第2课时 可化为一元一次方程的分式方程
- 格式:ppt
- 大小:1.36 MB
- 文档页数:30
初二数学可化为一元一次方程的分式方程及其应用人教版【本讲教育信息】一. 教学内容:代数:a=bc型数量关系、可化为一元一次方程的分式方程及其应用;几何:等腰三角形的性质学习目标:代数:掌握a bc=型数量关系的规律,会解可化为一元一次方程的分式方程及其应用几何:掌握等腰三角形的性质以及性质的应用二. 重点、难点重点:代数:可化为一元一次方程的分式方程的解法、步骤几何:等腰三角形的性质以及应用难点:代数:增根问题、应用题几何:等腰三角形性质的应用三. 知识要点代数:1. a bc=型数量关系(1)b是定值,c与a成正比例关系(2)c是定值,b与a成正比例关系(3)a是定值,b与c成反比例关系2. 可化为一元一次方程的分式方程分式方程:分母含有字母的方程增根:在方程变形时,产生的不适合原方程的根步骤:(1)化成整式方程;(2)解整式方程;(3)验根3. 应用题关键:抓住等量关系步骤:(1)审题;(2)设未知量;(3)列方程;(4)解方程;(5)答几何:1. 等腰三角形的性质内角和=底角相等三线合一180 ⎧⎨⎪⎩⎪2. 等腰三角形性质的应用证明两角相等(底角相等)证明角相等,线段相等,垂直(三线合一)文字命题的证明:难点【典型例题】例1. 解方程5424253212x x x x --=+--()解:方程两边同乘以62()x -,约去分母,得 ()()()54322532x x x -⨯=+-- 整理,得151241036x x x -=+-+ 解这个整式方程,得x =2 检验:x =2时,620()x -= ∴2是增根,原方程无解小结:分式方程⇒整式方程,最后验根。
例2. 农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度。
分析:未知量:自行车、汽车的速度已知关系:自行车走过的路程=汽车走过的路程汽车的速度=自行车速度的3倍等量关系:已知路程,要求速度,找时间关系作为等量关系 汽车所用时间=自行车所用时间-23小时解法一:设自行车的速度为x 千米/小时,那么汽车的速度为3x 千米/小时 由题意,得1531523xx =-解之得x =15检验得x =15是这个方程的根 当x =15时,345x =答:自行车的速度是15千米/时,汽车的速度为45千米/时解法二:设自行车的速度为x 千米/时,汽车的速度为y 千米/时 y x y x ==-⎧⎨⎪⎩⎪3151523解之得x y ==⎧⎨⎩1545检验:x y ==⎧⎨⎩1545是这一方程组的解答:自行车的速度是15千米/时,汽车的速度为45千米/时 小结:(1)五步;(2)关键;(3)多个思路例3. (1)等腰三角形的一个角为50,求其他两角(2)等腰三角形的一个角为100 ,求其他两角 解:(1)若底角为50等腰三角形的两底角相等(等边对等角) ∴另一底角为50顶角为180505080 --= 若顶角为50则底角为18050265-=∴其他两角为50 ,80 或65 ,65 (2)若底角为100 等边对等角 ∴另一底角为100这两个底角之和200180 > ∴100 不可能为底角 若顶角为100则底角为180100240-=∴其他两角为40 ,40小结:已知等腰三角形中的一角,若该角为锐角,那么该角可能是顶角,也可能是底角;若该角为直角或钝角,则该角必为顶角。
青岛版数学八年级上册3.7《可化为一元一次方程的分式方程》教学设计1一. 教材分析《可化为一元一次方程的分式方程》是青岛版数学八年级上册3.7的内容。
这部分内容是在学生已经掌握了分式的概念、分式的运算、分式方程的解法等知识的基础上进行学习的。
本节课的主要内容是引导学生理解并掌握可化为一元一次方程的分式方程的解法,培养学生解决实际问题的能力。
教材通过生活中的实际问题引出分式方程,让学生体会数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于分式的相关知识也有一定的掌握。
但是,学生在解决实际问题时,往往不能很好地将实际问题转化为数学问题,对于分式方程的解法也有一定的局限性。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生将实际问题转化为数学问题,并通过举例、讲解等方式,帮助学生理解和掌握分式方程的解法。
三. 教学目标1.理解可化为一元一次方程的分式方程的概念,掌握其解法。
2.能够将实际问题转化为数学问题,并运用所学的知识解决实际问题。
3.提高学生的逻辑思维能力和解决问题的能力。
4.培养学生学习数学的兴趣。
四. 教学重难点1.重点:理解可化为一元一次方程的分式方程的概念,掌握其解法。
2.难点:将实际问题转化为数学问题,并运用所学的知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生理解并掌握分式方程的解法。
2.案例教学法:通过举例、讲解等方式,帮助学生理解和掌握分式方程的解法。
3.问题驱动法:引导学生将实际问题转化为数学问题,并运用所学的知识解决实际问题。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示生活中的实际问题和相关的例题。
2.教学案例:准备一些生活中的实际问题和相关的例题,用于讲解和练习。
3.教学素材:准备一些与本节课相关的学习素材,以便学生在课后进行自主学习。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,引导学生思考并提出问题。
