初中数学《四边形性质探索》单元教学设计以及思维导图
- 格式:doc
- 大小:195.50 KB
- 文档页数:9
第四章四边形性质探索单元分析关于四边形性质探索单元分析我主要从六个方面进行。
一、明确课标要求1、探索并了解多边形的内角和与外角和公式,了解正多边形的概念。
2、掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。
3、探索并掌握平行四边形的有关性质和四边形是平行四边形的条件。
4、探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件。
5、探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件。
6、探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。
7、通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。
二、教材分析1、教材的地位及作用四边形体现着和三角形的紧密联系,突出地显示着图形向三角形转化的意义和作用。
同时,四边形本身还具有美妙而重要的性质,和图形变换中的“平移”“轴对称”“旋转变换”都有广泛的联系,是解决众多数学问题和现实问题的基础,承载着培养和发展学生演绎推理能力的重要作用。
2、教材整体思路首先通过图形的并提引入平行四边形,逐步探索平行四边形的对边、对角、对角线的有关性质以及平行四国形的判别方法。
然后,在直观的、现实的情景和一些探索性活动中分别研究菱形、矩形、正方形、梯形等特殊平行四边形的基本性质和基本制定方法。
最后,通过一个十分有趣的“多边形广场”的连续情景,比较自然地呈现多边形内角和,外角和的探索过程,在平面图形的密铺中进一步强化学生对多边形内的和及其有关几行事实的认识,认识中心对称图形及其基本性质。
与四边形以往的安排方式有所不同,本章特别强调图形性质的探索过程,而不是简单地得到四边形,特殊四边形的有关性质。
3、教学重点与难点教学重点:⑴平行四边形、菱形、矩形、正方形、梯形的概念。
⑵平行四边形、菱形、矩形、正方形、等腰梯形的性质、判别方法及初步应用。
初二数学第四章知识点初二数学第四章思维导图一、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360。
四边形的外角和定理:四边形的外角和等于360。
推论:多边形的内角和定理:n边形的内角和等于180多边形的外角和定理:任意多边形的外角和等于360。
6、设多边形的边数为n,则多边形的对角线共有条。
从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
二、平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积S平行四边形=底边长高=ah三、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
平行四边形的的性质和判定适用年八年级级所需时六课时间主题单元学习概述《初中数学八年级下》第五章平行四边形是人们日常生活和生产实践中应用广泛的一种图形,本单元是在学生已经学习了三角形相关知识、平行四边形的定义的基础上进行学习的,在教学内容中起着承上启下的作用,“承上”:定理的证明是三角形全等知识、平行线知识的再应用;“启下”:平行四边形的性质和判定定理以及探究的模式为进一步学习特殊四边形奠定了基础。
本单元包括两个专题:专题一:平行四边形的性质;专题二:平行四边形的判定。
平行四边形的性质定理和判定定理是两个互逆的定理,定理的证明方法都用到了三角形全等的知识。
通过合作探究,测量、计算、对折剪开、旋转、平移、推理等探索定理证明的不同思路和方法,运用定理解决较简单的问题;归纳、总结解决四边形问题的常用数学方法;进行适当的比较和讨论, 渗透化归思想和数学建模思想,从而形成知识体系。
主题单元规划思维导图主题单元学习目标 知识与技能:知识与技能:1. 通过合作探究,认识平行四边形的性质定理和判定定理。
2. 理解平行四边形的性质定理和判定定理,并学会简单运用。
过程与方法:过程与方法:1•通过类比、观察、实验、猜想、验证、推理、交流等学习活动,进 一步增强动手能力、合情推理能力。
2•在运用平行四边形的性质和判定方法解决问题的过程中,培养和发 展逻辑思维能力和推理论证的表达能力。
情感态度与价值观:情感态度与价值观:通过对平行四边形性质和判定方法的探究和运用,感受数学思考过程 中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化, 学会用辨证的观点分析事物字习直豐十疔四辺邛对应课标《初中数学新课程标准》1•有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
2.教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
平行四边形的性质与判定
主题单元学习目标
知识与技能:
1、掌握平行四边形的概念和性质。
2、掌握平行四边形的判定定理一与判定定理二及推论;会用平行四边形的判定方法进行简单的推理.
3、经历平行四边形性质和判定的探究、归纳过程,体会通过观察、猜想、操作、论证获得数学知识的方法;
图一
图二
②∵四边形ABCD是平行四边形∴AB//DC,
活动三:做一做
【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来
根据上面的问题,画出右边的图形:
图五
、合作交流:
小组合作:转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;师生共同探索得出:对角线互相平分的四边形是平行四边形.
思考:这个方法的前提是什么?结论又是什么?
3.如图,D、E在三角形AB C 的边BC上,F、G分别在AC、AB边上,DF 与EG互相平分,且DF∥AB,EG∥AC。
三角形、四边形与多边形
如图,
=
)探索结论时,计算验证;程.
2.思考:三角形、四边形、六边形等外角和是多少?
3.推理得出n边形的外角和是多少?使用专门制作的几何画板课件探究、演示.
