4.1.1正弦和余弦
- 格式:pdf
- 大小:2.20 MB
- 文档页数:16
各个象限正弦余弦正切的大小概述及解释说明1. 引言1.1 概述本文旨在探讨各个象限中正弦、余弦和正切的大小,并对其进行解释说明。
在数学中,三角函数是研究角度和线段之间关系的重要工具。
根据定义,正弦函数表示一个角度所对应的点在单位圆上的y坐标,余弦函数表示该点在单位圆上的x 坐标,正切函数则是两者的比值。
1.2 文章结构本文将分为以下几个部分来全面介绍各个象限正弦、余弦和正切的大小。
首先,我们将通过引言部分对文章进行总览。
接下来的正文部分将详细阐述各个象限中三角函数值的变化规律。
然后,针对每个象限将进一步进行解释说明,并提供示例图表以便更好地理解。
最后,在结论部分对所得到的结论进行总结概括。
1.3 目的本文旨在帮助读者更加深入地认识各个象限中三角函数值之间关系的规律性,并通过具体实例进行说明。
了解这些规律不仅有助于数学学习和应用,也能够在实际问题中提供有价值的参考。
同时,通过本文的阅读,读者将能够更好地掌握和应用三角函数知识,提高数学解题的能力。
2. 正文在三角函数中,正弦(sine)、余弦(cosine)和正切(tangent)是最基础的三个函数。
它们可以通过一个给定角度的三角形比例来定义。
2.1 正弦函数正弦函数在数学中常被用于描述周期性现象,并且在各个象限中都有不同的取值范围。
根据单位圆理论,当角度介于0到90度(或0到π/2弧度)之间时,也就是第一象限中,正弦函数的值为非负数。
随着角度逐渐增大至180度(或π弧度),即进入第二象限,正弦函数则开始递减并变成负数。
当角度继续增大至270度(或3π/2弧度)时,进入第三象限,正弦函数又会回到非负值。
最后,在360度(或2π弧度)处回到第四象限并重复前面的模式。
2.2 余弦函数与正弦函数类似,余弦函数也具有周期性,并在不同象限呈现不同的取值范围。
在第一象限中,余弦函数始终为非负值,而在第二象限变成负数。
当角度介于180到270度(或π到3π/2弧度)之间时,余弦函数在第三象限中仍然为负数。
§4.7正弦定理、余弦定理及其应用1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R 是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A=,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B +C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数①②③④(3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式(1)三角形面积公式S△===____________=____________=____________.其中R,r分别为三角形外接圆、内切圆半径.(2)A+B+C=π,则A=__________,A2=__________,从而sin A=____________,cos A=____________,tan A=____________;sinA2=__________,cosA2=__________,tanA2=________.tan A+tan B+tan C=__________.(3)若三角形三边a,b,c成等差数列,则2b=____________⇔2sin B=____________⇔2sinB2=cosA-C2⇔2cosA+C2=cosA-C2⇔tanA2tanC2=13.【自查自纠】1.(1)asin A=bsin B=csin C=2R(2)①2R sin B2R sin C②b2Rc2R③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦 (2)正弦 一解、两解或无解 ①一解 ②二解 ③一解 ④一解(3)余弦 (4)余弦 4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R 12(a +b+c )r(2)π-(B +C ) π2-B +C 2sin(B +C ) -cos(B +C )-tan(B +C ) cos B +C 2 sin B +C21tanB +C 2tan A tan B tan C (3)a +c sin A +sin C在△ABC 中,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解B .一解C .两解D .一解或两解解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .(2013·陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cos π6=4,b =2.故填2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解:∵sin B +cos B =2,∴2sin ⎝⎛⎭⎫B +π4=2,即sin ⎝⎛⎭⎫B +π4=1. 又∵B ∈(0,π),∴B +π4=π2,B =π4.根据正弦定理a sin A =b sin B ,可得sin A =a sin B b =12.∵a <b ,∴A <B .∴A =π6.故填π6.类型一 正弦定理的应用△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ).∴2sin(45°+C )=22sin(45°+C )cos(45°+C ), 即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°. 【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.解:(1)证明:对b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a 应用正弦定理得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A , 即sin B ⎝⎛⎭⎫22sin C +22cos C -sin C ⎝⎛⎭⎫22sin B +22cos B =22,整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝⎛⎭⎫0,3π4,∴B -C =π2. (2)∵B +C =π-A =3π4,又由(1)知B -C =π2,∴B =5π8,C =π8.∵a =2,A =π4,∴由正弦定理知b =a sin B sin A =2sin5π8,c =a sin C sin A =2sin π8. ∴S △ABC =12bc sin A =12×2sin 5π8×2sin π8×22=2sin 5π8sin π8=2cos π8sin π8=22sin π4=12.