1.5 可化为一元一次方程的分式方程第2课时分式方程的应用【学习目标】1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用;2.通过用分式方程解决实际问题,发展分析和解决问题的能力【重点】能将实际问题中的等量关系用分式方程表示,并能正确地解出分式方程【难点】根据题意列出分式方程一、自主学习学一学:阅读教材P57-58的内容填一填:1.行程问题:路程=_______________________________顺风(水)速度=静风(水)速度风(水)速;逆风(水)速度=静风(水)速度风(水)速2.工程问题:工作量=_______________________________议一议:解分式方程应该注意什么?归纳总结:用分式方程解决实际问题的步骤:做一做:为了改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?二、合作探究1.飞机沿直线顺风飞行450千米后,按原来的路线飞回原处(风向不变),一共用去5.5小时,如果飞机在无风时每小时飞行165千米,那么风速是多少?(只要求列方程)分析:设,可列表分析:顺风逆风速度路程时间等量关系方程2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.(1)这一问题中的等量关系是(2)水费= ×,所以用水量= /(3)列方程解答:3.为了方便广大游客到昆明参加游览“世博会”,铁道部临时增开了一列南宁——昆明的直达快车,已知南宁——昆明两地相距828km,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h,比普通快车早4h到达昆明,求两车的平均速度?四、拓展提升4.小红妈:“售货员,请帮我买些梨.”售货员:“您上次买的那种梨卖完了,建议这次您买些苹果,价格比梨贵一点,不过营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.。
八年级数学导学稿第三章 分式课题 可化为一元一次方程的分式方程 (第二课时)学习目标:1、掌握一类会产生增根的分式方程解法。
2、了解增根是所化成整式方程的根,而不是原分式方程的根。
重点:分式方程解法及转化思想难点:验根作为步骤易漏掉,特别增根存在时教学过程:温故知新:解分式方程的步骤很多同学熟练了,互相展示一下。
解方程,比比谁更快A 、518=+-xB 、380+x =360-x 课内探究:一、创设情境:21211x x =--这是上节课我们留的作业,同学们有什么疑问吗?你解题过程中发现了什么?二、交流展示:活动一:问题再现:“我解出的根是1,可是检验时分母为零无意义了,为什么 呢?”老师请大家再解: 78--x x - x -71= 8——A化为: x-8+1=8(x-7) ——B解得x=7检验:……,分母为零无意义。
那么,你发现为什么了吗?大家仔细看看A 、B 两个方程想想,说出你的见解。
发现增根,理解验根必要性。
三、归纳总结:分式方程是不允许未知数取使分母分母为零的数,而整式方程的未知数就没有这个限制,即化为整式方程未知数取值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
因而增根是所化成的整式方程的根,而不是原分式方程的根。
定义:在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。
活动二:让学生阅读课本例3。
1、小组讨论写出解题过程,2、总结解分式方程的主要步骤:四、巩固提升:1、11-+x x -142-x =1 2、1617222-=-++y y y y y 五、课堂小结:巩固基本步骤,了解增根原因。
课后延伸: 甲乙两人同时从 地出发,骑自行车到地,已知 两地的距离为 ,甲每小时比乙多走,并且比乙先到40分钟.设乙每小时走 ,则可列方程为( )A .B .C .D .六、达标检测: 1.22+-x x - 4162-x = 12、2373226x x +=++学后反思:。
可化为一元一次方程的分式方程【教材研学】一、可化为一元一次方程的分式方程的解法1.数字系数分式方程的解法解分式方程的关键是去分母,将分式方程化为整式方程求解.去分母即在方程两边同乘以最简公分母,若分母可以分解因式,应首先分解.由整式方程得到的解,需代人最简公分母中检验,使最简公分母不为零的解,才是原方程的解;使最简公分母为零的解,是原方程的增根,应舍掉.2.含有字母系数的分式方程的解法此类方程与数字系数分式方程的解法基本相同,只是在系数化为1时.要讨论系数是否为零.3.增根增根的产生是由于在去分母时,方程两边同乘的整式恰好为零所致.是方程变形造成的,不是解题错误.方程的增根不是分式方程的根.但是增根是变形后所得到的整式方程的根.4.分式方程有增根与无解的关系不仔细推敲,会认为分式方程无解和分式方程有增根是同一回事.事实上并非如此. 分式方程有增根,指的是解分分式方程求出的根是原分式方程变形后所得整式方程的根,但不是原分式方程的根,即这个根使最简公分母为0.比如:方程23132--=--xx x ,可解得:x=3,而x=3是原方程的增根,此方程无解.本题中,分式方程有增根,方程无解,但并不是说只要有增根方程就无解,等大家进入高年级,学习了更多的知识,会发现有增根的分式方程并不全是无解的.问题:若关于x 的方程m x m x =-+3无解,求m 的值。
