小学数学知识点大全
- 格式:docx
- 大小:60.93 KB
- 文档页数:108
一、各年级知识点:小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
小学必背数学要点知识点归纳
1. 数的基本概念:自然数、整数、正数、负数、零等。
2. 加减法的运算及性质:加法的交换律、结合律、加法的逆元是负数;减法的定义、
减法的性质。
3. 乘除法的运算及性质:乘法的交换律、结合律、分配律;除法的定义、除法的性质。
4. 分数的概念及基本运算:分子、分母、分数的读法、分数的大小比较、分数的相等性、分数的加减乘除,转化为整数的运算。
5. 小数的概念及基本运算:小数点的作用、小数的读法、小数的大小比较、小数的加
减乘除。
6. 数的计算:计算整数、分数、小数的加减乘除、混合运算。
7. 数的整理和排列:数的从小到大排列、数的顺序关系。
8. 数的倍数和约数:整数的倍数和约数的概念、求一个数的倍数和约数。
9. 图形和几何:几何图形的基本概念、直线、线段、射线、平行线、相交线、垂直线、角的概念。
10. 长度、面积和体积:长度的概念、周长的计算、面积的概念、面积的计算、体积的概念、体积的计算。
11. 时、空与坐标:时间的单位、时钟的指针运动、二维坐标系、点的坐标。
12. 数据处理:数据的搜集、数据的整理和整个、数据的解释和分析。
13. 算术推理和数学推理:算术关系、等式、代数式、推理过程。
14. 单位换算:长度、质量、容积的换算。
15. 错题分析:找出错误的原因和改错方法、整理好课堂笔记并进行归纳整理。
小学数学知识点和重点难点大全一、整数及四则运算1.整数的认识2.整数的比较大小3.整数的加法、减法、乘法、除法运算4.整数的混合运算5.整数的括号运算6.整数的奇偶性7.整数的约数和倍数二、分数1.分数的认识2.分数的加法、减法、乘法、除法运算3.真分数、假分数和带分数之间的转化4.分数的比较大小5.分数的化简和约分6.分数的四则混合运算7.分数的加减混合运算三、小数1.小数的认识2.小数与分数的转化3.小数的加法、减法、乘法、除法运算4.小数的周期性与循环小数5.有限小数和无限小数的判断6.分数的小数化和小数的分数化7.小数的四则混合运算四、长度和面积1.长度单位的认识(米、厘米、千米)2.长度单位之间的换算3.长度的加法、减法运算4.面积单位的认识(平方米、平方厘米)5.面积单位之间的换算6.长方形和正方形的面积计算7.长方形和正方形的周长计算五、容量和质量1.容量单位的认识(升、毫升、立方米)2.容量单位之间的换算3.容量的加法、减法运算4.质量单位的认识(千克、克、吨)5.质量单位之间的换算6.质量的加法、减法运算7.容量和质量的换算六、几何图形1.点、线、线段、射线、角的认识2.三角形、四边形、多边形的认识3.正方形、长方形、圆的认识4.平行线、垂直线、相交线的认识5.直角、钝角、锐角的认识6.图形的对称性7.图形的放大和缩小七、时间1.时间的认识(秒、分钟、小时、一天的24小时)2.时刻的表示3.时钟的读法和时钟的表记4.时间的加法、减法运算5.天、周、月和年的认识6.日期的计算八、统计与概率1.数据的收集和整理2.数据的图表示法(条形图、折线图、饼图)3.数据的分析和解读4.概率的认识5.事件的概率计算6.试验和样本空间的认识7.赌博问题的概率计算以上为小学数学的知识点和重点、难点的大致概括,学生在学习数学时,应注重对每个知识点的透彻理解和巩固。
通过大量的练习和实际应用,培养学生的数学思维和解决问题的能力,以提高数学学习的效果。
小学数学所有知识点一、数的概念和认识1. 数的分类2. 数的读法和写法3. 数的比较和排序二、整数1. 整数的概念2. 整数的四则运算3. 整数的加减法特性4. 整数运算中的括号运算三、小数1. 小数的概念2. 小数的读法和写法3. 小数的加减乘除运算4. 小数与分数的关系四、分数1. 分数的概念2. 分数的读法和写法3. 分数的加减乘除运算4. 分数与小数的关系五、几何图形1. 点、线、线段、射线2. 角的概念和分类3. 三角形的分类和性质4. 平行线与垂直线的关系六、面积与周长1. 长方形的面积和周长2. 正方形的面积和周长3. 三角形的面积和周长4. 圆的面积和周长七、时间和日历1. 时、分、秒的认识2. 12小时制和24小时制3. 时间的加减运算4. 日历的使用和读取八、数据统计与概率1. 数据的收集和整理2. 图表的制作和分析3. 概率的认识和计算4. 实际问题的统计和概率解答九、代数与方程1. 代数式的认识2. 一元一次方程的解法3. 实际问题的代数建模4. 算式和方程的关系十、变量与函数1. 变量的概念和使用2. 函数的概念和特性3. 函数图像的理解4. 实际问题的函数解答以上十个知识点是小学数学的主要内容,通过系统的学习和训练,学生可以掌握和运用这些知识来解决实际问题。
在学习的过程中,要注重理论的学习和实际问题的应用,培养学生的逻辑思维和问题解决能力。
同时,要注重与生活的联系,让学生发现数学在日常生活中的应用,提高他们的学习兴趣和动力。
希望学生们在小学数学学习中取得优异的成绩,并在将来的学习中打下坚实的数学基础。
小学数学知识点大全第一章 数和数的运算一、概念(一 )整数1、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.一个物体也没有,用0表示。