类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c.(1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C=a 2+b 2-c 22ab ,将上式代入cos B cos C =-b 2a +c得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos 23π,解得ac =3.∴S △ABC =12ac sin B =334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.23解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .类型三 正、余弦定理的综合应用(2013·全国新课标Ⅱ)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B=79. (1)求a ,c 的值; (2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2, cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.类型四 判断三角形的形状在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B,所以sin A cos B cos A sin B =sin 2A sin 2B ,即sin2A =sin2B .所以2A =2B ,或2A +2B =π,因此A =B 或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2A sin 2B ,所以tan Atan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B ,再由正、余弦定理,得a 2+c 2-b 22acb 2+c 2-a22bc=a b ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a 2+b 2-c 22ab <0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝⎛⎭⎫t -132+300, 故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23. 据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中, CD =103tan θ,OD =103cos θ.由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ,所以10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°).又v ≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°. 由于θ=30°时,tan θ取得最小值,且最小值为33. 于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23.【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v =282=14(海里/小时).(2)在△ABC 中,AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理得AB sin α=BC sin ∠BAC ,即12sin α=28sin120°,从而sin α=12sin120°28=3314.1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A +B +C =π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A =sin(B +C ),cos A =-cos(B +C ),sinA2=cosB +C2,sin2A =-sin2(B +C ),cos2A =cos2(B +C )等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.。
湘教版九年级上册教学设计4.1正弦和余弦一. 教材分析湘教版九年级上册《数学》第4.1节“正弦和余弦”是本册教材中的重要内容,主要介绍了正弦和余弦的概念、性质和应用。
本节内容是在学生已经掌握了锐角三角函数的基础上进行教学的,为后续学习圆锥曲线、三角函数的图像和性质等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的函数概念和数学思维能力,但对于正弦和余弦的理解还需要进一步引导。
在学习过程中,学生需要通过观察、分析、归纳等方法,掌握正弦和余弦的定义和性质。
同时,学生应能够运用正弦和余弦解决实际问题,提高解决问题的能力。
三. 教学目标1.了解正弦和余弦的概念,掌握正弦和余弦的定义和性质。
2.能够运用正弦和余弦解决实际问题,提高解决问题的能力。
3.培养学生的观察、分析、归纳能力,提高学生的数学思维能力。
四. 教学重难点1.重点:正弦和余弦的概念、性质。
2.难点:正弦和余弦在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生观察、分析、归纳正弦和余弦的性质。
2.运用案例教学法,让学生通过实际问题,掌握正弦和余弦的应用。
3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。
六. 教学准备1.准备相关正弦和余弦的案例和问题,用于课堂练习和拓展。
2.准备多媒体教学设备,用于展示正弦和余弦的图像和性质。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾锐角三角函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过讲解和展示正弦和余弦的图像,引导学生观察和分析正弦和余弦的性质。
3.操练(10分钟)教师提出相关问题,让学生运用正弦和余弦的知识进行解答。
教师及时给予指导和反馈,帮助学生巩固所学知识。
4.巩固(10分钟)学生进行小组合作学习,共同解决正弦和余弦的实际问题。
教师巡回指导,解答学生疑问。
5.拓展(10分钟)教师提出拓展问题,引导学生运用正弦和余弦的知识进行探究。
学生独立思考或小组讨论,分享解题过程和结果。