探究:(1)将分式方程去分母,整理为:(1一m)x=一4 m.①当1一m=0,而4m≠0时方程无解.此时,m=l (依据是形如ax=b的方程在a=0,b≠0时无解)(2)如果方程①的解恰好是原分式方程的增根,原分式方程无解.根据这种思路,可先确定增根后,再求m的值.原方程若有增根,增根为x=3,把x=3代入方程①中,求出m=一3.综上所述,m=1或m=一3时,原分式方程无解.而此分式方程有增根时,m=一3.结论:通过本例可以发现,(1)现阶段学习的分式方程有增根时,一定无解;(2)分式方程无解,可能是因为有增根,也可能是由分式方程转化所得的整式方程ax=b中的a=0、b≠0造成的.三.分式方程的应用1.列分式方程客观世界中存在大量的问题需要用分式方程去解决,当我们掌握好相关的知识和方法后,就可以运用它们分析和解决实际问题.此类题目接近生活,取材广泛,做题时,要注意题目的情境,弄清是行程问题、增长率问题等中的哪一类,当然也有一些跨学科的综合题,比如:杠杆问题等,无论哪一类都要根据相关的基本量寻找关系.2.列分式方程解应用题的一般步骤:①弄清题意;②设未知数,列出有关的代数式;③依题意找等量关系,列出分式方程;④解方程;⑧检验:一方面要检验所求出的解是否为原方程的根,另一方面还要检验所求的解是否符合实际意义;⑥答。
青岛版八年级上册数学教学设计《3-7可化为一元一次方程的分式方程(第2课时)》一. 教材分析《3-7可化为一元一次方程的分式方程(第2课时)》这一节内容,是在学生已经掌握了分式的概念、分式的运算、分式方程的解法等基础知识的基础上进行讲解的。
本节课的主要内容是让学生学会如何将分式方程化为一元一次方程,并掌握一元一次方程的解法。
这一部分内容在教材中占据着重要的位置,因为它既是对分式方程知识的进一步拓展,又为一元一次方程的学习打下了基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念、运算等有了一定的了解。
但是,学生在解决实际问题时,还存在着一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。
三. 教学目标1.知识与技能目标:让学生掌握将分式方程化为一元一次方程的方法,并会解一元一次方程。
2.过程与方法目标:通过自主学习、合作交流,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.教学重点:将分式方程化为一元一次方程的方法,一元一次方程的解法。
2.教学难点:如何引导学生将分式方程化为一元一次方程,并运用一元一次方程解决实际问题。
五. 教学方法1.情境教学法:通过设置情境,让学生在实际问题中感受和理解分式方程的化简和解法。
2.引导发现法:教师引导学生发现分式方程化简的规律,培养学生自主学习的能力。
3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.教师准备:教师需要提前准备相关的教学材料,如PPT、教案、习题等。
2.学生准备:学生需要预习相关知识,了解分式方程的概念和运算。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,引导学生思考如何将分式方程化为一元一次方程。
2.呈现(10分钟)教师通过PPT展示分式方程化简的步骤和原理,让学生直观地理解分式方程的化简过程。
七年级数学可化为一元一次方程的分式方程人教四年制【同步教育信息】一. 本周教学内容可化为一元一次方程的分式方程二. 教学重点、难点重点:可化为一元一次方程的分式方程的解法难点:对解分式方程可能产生根的理解和认识不足,解题中,易忽略验根。
三. 教学要点1. 分式方程——分母里含有未知数的方程叫分式方程 例如:4251=+xx 2. 解分式方程的基本思想是去掉分母将分式方程转化为整式方程3. 解分式方程的解答步骤:(1)去分母(方程两边都乘以各分母的最小公倍式)化为整式方程(2)解整式方程(3)检验:将整式方程解得的解代入各分母的最小公倍式若不为零是原方程的根,若等于零是增根舍去。
【典型例题】[例1] 解方程22416222-+=--+-x x x x x 解:方程两边都乘以)2)(2(-+x x ,约去分母得 22)2(16)2(+=--x x解这个方程,得2-=x检验:当2-=x 时 0)2)(2(=-+x x 所以2-是增根,原方程无解。
[例2] 解方程6272332+=++x x 解:将原方程整理得)3(272332+=++x x 方程两边都乘以 )3(2+x得7)3(34=++x 解得 2-=x检验:将2-=x 代入02)32(2)3(2≠=+-=+x∴2-=x 是原方程的根[例3] 解方程xx x x x -=-++2224123 解:将方程整理,得)1(4)1)(1(2)1(3-=-+++x x x x x x 把方程两边都乘以)1)(1(-+x x x得 )1(42)1(3+=+-x x x 44233+=+-x x x解得 7=x检验:将7=x 代入)17)(17(7)1)(1(-+=-+x x x 0336≠=∴7=x 是原方程的根[例4] 分式方程0111=+--+-x x x x x k 有增根1=x 求k 的值。
解:将原方程去分母,得0)1()1()1(=--+++x x x x x k022=+-+++x x x x k kx k x k -=+)2(把1=x 代入整式方程得 k k -=+2 解得1-=k[例5] m 为何值时,关于x 的方程234222+=-+-x x mx x 会产生增根。