第三课时:三角形的稳定性研究
活动一:了解三角形的稳定性
1.个人自学课本67页内容,了解三角形的稳定性;
2.写一篇数学短文,介绍三角形的稳定性和四边形的不稳定性,并举出几个生活或生产中利用三角形的稳定性或四边形的不稳定性的例子.
活动二:制作活动挂架或放缩尺
学习小组的几个同学合作,制作活动挂架或放缩尺;。
四边形适用年八年级级所需时课内12课时,每周4课时,课外公用2课时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 本单元是和三角形一样,也是基本的平面图形。
是在“空间与图形”有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单推理,将为学生对空间和图形后即内容的学习打下基础。
本章重点研究平行四边形、菱形、矩形、正方形、梯形等四边形的有关性质和判定方法,并进行简单的推理。
难点:是如何合理化推理本单元划分为四个专题;专题一多边形内角和与外角和专题二:特殊四边形的性质探索专题三:特殊四边形判定探索专题四:中心对称图形学习策略1、关注学生的生活经验,提供丰富的感性材料。
2、重数学实践活动,突出几何探索过程。
3、理解教材,恰当把握教学要求。
主题单元规划思维导图主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1.理解并掌握探索特殊四边形平行的概念和平行四边形对边、对角相等、对角线互相平分的性质.平行线之间的距离的定义2.会用探索特殊四边形的性质解决简单的平行四边形的计算问题.过程与方法:1.经历探索特殊四边形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生初步的合情推理能力,主动探究习惯,逐步掌握说理的基本方法2.培养用类比、逆向联想及运动的思维方法来研究问题情感态度与价值观:经历探索的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识。
. 对应课标(说明:学科课程标准对本单元学习的要求)1. 了解多边形的定义,多边形的顶点、边、内角、外角、对角线的概念;探索并掌握多边形内角和与外角和的公式。
2. 理解平行四边形、矩形、菱形、正方形的概念,及它们之间的关系;了解四边形的不稳定性。
四边形
2.一个平行四边形的一个外角是38o,的度数分别是多少?为什么?
活动2:应用矩形的性质
2. 已知正方形ABCD对角线的长为10cm,M是AB边上一点,且ME⊥AC,MF⊥BD,则ME+MF=_____
3.如图,四边形ABCD是正方形,点G是BC上的任意一点,DE ⊥AG于点E,BF∥DE,且交AG于点F.求证:AF-BF=EF
4.如图在正方形外侧,作等边三角形ADE,则∠AEB的度数为_____。
5.如图四边形ABCD是正方形,点E是边BC的中点,∠AEF=900 ,且EF交正方形外角的平分线AF于点F。
求证:AE=EF。
6.如图,两个边长为a的正方形ABCD和A1B1C1O,且正方形A1B1C1O的顶点O是正方形ABCD的中心.(1)在正方形A1B1C1O 绕点O旋转的过程中,判断重叠部分的面积是否发生改变,并证明。
活动2:应用平行四边形的判定推出三角形的中位线定理。
例:如图,点D、E分别是△ABC的
6.如图,□ABCD,点E,F,G,H分别是AO,BO,CO,DO的中点,求证四边形EFGH是平行四边形。
7.如图,直线L1//L2,△ABC与△DBC的面积相等吗?你还能画出一些与△ABC面积相等的三角形吗?
第二课时:矩形的判定
活动1:矩形的判定定理
【活动步骤】
1.依据图形,说出矩形所有的性质定理,并用“如果...那么...”的形式表达,进而写出它们的符号语言表达形式。
活动3:应用矩形的判定定理及直角三角形斜边中线定理。
活动2:应用菱形判定定理
3.如图,AE∥BF,AC平分∠证:四边形ABCD是菱形。
初中数学《平⾏四边形和特殊的平⾏四边形》单元教学设计以及思维导图
平⾏四边形和特殊的平⾏四边形
主题单元学习⽬标(说明:依据新课程标准要求描述学⽣在本主题单元学习中所要知识与技能:
理解平⾏四边形、矩形、菱形、正⽅形的概念及它们之间的关系。
探索并证明平⾏四边形、矩形、菱形、正⽅形的性质定理与判定定理。
1、填空:ABCD为矩形,AC=
∵为平⾏四边形,∴AC=2=2
BD=2=2;∵为∴= ;
∴2=2;2=2;
2、如果将矩形ABCD沿对⾓线AC剪开,会得到两个什么图形?这时,OB(或O
3、请你把上述问题⽤数学语⾔描述出来,再⽤⼏何语⾔描述出来
直⾓三⾓形的⼀个重要性质:
∵是直⾓三⾓形,
②有哪些全等的直⾓三⾓形?分别把它们写出来活动三:激情互动。
组内交流、组间交流
把有疑问的问题写在⾃⼰组内的⿊板上
活动四:魅⼒精讲。
平⾏四边形、矩形、菱形、正⽅形之间有什么关系?
活动五:巩固练习:
1、证明:有⼀个⾓是直⾓的菱形是正⽅形。