1.1不等关系
- 格式:ppt
- 大小:2.26 MB
- 文档页数:15
1.1不等关系胶南市王莉老师尊敬的各位老师,上午好!我是1号考生。
各位老师,今天我说课的课题是《不等关系》。
《不等关系》是北师大版九年义务教育课程标准实验教科书八年级下册第一章第一节的内容。
我将从教材分析,教法分析,学法指导,教学过程,板书设计五个方面谈谈我对本节课的教学设想。
一、教材分析,在此,我分三个层次进行介绍。
教材的地位和作用本节是学生已学过一元一次方程,一元一次方程组的基础上,为了进一步探究不等关系而设计的,通过本节课的学习,既是对前面等量关系的进一步巩固和深化,又为后面学习一元一次不等式,一元一次不等式组奠定了基础,因此,我认为本节课在整个教材体系中起着承上启下的重要作用。
基于以上分析,我将本节课的教学目标确定为以下三个方面:知识与技能目标:了解不等式的意义,能根据条件建立不等式过程与方法目标:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力,初步体会不等式是刻画量与量之间关系的重要模型之一。
情感态度与价值观目标:探索的过程中发挥学生的主体作用,激发学生的学习动机,培养学生的合作意识和探究意识。
鉴于以上的教学目标,我将本节课的教学重点确定为:用不等关系解决实际问题难点确定为:根据条件建立不等式为了讲清本节课的教学重点和难点,达到预定的教学目标,我再从教法分析和学法指导上谈谈。
二、教法分析创设情境,师生互动,我采用启发引导、探索合作的教学方法,以教师为主导,学生为主体,问题为主线,充分调动学生学习的积极性,使用多媒体辅助教学,提高课堂教学效果。
三、学法指导根据八年级学生的年龄和心理特征,本节以学生的自主学习为主,注重引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,激励学生独立思考、自主探索、合作交流,创造更多的机会使他们充分展示自己的思维过程,鼓励学生的求异思维,培养学生的“动口、动脑、动手"的学习习惯和能力。
四、教学过程根据新课标的要求,教学过程是教师引导学生进行活动的过程,是教师和学生互动发展的过程,为了有序、有效地进行教学,我设置了以下教学环节:(一)创设情境,引入新课我采用逐步展示跷跷板,生活中限制高度,限制宽度的交通标志的照片引入新课,引导学生体会生活中存在的大量不等现象。
1.1 不等关系●教学目标(一)教学知识点1.理解不等式的意义.2.能根据条件列出不等式.(二)能力训练要求通过列不等式,训练学生的分析判断能力和逻辑推理能力.(三)情感与价值观要求通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.●教学重点用不等关系解决实际问题.●教学难点正确理解题意列出不等式.●教学方法讨论探索法.●教具准备投影片两张第一张(记作§1.1 A)第二张(记作§1.1 B)●教学过程Ⅰ.创设问题情境,引入新课[师]我们学过等式,知道利用等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.Ⅱ.新课讲授[师]既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?[生]可以.比如我的身高比她的身高高5公分.用天平称重量时,两个托盘不平衡等.[师]很好.那么,如何用式子表示不等关系呢?请看例题. 投影片(§1.1 A )如图1-1,用两根长度均为l cm 的绳子,分别围成一个正方形和圆.图1-1(1)如果要使正方形的面积不大于25 cm 2, 那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积不小于100 cm 2,那么绳长l 应满足怎样的关系式? (3)当l=8时,正方形和圆的面积哪个大?l=12呢? (4)你能得到什么猜想?改变l 的取值,再试一试.另一个是了解“不大于”“大于”等词的含意.[生]正方形的面积等于边长的平方. 圆的面积是πR 2,其中R 是圆的半径.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于. [师]下面请大家互相讨论,按照题中的要求进行解答.[生](1)因为绳长l 为正方形的周长,所以正方形的边长为4l,得面积为(4l )2,要使正方形的面积不大于25 cm 2,就是(4l )2≤25.