牛顿运动定律专题复习课程
- 格式:docx
- 大小:281.08 KB
- 文档页数:14
牛顿运动定律复习教案教学目标:1.理解牛顿第一定律、第二定律和第三定律的基本概念;2.能够应用牛顿运动定律解决简单的运动问题;3.掌握牛顿运动定律的公式和单位。
教学准备:1.教学幻灯片或板书,用于介绍和总结牛顿运动定律的内容;2.运动学实验装置或视频,用于演示运动实例;3.复习题目,用于巩固学生对牛顿运动定律的理解。
教学过程:一、导入(5分钟)为了激发学生对牛顿运动定律的兴趣,可以先让学生观察一些简单的运动案例,例如扔出的物体自由落下、小车行驶等。
然后引导学生提出问题,例如为什么扔出的物体会掉落,小车行驶的速度和力的关系等。
二、理论讲解(15分钟)1.牛顿第一定律:当物体处于平衡或匀速直线运动状态时,其受合力为零。
2. 牛顿第二定律:物体的加速度与作用在物体上的合力成正比,与物体的质量成反比。
公式为F=ma。
3.牛顿第三定律:任何两个物体之间都存在相互作用力,且大小相等,方向相反。
三、实例演示(20分钟)1.使用实验装置或播放视频,演示一些简单的运动实例,例如小车拉绳、放射性衰变等,让学生观察和思考这些实例中的力和加速度的关系。
2.引导学生应用牛顿运动定律解决这些实例中的运动问题,例如求物体的加速度、合力大小等。
四、概念巩固(20分钟)1.出示牛顿运动定律的练习题,要求学生分别应用第一、二、三定律解决问题,并解释答案的原因。
2.鼓励学生互相讨论和解答问题,并给予及时的指导和纠正。
五、拓展延伸(15分钟)1.引入其他实际应用,例如汽车运动、物体在倾斜面上滑动等,让学生尝试应用牛顿运动定律解决更复杂的运动问题。
2.分组讨论或小组竞赛的形式,比赛解决一些运动问题,激发学生的竞争意识和团队合作精神。
六、总结反思(10分钟)1.小结牛顿运动定律的要点,强化学生对这些定律的记忆和理解。
2.结合学生实际学习情况,回顾本节课的教学效果,让学生提出改进意见。
教学评估:1.课堂讨论和提问:通过学生对概念的回答和问题的解答,评估他们对牛顿运动定律的掌握程度。
教学环节和教学内容分环节教师活动学生活动设计意图活动1:回顾复习本章主要知识点(2分钟)带领学生回忆本章主要知识点及其之间的联系回顾与识记复习知识点,为后面的联系做铺垫活动2:情境1:应用牛顿运动定律解决生活中的基本问题1(6分钟)2.1建立物理模型引导学生将题目描述的情境建构成物理运动模型和运动过程尝试画物理示意图培养学生建立物理模型能力牛顿运动定律单元复习课【教学内容分析】本节课是单元复习课,目的在培养学生灵活应用本章知识解决实际问题的能力。
【学生情况分析】学生已经学完了本章的知识,都已掌握相应的知识点,但在灵活应用方面,尤其是解决生活中的实际问题还缺乏一定的能力。
即在将书本知识应用于解决试题问题方面的能力还比较缺乏。
【物理核心素养目标】1.物理观念让学生理解力和运动的关系2.科学思维通过将实际情景转化为物理模型的过程让学生体会模型构建的方式方法,并能将已学习到牛顿运动定律用来解决实际问题。
3.科学探究带领学生探究生活中的物理。
4.科学态度与责任培养学生的科学态度,树立以科学的眼光看待实际问题的思想。
【教学重点】将牛顿运动定律应用于生活中的实际问题。
【教学难点】建立物理模型。
【教学策略设计】通过生活中的例题共同经历建立模型、解决问题的过程,培养学生建立物理模型的能力。
【教学用具】白板、课件【教学过程设计】2.2分析物理受力情况让学生在物理模型上画出物体的受力情况画出受力情况为求合外力,建立方程做铺垫2.3列方程求解尝试将学习过的牛顿运动定律方程应用于本题描述的情境列牛顿运动定律方程加深对牛顿运动定律的认识活动3:情境2:应用牛顿运动定律解决生活中的较复杂问题(10分钟)3.1建立物理模型让学生自己尝试建立物理模型建立本题的物理模型培养学生建立物理模型能力3.2将运动过程合理分段引导学生处理多段的运动过程将运动过程分段培养学生处理多过程问题3.3对各段受力分析让学生在物理模型上画出物体的受力情况画出受力情况为求合外力,建立方程做铺垫3.4,寻找各运动段的联系点,列方程求解尝试将学习过的牛顿运动定律方程应用于本题描述的情境列牛顿运动定律方程加深对牛顿运动定律的认识3.5总结多过程问题处理思路根据上述解决过程总结处理多过程问题的基本思路理解并记忆总结方法3.6解决情境2-1用上述方法解决情境2-1学以致用强化学生的处理问题的能力活动4:总结(1分钟)带领学生总结凝练方式方法:1.建立物理模型2.将运动过程合理分段3.对物体进行受理分析4.综合运用牛顿运动定律和运动学规律解决问题总结记忆总结提升活动5:情境3:应用牛顿运动定律解决生活中经典问题(6分钟)让学生将本节课学习到的内容应用于新情境应用总结出的方式方法解决新情境再次强化记忆【教学流程】回顾复习情境1情境2总结情境3。
牛顿运动定律专题一、基础知识归纳1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
理解要点:(1 )运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:a—,有速度变化就一定有加速度,所以可以说:力是使物体产生加t速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
