考研数学一公式手册大全(最新整理全面).pdf
- 格式:pdf
- 大小:892.28 KB
- 文档页数:35
第1章随机事件及其概率
我们作了次试验,且满足
每次试验只有两种可能结果,发生或不发生;
次试验是重复进行的,即发生的概率每次均一样;
每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影
响的。
这种试验称为伯努利概型,或称为重伯努利试验。
用
表示每次试验发生的概率,
则发生的概率为,用
表示重伯努利试验中
出现次的概率,
,。
n A A n A A A n p A A q p =-1)(k P n n A )0(n k k ≤≤k
n k k
n n q p k P C -=)(n k ,,2,1,0 =
第二章随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
2
(
x
f)
dx
,
dxdy
)dx
x f X )()]2dy
y f Y )()]2
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验
31。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
1高等数学高中公式三角函数公式和差角公式 和差化积公式sin()sin cos cos sin cos()cos cos sin sin ()11()tg tg tg tg tg ctg ctg ctg ctg ctg αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=⋅⋅±=±sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos 22cos cos -2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--= 积化和差公式 倍角公式1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+--22222222233322tan sin 22sin cos 1tan cos 22cos 112sin 1tan cos sin 1tan 212 212sin 33sin 4sin cos34cos 3cos 3313tg ctg tg ctg tg ctg tg tg tg tg αααααααααααααααααααααααααααα==+=-=--=-=+-==-=-=--=- 半角公式sincos 221cos sin 2sin 1cos 1cos sin 2sin 1cos tg ctgαααααααααααα==-==++==- 11V =SH V =SH V =)33'棱柱棱锥棱台 球的表面积:4πR 2球的体积:343R π椭圆面积:πab 椭球的体积:43abc π第1章 极限与连续1.1集合、映射、函数空集,子集,有限集,无限集,可列集,积集,区间,邻域,上界,下界,上有界集,下有界集,无界集,上确界,下确界确界存在定理:凡有上(下)界的非空数集必有有限的上(下)确界。
考研高等数学公式手册高等数学复习公式kaoyan高等数学公式导数公式:2(tgx)??secx(ctgx)???cscx(secx)??secx?tg x(cscx)???cscx?ctgx(a)??alna(logaxx2(arc sinx)??(arccosx)???(arctgx)??11?x11?x11? x222x)??1xlna(arcctgx)???11?x2基本积分表:?tgxdx?ctgxdx?sec?a?x?a???ln cosx?C?lnsinx?C?cos?sindx2xx???sec?csc 2xdx?tgx?Cxdx??ctgx?Cdx22xdx?lnsecx?t gx?C?cscxdx?lncscx?ctgx?Cdx2?secx?tgx dx?cscx?ctgxdx?ax?secx?C??cscx?C?C?x dx?adx?xdx22???1a1arctglnlnxa?C?C?Cx ?ax?aa?xa?xxadx?axlna222a12a?shxdx?ch xdx??2?chx?C?shx?C?ln(x?x?a)?C2222a? x2?arcsin?Cdxx?a22?2In??sin02nxdx??co sxdx?0nn?1naaa2In?2x?a)?Cx?axa?C2222 ???2u1?ux?adx?x?adx?a?xdx?22222x2x2x 2x?a?x?a?a?x?22222222ln(x?lnx?arcsin22?C2三角函数的有理式积分:sinx?,cosx?21?u1?u2,u?tg2x2,dx?2du1?u2 第 1 页共15 页高等数学复习公式一些初等函数:两个重要极限:e?e2e?e2shxchx2x?xx?x双曲正弦:shx?双曲余弦:chx?双曲正切:thx?arshx?ln(x?archx??ln(x?arthx?12ln 1?x1?xlimsinxx1xx?0?1)?e? 59045...lim(1?x???e?ee?exx?x?xx?1)x?1)2三角函数公式:·诱导公式:函数角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α sin cos tg -tgα ctgα ctg -ctgα tgα -ctgα ctgα tgα -ctgα ctgα -sinα cosα cosα cosα sinα sinα -sinα -ctgα -tgα -cosα -tgα -sinα -cosα tgα -cosα -sinα ctgα -cosα sinα -sinα cosα sinα cosα -tgα tgα -ctgα -tgα ·和差角公式:·和差化积公式:sin(???)?sin?cos??cos?sin?cos(???)?cos?c os??sin?sin?tg(???)?tg??tg?1?tg??tg?ctg?? ctg??1ctg??ctg?sin??sin??2sinsin??sin??2cos???2cossin???2???2???2cos??cos??2cos cos??cos??2sin???2cossin???2ctg(???)???? 