0也是自然数.3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.其中“一"是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字.每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零.6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万"或“亿"作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴ 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
⑵ 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
⑶ 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法. 8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!小学数学知识点大全第一章数和数的运算一、概念(一)整数1、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。
⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
小学数学知识点大全目录:1. 引言2. 数的认识2.1 自然数2.2 整数2.3 小数2.4 分数3. 四则运算3.1 加法3.2 减法3.3 乘法3.4 除法4. 应用题4.1 算术应用题4.2 比例问题4.3 单位换算4.4 面积与体积5. 几何知识5.1 平面图形5.2 立体图形5.3 对称与变换6. 概念与逻辑6.1 数的概念6.2 逻辑推理7. 结语1. 引言本文旨在汇总小学阶段数学教育中所涉及的主要知识点,为教师、家长和学生提供一个参考和复习的资料。
小学数学是数学教育的基础,涵盖了数的认识、四则运算、应用题解决、几何图形认知以及基本的逻辑推理能力。
2. 数的认识2.1 自然数自然数是用于计数和排序的数,包括0和所有正整数(1, 2,3, ...)。
2.2 整数整数包括自然数、它们的相反数(负整数 -1, -2, -3, ...)以及零。
2.3 小数小数是实数的一种表示形式,由整数部分、小数点和小数部分组成,如0.5、-0.25等。
2.4 分数分数表示一个整体被等分后的一部分或几部分,形式为a/b,其中a是分子,b是分母,b≠0。
3. 四则运算3.1 加法加法是将两个或多个数值合并成一个总和的运算。
3.2 减法减法是从一个数中去掉另一个数的值,得到差。
3.3 乘法乘法是重复加法的一种形式,表示将一个数加到自身若干次。
3.4 除法除法是将一个数分成若干等份,求每一份的大小。
4. 应用题4.1 算术应用题涉及基本四则运算的实际问题,如购物、时间计算等。
4.2 比例问题比例问题涉及两个或多个比率相等的情况,常用于解决速度、比例分配等问题。
4.3 单位换算单位换算涉及不同计量单位之间的转换,如米与厘米、千克与克等。
4.4 面积与体积面积是二维图形的大小,体积是三维空间的大小,需要通过特定的公式进行计算。
5. 几何知识5.1 平面图形平面图形是所有点均在同一个平面内的图形,如圆形、正方形、三角形等。
小学数学知识点大全小学数学知识点大全一、整数1.正整数和负整数2.整数的加法和减法运算3.整数的乘法和除法运算4.整数的绝对值二、分数1.分数的基本概念2.分数的加法和减法运算3.分数的乘法和除法运算4.分数的化简和约分5.分数的比较大小三、小数1.小数的基本概念2.小数的加法和减法运算3.小数的乘法和除法运算4.小数的读写和大小比较5.小数和分数的互化四、数轴1.数轴的基本概念2.数轴上数的有序排列3.数轴上的加法和减法运算五、面积和周长1.平行四边形、长方形和正方形的面积和周长2.三角形的面积和周长3.圆的面积和周长六、图形的相似与全等1.图形的基本概念2.相似图形的判定与性质3.全等图形的判定与性质七、平面镜像1.平面镜像的基本概念2.图形在镜面上的变化规律3.图形的对称性质八、时间和日期1.小时、分钟和秒钟的概念2.24小时制和12小时制3.日期的读法和计算九、长、宽、高和体积1.物体的长、宽、高的概念2.立方体和长方体的体积计算3.体积的比较和换算十、几何形状1.线段、射线和直线的基本概念2.角的基本概念和性质3.平行线、垂直线的判定与性质十一、平面直角坐标系1.平面直角坐标系的基本概念2.点的坐标表示和图形的位置关系十二、三角形1.三角形的基本概念和性质2.三角形的分类和判定3.三角形的周长和面积计算十三、倍数和约数1.倍数和约数的基本概念2.判断一个数的倍数和约数3.最大公约数和最小公倍数的求解十四、数据的收集和整理1.数据的收集和整理的基本方法2.数据的统计和分析十五、运算符与表达式1.运算符的分类和运算规则2.四则运算的顺序3.带括号的表达式的计算以上是小学数学的一些主要知识点,希望能帮助到你学好数学。
小学数学全部知识点小学数学是培养学生数学思维和解决问题能力的基础阶段。
在小学数学的学习过程中,学生会接触到一系列的数学知识点。