);(3)定律说明了任何物体都有一个极其重要的属性一一惯性;一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
(4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,禾U用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F=0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma.理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2 )牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma,F y=ma,若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。
(4)牛顿第二定律F=ma定义了力的基本单位一一牛顿(使质量为1kg的物体产生1m/s2的加速2度的作用力为1N,即1N=1kg.m/s .(5)应用牛顿第二定律解题的步骤:①明确研究对象。
可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。
设每个质点的质量为m,对应的加速度为a,则有:F合=ma1+ma2+ma3+ ................ +ma n对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:刀F1=ma1,刀H=ma2, 刀F n=ma n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。
②对研究对象进行受力分析。
同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。
③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则) 解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活 选取坐标轴的方向,既可以分解力,也可以分解加速度) 。
④ 当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶 段列方程求解。
注:解题要养成良好的习惯。
只要严格按照以上步骤解题,同时认真画出受力分析图,标出运 动情况,那么问题都能迎刃而解。
(6) 运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题)(1)已知物体的受力情况,要求物体的运动情况•如物体运动的位移、速度及时间等.(2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向)但不管哪种类型, 案.一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答 两类动力学基本问题的解题思路图解如下:牛顿第二定律卄加速度a 运动学公式可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。
3、 牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直 线上。
理解要点:(1) 作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2) 作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后 有反作用力; (3) 作用力和反作用力是同一性质的力;(4) 作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产 生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。
(5) 区分一对作用力反作用力和一对平衡力:一对作用力反作用力和一对平衡力的共同点有: 大小相等、方向相反、作用在同一条直线上。
不同点有:作用力反作用力作用在两个不同物体上, 而平衡力作用在同一个物体上;作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的 力;作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。
4. 物体受力分析的基本程序:(1 )确定研究对象;(2) 采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力(4)画物体受力图,没有特别要求,则画示意图即可。
5. 超重和失重:(1 )超重:物体具有竖直向上的加速度称物体处于超重。
处于超重状态的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma;(2 )失重:物体具有竖直向下的加速度称物体处于失重。
处于失重状态的物体对支持面的压力F N(或对悬挂物的拉力)小于物体的重力mg即F N=mg- ma当a=g时,F N=0,即物体处于完全失重。
6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。