即162l ≤25.(2)因为圆的周长为l ,所以圆的半径为R=π2l. 要使圆的面积不小于100 cm 2,就是π·(π2l )2≥100,即π42l ≥100(3)当l=8时,正方形的面积为1682=4(cm 2).圆的面积为π482≈5.1(cm 2).∵4<5.1∴此时圆的面积大.当l=12时,正方形的面积为16122=9(cm 2).圆的面积为π4122≈11.5(cm 2)此时还是圆的面积大.(4)我们可以猜想,用长度均为l cm 的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即π42l >162l .因为分子都是l 2相等、分母4π<16,根据分数的大小比较,分子相同的分数,分母大的反而小,因此不论l 取何值,都有π42l >162l .做一做投影片(§1.1 B )[生]设这棵树至少生长x 年其树围才能超过2.4 m ,得 3x+5>240 议一议观察由上述问题得到的关系式,它们有什么共同特点?[生]由162l ≤25π42l >100 π42l >162l 3x+5>240得,这些关系式都是用不等号连接的式子.由此可知:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式(inequality ).例题: 用不等式表示 (1)a 是正数; (2)a 是负数; (3)a 与6的和小于5; (4)x 与2的差小于-1; (5)x 的4倍大于7; (6)y 的一半小于3.[生]解:(1)a >0;(2)a <0; (3)a+6<5;(4)x -2<-1; (5)4x >7;(6)21y <3. Ⅲ.随堂练习 2.解:(1)a ≥0; (2)c >a 且c >b ; (3)x+17<5x. 补充练习当x=2时,不等式x+3>4成立吗? 当x=1.5时,成立吗? 当x=-1呢?解:当x=2时,x+3=2+3=5>4成立, 当x=1.5时,x+3=1.5+3=4.5>4成立; 当x=-1时,x+3=-1+3=2>4,不成立. Ⅳ.课时小结能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解. 通过不等关系的式子归纳出不等式的概念. Ⅴ.课后作业 习题1.11.解:(1)3x+8>5x; (2)x 2≥0;(3)设海洋面积为S海洋,陆地面积为S陆地,则有S海洋>S陆地.(4)设老师的年龄为x,你的年龄为y,则有x>2y.(5)m铅球>m篮球.2.解:满足条件的数组有:1,3;1,5;1,7;3,5.3.解:所需甲种原料的质量为x千克,则所需乙种原料的质量为(10-x)千克,得600x+100(10-x)≥4200.4.解:8x+4(10-x)≤72.Ⅵ.活动与探究a,b两个实数在数轴上的对应点如图1-2所示:图1-2用“<”或“>”号填空:(1)a__________b;(2)|a|__________|b|;(3)a+b__________0;(4)a-b__________0;(5)a+b__________a-b;(6)ab__________a.解:由图可知:a>0,b<0,|a|<|b|.(1)a>b;(2)|a|<|b|;(3)a+b<0;(4)a-b>0;(5)a+b<a-b;(6)ab<a.●板书设计§1.1 不等关系一、1.投影片§1.1 A(讨论长度均为l cm的绳子,分别围成一个正方形和圆,比较它们的面积的大小).2.做一做(投影片§1.1 B)根据已知条件列不等式3.归纳不等式的定义4.例题二、课堂练习参考练习 用不等式表示: (1)x 的32与5的差小于1; (2)x 与6的和大于9; (3)8与y 的2倍的和是正数; (4)a 的3倍与7的差是负数; (5)x 的4倍大于x 的3倍与7的差; (6)x 的54与1的和小于-2; (7)x 与8的差的32不大于0. 参考答案: 解:(1)32x -5<1; (2)x+6>9; (3)8+2y >0; (4)3a -7<0; (5)4x >3x -7; (6)54x+1<-2; (7)32(x -8)≤0.§1.1 不等关系教学目的和要求: 教学重点和难点: 重点: 难点: 快速反应:1. 表示不等式关系的符号有哪些?2. 用适当的符号表示下列关系:(1)x 的5倍与3的差比x 的4倍大; (2)a 的41的相反数是非负数; (3)x 的3倍不小于y 的8倍。