一、数的认识和数的运算1.数的概念:整数、负数、分数、小数、小数位数、小数点2.数的读法和写法:数字的读音和写法,数的大小比较3.数的分类:自然数、整数、有理数、无理数4.数的位置和数的大小:数字的位置、数字的大小比较5.数字的拆分和组合:数位间的关系、加法运算、减法运算、乘法运算、除法运算的基本概念和性质6.数轴的认识和运用:正数、负数在数轴上的表示7.综合运算:加减法、乘法、除法的综合运算二、数的整体认识和构成1.数的分解与合成:数位间的关系、数的进制、数的位数、数字的读音和写法2.数的整体认识:数的结构、数位的意义和进位、数的特十百千的概念3.数的比较:大小比较、大小关系的判断、大小关系的比较方法4.数的进一法和退一法:数的大小变化、数位的变化三、数的数量关系1.数的数量关系:数的分类与比较、多少少数、集合和元素的数量关系2.数的倍数和约数:倍数的概念与判断、约数的概念与判断3.数的倍数与公倍数:倍数和公倍数的概念与性质、求解数的公倍数4.数的约数与公约数:约数和公约数的概念与性质、求解数的公约数5.数的奇偶性:奇数和偶数的概念与性质、判断数的奇偶性四、面积和体积1.二维几何图形:点、线、面、几何图形的分类和性质2.二维几何图形的面积:正方形、长方形、平行四边形、三角形、圆的面积的计算3.三维几何图形的体积:立方体、长方体、正方体、圆柱体、圆锥体、圆球的体积计算五、图表和统计1.图表的认识和分析:条形图、折线图、饼图的解读和分析2.数据的收集和整理:问卷调查、数据整理和分类3.数据的分析和解读:数据的比较和分析、数据的整理和可视化表示六、分数和小数1.分数的认识和表示:分子、分母、真分数、假分数、带分数的表示与转换2.分数的加减法:分数的通分和比较、分数的相加相减运算3.分数的乘除法:分数的乘法和除法运算、分数的乘除混合运算4.小数的认识和表示:小数的读法、小数位的意义、小数的比较5.小数的加减法:小数的加法和减法运算、小数的加减混合运算6.分数与小数的互换:分数和小数的转换、分数和小数的相互表示七、时、刻和时间差1.时和刻的认识和表示:小时、分钟、时钟和表盘的概念2.读和写时刻:时钟和表盘上的时、刻、分的读法和表示3.时刻的转换和计算:时刻的换算、时刻的计算、时间的计算和判断4.时钟和时间的使用:时钟和表盘的使用和计数、时间的计算和测量八、几何图形的认识和分析1.直线、线段和射线的认识:直线和线段的概念、平行线和垂直线的判断2.角的认识和分类:直角、钝角和锐角的概念和分类3.三角形的认识和分类:等边三角形、等腰三角形、直角三角形的概念和分类4.四边形的认识和分类:正方形、长方形、平行四边形的概念和分类5.圆的认识和分析:圆的直径、半径、周长和面积的计算以上是小学数学的全部知识点,通过学习这些知识点可以培养学生的数学思维和解决问题的能力,为后续高中数学的学习奠定坚实的基础。
数学小学知识点大全1.数的认识和比较:-数的读法和写法-数的大小比较-数的正数和负数-数的顺序排列2.加法和减法:-加法和减法的符号和运算规则-加法和减法的口诀和快速计算方法-进位和退位的概念-加法和减法的运算注意事项3.乘法和除法:-乘法和除法的符号和运算规则-乘法和除法的口诀和快速计算方法-乘法和除法的关系和应用-分数的概念和计算方法4.数量的计数和表示:-十进制计数法和其他计数法的比较-数量的用数字和图形表示-分数、百分数和小数的表示方法-数量的变化和统计5.数量关系和图形:-数量关系的分类和表示方法-数量关系的问题求解方法-同位角、邻补角和对顶角的概念-几何图形的属性和分类6.时、钟和日历:-时间的认识和表示方法-时钟和日历的基本概念和读法-时区和夏令时的概念和应用-时间的计算和问题求解方法7.平面几何和空间几何:-点、线、面等几何图形的基本概念-平面图形的分类和性质-体的分类和性质-平移、旋转和翻转的概念和应用8.计量和单位换算:-长度、质量、时间和温度等计量单位的兑换关系-体积、面积和周长的计算方法-均匀速度和速度的计算方法-不同单位的换算方法和问题求解9.数据的处理和统计:-数据的观察、整理和表示方法-平均数、中位数和众数的计算方法和应用-图表的表示和分析方法-数据的预测和问题求解方法10.理论和实践:-数学定理和公式的认识和应用-数学实践和探究的方法和过程-数学思维和问题解决的策略-数学和其他学科的关系和应用。
小学数学知识点大全第一章数和数的运算#我要上头条##昆明头条#一、概念(一)整数1、整数的意义#学浪计划-教育创作者扶持计划#自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。
⑵近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015 省略亿后面的尾数是13 亿。
⑶四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
以此类推。
(二)小数1、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
如1/10记作0.1,7/100记作0.07。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。
小数部分有几个数位,就叫做几位小数。
如0.36是两位小数,3.066是三位小数在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
4、比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……5、小数的分类⑴纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25 、0.368 都是纯小数。
⑵带小数:整数部分不是零的小数,叫做带小数。
例如:3.25 、5.26 都是带小数。
⑶有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7 、25.3 、0.23 都是有限小数。