二、解析典型问题问题1:必须弄清牛顿第二定律的矢量性。
牛顿第二定律F=ma是矢量式,加速度的方向与物体所受合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
1 •合成法若物体只受两个力作用而产生加速度时,利用平行四边形定则求出两个力的合外力方向就是加速度方向•特别是两个力互相垂直或相等时,应用力的合成法比较简单.2 •分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法•分解方式有两种:(1)分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,加速度方向),F合y= 0(垂直于加速度方向)•⑵分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度.1、如图所示,电梯与水平面夹角为30:当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?2、如图所示,一质量为M的直角劈B放在水平面上,在劈的斜面上放一质图1量为m的物体A,用一沿斜面向上的力F作用于A上,使其沿斜面以加速度a匀加速上滑,在A上滑的过程中直角劈B相对地面始终静止,则地面对劈的摩擦力f及支持力N大小方向怎样?问题2:必须弄清牛顿第二定律的瞬时性。
牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果一产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma对运动过程的每一瞬间成立,则:F合x= ma沿4、如图所示,在光滑的水平面上, A B 两物体的质量 m = 2m , A 物体与轻质弹簧相连,弹簧 的另一端固定在竖直墙上,开始时,弹簧处于自由状态,当物体B 沿水平向左运动,使弹簧压缩到最短时,A B 两物体间作用力为 F ,则弹簧给 A 物体的作用力的大小为( )A. FB. 2FC. 3FD. 4F[诃厂AjfJ5、如右图所示,车厢里悬挂着两个质量不同的小球,上面的球比下面的球质量大,当车厢向右 做匀加速运动时(空气阻力不计),两个小球稳定后所处的位置下列各图中正确的是(B加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
1如图2( a )所示,一质量为 m 的物体系于长度分别为 L i 、L 2的两根细线上,L i 的一端悬挂 在天花板上,与竖直方向夹角为B, L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
(I )下面是某同学对该题的一种解法:分析与解:设L i 线上拉力为T i , L 2线上拉力为T 2,重力为mg 物体在三力作用下保持平衡,有「cos 0 = mgT i sin 0 = T 2, T 2 = mgta n 0剪断线的瞬间,「2突然消失,物体即在 「2反方向 获得加速度。
因为mgtan 0 = ma 所以加速度a = g tan 0,方向在T 2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
图2(a )(2)若将图2(a)中的细线L i 改为长度相同、质量不计的轻弹簧,如图 变,求解的步骤和结果与(I )完全相同,即a = g tan 0,你认为这个结果正确吗?请说明理由。
分析与解:(i )错。
因为L 2被剪断的瞬间,L i 上的张力大小发生了变 化。
剪断瞬时物体的加速度 a=gsin 0 . (2)对。
因为L 2被剪断的瞬间,弹 簧L i 的长度来不及发生变化,其大小和方向都不变。
2(b)所示,其他条件不3、如图所示,一条轻质弹簧左端固定,右端系一小物块,物块与水平面 各处动摩擦因数相同,弹簧无形变时,物块位于 O 点.今先后分别把物块拉到P i 和P 2点由静止释放,物块都能运动到 0点左方,设两次运动过 程中物块速度最大的位置分别为Q 和Q 点,贝y Q 与Q 点( )图 2(b)A. 都在O 点B. 都在0点右方,且Q 离O 点近C. 都在O 点右方,且Q 离O 点近D. 都在O 点右方,且Q 、Q 在同一位置3、如图所示,在倾角为 0的光滑物块P 的斜面上有两个用轻弹簧相连接的物体A 和B; C 为垂直固定斜面的挡板, A 、B 质量均为m ,弹簧的劲度系数为 k ,系统静止在水平面上•现对物体A 施加一平行于斜面向下的力 F 压缩弹簧后, A 始终没有离开斜面)( )A.物体B 加速度大小为g sin 0 BC.弹簧对B 的弹力大小为n 0 D突然撤去外力 F ,则在物体B 刚要离开C 时(此过程中.弹簧的形变量为m ③in0 /kg sinL 2A U D6、如图所示,在光滑的水平面上放着紧靠在一起的A B 两物体,B 的质量是A 的2倍,B 受到向右的恒力F B = 2 N, A 受到的水平力F A = (9 — 2t ) N(t 的单位是s).从t = 0开始计时,则()5A.A 物体在3 s 末时刻的加速度是初始时刻的倍11B. t > 4 s 后,B 物体做匀加速直线运动C. t = 4.5 s 时,A 物体的速度为零D. t >4.5 s 后,A B 的加速度方向相反问题3:必须弄清牛顿第二定律的独立性。