4.1 正弦和余弦第1课时 正弦【学习目标】1.学会什么是正弦?2.会根据正弦的定义去计算。
重点:理解认识正弦(sinA )概念难点:对任意锐角,它的对边与斜边的比值是固定值的事实。
【预习导学】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m ,那么需要准备多长的水管?【探究展示】(一)合作探究(1)如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比,能得到什么结论?结论:在一个直角三角形中,如果一个锐角等于45o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于(2)如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D= α . ∠C=∠F=90°,则DEEF AB BC =成立吗?为什么?αα结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比也是_____________。
自学课本110页探究(二)展示提升1.如图所示,在直角三角形ABC 中,∠C=90°, BC=3,AB=5.(1)求sinA 的值;(2)求sinB 的值.2.如何求sin 45°的值?如图所示,构造一个Rt △ABC ,使∠C=90°,∠A=45°求sinA 的值3.如何求sin 60°的值?如图所示,构造一个Rt △ABC ,使∠B=60°,(1)求sinA 的值;(2)求sinB 的值.4.计算:o o o 60sin 45sin 230sin 22+-【知识梳理】1.正弦的定义是什么?2.一个锐角的正弦只和什么有关?跟什么无关?【当堂检测】1. 如图,在直角三角形ABC 中,∠C=90°, BC=5,AB=13.(1)求sinA 的值; (2)求sinB 的值.2.如图,在平面直角坐标系内有一点P (3,4),连接OP ,求OP 与x 轴正方向所夹锐角 α的正弦值.3.计算(1)o o 45sin 60sin 22+ (2)1-2o o 60sin 30sin【学后反思】通过本节课的学习,1.你学到了什么?2.你还有什么样的困惑?。
第四章 锐角三角函数 4.1 正弦与余弦(1)探究内容:4.1 正弦与余弦(1)目标设计:1、通过实例引导学生理解正弦的定义; 2、培养学生自主探究知识的能力。
重点难点:理解正弦的定义。
探讨准备:作图工具 探讨过程: 一、复习导入:1、如图,已知在Rt △ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c,且a =,c =,求b 。
(复习:勾股定理:在直角三角形中, 两直角边a 、b 的平方和等于斜边c 的平方)2、一个△ABC 的三边长分别为7a =,b =43c =,试判断该三角形的形状。
(复习:勾股定理的逆定理(判定定理):如果一个三角形的三边a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形。
)二、新知探究: 思考与探究:题:如图,一艘轮船从西向东航行到8处时,灯塔A 在船的正北方向,轮船从B 处继续向正东方向航行2000m 到达C 处,此时灯塔A 在船的北偏西65°的方向。
试问:C 处和灯塔A 的距离AC分析:由题意,△ABC 是Rt △,∠B =90°,∠A =65°,∠A 的对边BC =2000m 。
问题是求斜边AC 的长度。
探究:在Rt △中,65°角的对边与斜边的比值有何规律?下面分3步讨论: 1、假设∠A =60°依勾股定理可得AB =AC =则600.866︒==≈角的对边斜边请同学们动手画一个比较标准的Rt △,使∠A =60°,∠B =90°。
量出AC 与BC 的长,B Cb 东看?BCAC= 结论:60°角的对边与斜边的比值是一个常数值,都约等于0.87。
2、当∠A =65°时,请大家再画一个Rt △,使∠B =90°,∠A =65°。
然后量出BC 与AC 的长,计算BC :AC 的值。
(则有:0.91:1BC AC ≈)3、证明:在Rt △ABC 和Rt △A ′B ′C ′中,∠A =∠A ′,∠B =∠B ′,则BC:AC =B ′C ′:A ′C ′ 分析:∵∠A =∠A ′,∠B =∠B ′ ∴△ABC ∽△A ′B ′C ′∴''''BC ACB C A C =∴''''BC B C AC A C =即在所有的Rt △中,相等的锐角的对边与斜边的比值K 都相等。
正弦函数、余弦函数的图象和性质教案第一章:正弦函数的定义与图象1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图象1.2 教学内容正弦函数的定义:正弦函数是直角三角形中,对于一个锐角,其对边与斜边的比值。
正弦函数的图象:正弦函数的图象是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。
1.3 教学活动讲解正弦函数的定义,并通过实际例子进行解释。
使用图形计算器或者绘图软件,让学生自己绘制正弦函数的图象,并观察其特点。
1.4 作业与练习让学生完成一些关于正弦函数的练习题,包括选择题和解答题。
第二章:余弦函数的定义与图象2.1 教学目标了解余弦函数的定义能够绘制余弦函数的图象2.2 教学内容余弦函数的定义:余弦函数是直角三角形中,对于一个锐角,其邻边与斜边的比值。
余弦函数的图象:余弦函数的图象也是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。
2.3 教学活动讲解余弦函数的定义,并通过实际例子进行解释。
使用图形计算器或者绘图软件,让学生自己绘制余弦函数的图象,并观察其特点。
2.4 作业与练习让学生完成一些关于余弦函数的练习题,包括选择题和解答题。
第三章:正弦函数和余弦函数的性质3.1 教学目标了解正弦函数和余弦函数的性质3.2 教学内容正弦函数和余弦函数的周期性:正弦函数和余弦函数都是周期函数,它们的周期都是2π。
正弦函数和余弦函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数。
正弦函数和余弦函数的单调性:正弦函数和余弦函数在一个周期内都是先增后减。
3.3 教学活动讲解正弦函数和余弦函数的性质,并通过实际例子进行解释。
让学生通过观察图象,总结正弦函数和余弦函数的性质。
3.4 作业与练习让学生完成一些关于正弦函数和余弦函数性质的练习题,包括选择题和解答题。
第四章:正弦函数和余弦函数的应用4.1 教学目标能够应用正弦函数和余弦函数解决实际问题4.2 教学内容正弦函数和余弦函数在物理学中的应用:正弦函数和余弦函数可以用来描述简谐运动,如弹簧振子的运动。