⑷无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如:4.33 ……3.1415926 ……⑸无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:∏⑹循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:3.555 ……0.0333 ……12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99 ……的循环节是“9 ”,0.5454 ……的循环节是“54 ”。
⑺纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如:3.111 ……0.5656 ……⑻混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 ……0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
(三)分数1、分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:⑴分母相同的分数,分子大的那个分数就大。
⑵分子相同的分数,分母小的那个分数就大。
⑶分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数⑴真分数:分子比分母小的分数叫做真分数。
真分数小于1。
⑵假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
⑶带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质⑴除法是一种运算,有运算符号;分数是一种数。
因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑵由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
⑶分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分⑴分子、分母是互质数的分数,叫做最简分数。
⑵把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑶约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑷把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑸通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒数⑴乘积是1的两个数互为倒数。
⑵求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
⑶1的倒数是1,0没有倒数(四)百分数1、百分数的意义表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?0%,则六成五就是65%。
5、纳税和利息:税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。
由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间6、百分数与分数的区别主要有以下三点:⑴意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
如:可以说1米是5米的20%,不可以说“一段绳子长为20%米。
”因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等。
⑵应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
⑶书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化⑴小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
⑵分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
⑶一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
⑷小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
⑸百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
⑹分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
⑺百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(五)数的整除1、整除的意义整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
2、约数和倍数⑴如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
⑵一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
⑶一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、奇数和偶数⑴自然数按能否被2 整除的特征可分为奇数和偶数。
①能被2整除的数叫做偶数。
0也是偶数。
②不能被2整除的数叫做奇数。
⑵奇数和偶数的运算性质:①相邻两个自然数之和是奇数,之积是偶数。
②奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。