2???2 第 2 页共15 页高等数学复习公式·倍角公式:sin2??2sin?cos?cos2??2cos??1?1?2sin??co s??sin?ctg2??tg2??ctg??12ctg?2tg?1?tg?2 22222sin3??3sin??4sin?cos3??4cos??3cos ?tg3??3tg??tg?1?3tg?2333 ·半角公式:sintg?2????1?cos?21?cos?1?cos?asinA 1?cos?sin?bsinB?cosctg?2??1?cos?21?cos?1?cos?22 ?1?c os?sin?2?2??csin?1?cos??2???sin?1?cos?·正弦定理:?sinC?2R·余弦定理:c?a?b?2abcosC ·反三角函数性质:arcsinx??2?arccosxarctgx??2?arcctgx 高阶导数公式——莱布尼兹公式:n(uv)?u(n)??Ck?0knu(n?k)v(k)(n)v?nu(n?1)v??n(n?1)2!u(n?2)v?????n(n?1)?(n?k?1)k! u(n?k)v(k)???uv(n)中值定理与导数应用:拉格朗日中值定理:柯西中值定理:f(b)?f(a)?f?(?)(b?a)?f?(?)F?(?)拉格朗日中值定理。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
考研高等数学公式(word版,全面)中国大学生第一门户一大户高等数学公式导数公式:(tgx)??sec2x(ctgx)???csc2x(secx)??secx?t gx(cscx)???cscx?ctgx(ax)??axlna1(logax)? ?xlna基本积分表:(arcsinx)??11?x21(arccosx)???1?x21(arctg x)??1?x21(arcctgx)???1?x2?tgxdx??lncosx ?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx? C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2 ?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a 2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2nd x2?cos2x??secxdx?tgx?Cdx2?sin2x??cscx dx??ctgx?C?secx?tgxdx?secx?C?cscx?ctg xdx??cscx?Cax?adx?lna?Cx?shxdx?chx?C ?chxdx?shx?C?dxx2?a2?ln(x?x2?a2)?C?2I n??sinxdx??cosnxdx?00n?1In?2n???x2a22 x?adx?x?a?ln(x?x2?a2)?C22x2a2222x?ad x?x?a?lnx?x2?a2?C22x2a2x222a?xdx?a?x?arcsin?C22a22三角函数的有理式积分:2u1?u2x2dusinx?,cosx?,u?tg,dx? 21?u21?u21?u2中国大学生第一门户中国大学生第一门户一大户一些初等函数:两个重要极限:ex?e?x双曲正弦:shx?2ex?e?x双曲余弦:chx?2shxex?e?x双曲正切:thx??chxex?e?xarshx?ln(x?x2?1)archx??ln(x?x2?1)11?xarthx?ln21?x三角函数公式:·诱导公式:函数角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α sinx lim?1x?0x 1 lim(1?)x?e?..x?? x sin cos tg -tgα ctgα ctg -ctgα tgα -ctgα ctgα tgα -ctgα ctgα -sinα cosα cosα cosα sinα sinα -sinα -ctgα -tgα -cosα -tgα -sinα -cosα tgα -cosα -sinα ctgα -cosα sinα -sinα cosα sinα cosα -tgα tgα -ctgα -tgα ·和差角公式:·和差化积公式:sin(???)?sin?cos??cos?sin?cos(???)?cos?c os??sin?sin?tg(???)?tg??tg?1?tg??tg?ctg??ctg??1ctg(???)?ctg??ctg?sin??sin??2sin??? 22??????sin??sin??2cossin22??????cos??c os??2coscos22??????cos??cos??2sinsin22 cos??? 中国大学生第一门户中国大学生第一门户一大户·倍角公式:sin2??2sin?cos?cos2??2cos2??1?1?2sin2? ?cos2??sin2?ctg2??1ctg2??2ctg?2tg?tg2?? 1?tg2? ·半角公式:sin3??3sin??4sin3?cos3??4cos3??3cos?3tg ??tg3?tg3??1?3tg2?sintg?2????1?cos??1?c os?cos??2221?cos?1?cos?sin??1?cos?1?cos?s in???ctg????1?cos?sin?1?cos?21?cos?sin?1?cos ?abc???2R·余弦定理:c2?a2?b2?2abcosCsinAsinBsinC?2 ·正弦定理:·反三角函数性质:arcsinx??2?arccosxarctgx??2?arcctgx 高阶导数公式——莱布尼兹公式:(uv)(n)k(n?k)(k)??Cnuvk?0n?u(n)v?nu(n?1)v??n(n?1)(n?2)n(n?1)?(n?k?1)(n?k)(k)u v?????uv???uv(n)2!k! 中值定理与导数应用:拉格朗日中值定理:f(b)?f(a)?f?(?)(b?a)f(b)?f(a)f?(?)柯西中值定理:?F(b)?F(a)F?(?)曲率:当F(x)?x时,柯西中值定理就是拉格朗日中值定理。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rm m kF Ap F s F W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功: 空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x M Md zyxz y xz y xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。