm,用此 30cm 的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。
六、静力触探试验
1. 试验的目的及意义
通过静力触探试验,了解双桥经理处探探头的构造和标定方法,掌握试验的操作步骤及技术要求,处理试验数据得到地基土的锥尖阻力c q 、侧壁摩阻力s f 及摩阻比f R ,并对地基土进行分层及土类鉴别。
2. 试验的适用范围
静力触探试验适应于软土、粘性上、粉土、砂类土和含有少量碎石的土层。
与传统的钻探方法相比,静力触探试验具有速度快、劳动强度低、清洁、经济等优点,而且可连续获得地层的强度和其他方面的信息。
不受取样扰动等人为因索的影响。
这对于地基土在竖向变化比较复杂,而用其他常规勘探试验手段能大密度取土或测试来査明土层变化;对于在饱和砂土、砂质粉土及高灵敏性软土中的钻探取样往往不易达到技术要求,或者无法取样的情况。
静力触探试验均具有它独特的优越性。
因此,在适宜于使用静力触探的地区,该技术普遍受到欢迎。
但是,静力射探试验中不能对上进行直接的观察、鉴别,而且不适用于含较多 碎石、砾石的土层和很密实的砂层。
3. 试验的基本原理
静力触探试验是利用准静力以恒定的贯入速率将一定规格和形状的圆锥探头通过一系列探杆压入土中,同时测记贯入过程中探头所受到的阻力,根据测得的贯入阻力大小来间接判定土的物理力学性质的现场试验方法。
静力触探试验所能获得的土层信息与探头的性能有很大的关系。
单桥探头测得圆锥所受土体总的阻力,即贯入比阻力s p ,双桥探头同时测得锥尖阻力c q 和侧壁摩阻力s f ,这些参数广泛用于桩基承载力设计中。
孔压探头是在双桥探头基础上增加了孔压测量传感器,因此测试过程中除了能够获得锥尖阻力c q 和侧壁摩阻力s f 之外,还可以获得孔压u ,并可在静止状态下在某一深度进行孔压消散试验,得到土层固结特性。
4. 试验仪器及制样工具
静力触探试验设备主要包括探头、贯入主机、反力装置、探杆和记录仪组成。
试验中采用设备如下:
探头:多功能无绳静力触探探头,除了可以量测锥尖阻力和侧壁摩阻力外,还可以测得孔压、贯入深度和钻杆倾斜度;试验前需要在标定架上对静力触探探头进行标定,得到相应的标定系数。
贯入主机:电动机械式静力触探机。
反力装置:地锚和压重。
记录仪:采用手提电脑自动记录实验数据。
图2-1 静力触探示意及其曲线
(a)静力触探示意及土层剖面(b)静力触探曲线
5.试验步骤
第一部分,准备工作:
(1)、室内标定。
按照要求,进行率定系数的计算。
(2)、平整试验场地,设置反力装置,将触探主机对准孔位,调平机座,并紧固在反力装置上。
(3)、将已穿入探杆内的传感器按要求接到量测仪器上,打开电源开关,预热并调试到正常工作状态。
(4)、检查探头是否正常,然后启动动力设备并调整到正常工作状态。
(5)、设置深度标尺。
第二部分,试验阶段:
(1)、按照要求进行贯入,并注意零漂检查。
(2)、贯入过程中,自动记录系统按照设定记录传感器读数。
(3)、当测定孔隙水压力消散时,应在预定的深度或土层停止贯入,并按适当的时间间隔或自动测读孔隙水压力消散值直至基本稳定。
第三部分,拆卸工作:
(1)、试验结束后及时拔起探杆,并记录仪器的回零情况,探头拔出后应立即清洗,上油妥善保管,防止探头被曝晒或受冻。
(2)、拆卸装置。
6.试验数据
静力触探实验数据汇总表
由以上数据得出曲线如下图:
7. 试验数据处理
(1)分层平均阻力c q 、s f
先按c q 、s f 、f R 进行土层划分,然后计算各层的平均阻力。
如记录处理数据表所示。
从c q -h 图上来看,有明显分层,0-3.5m 是一层杂填土,3.5-8m 是粘土。
第一层杂填土:
1i n=35
1==0.331Mpa n ∑c c q q ,1
i n=351==15.51kpa n ∑s s f f
第二层粘土:
1i n=35
1==0.660Mpa n ∑c c q q ,1
i n=351==23.32kpa n ∑s s f f
(2)不排水抗剪强度Cu :查表3-3-3,Cu=0.0308q c +4.0和Cu=0.071q c +1.28 (3)压缩模量Es :查表3-3-8,E s =4.13p s 0.687和E s =2.14p s +2.17
(4)变形模量E :由公式E=(1-u
u -122
)E s 估算,其中u 取0.42 (5)地基承载力基本值:查表3-3-11,f o =0.104p s +25.9 (6)比贯入阻值:根据经验公式 1.1s c P q =
8. 试验成果分析及工程应用
通过实验数据的分析我们可以得到以下结论:
(1)查明地基上在水平方向和垂直方向的变化,划分土层,确定土的类别; (2)确定建筑物地基土的承载力和变形模量以及其他物理力学指标; (3)选择粧基持力层,预估单桩承载力,判冽桩基沉人的可能性;
(4)检查填土及其他人工加固地基的密实程度和均匀性,判别砂土的密实度及其在地震作用下的液化可能性;
(5)湿陷性黄土地基用于查找浸水湿陷的范围和界线。