时间序列分析 第一章 时间序列分析简介
- 格式:doc
- 大小:104.00 KB
- 文档页数:6
《应用时间序列分析》课程教学大纲一、课程基本信息课程代码:课程名称:应用时间序列分析英文名称:Applied Time Series Analysis课程类别:专业课学时:48学分:3适用对象: 统计学、应用统计学、数据科学与大数据技术专业本科生考核方式:考试先修课程:数学分析、高等代数、概率论、数理统计二、课程简介时间序列分析是统计学科的一个重要分支,它主要研究随着时间的变化,事物发生、发展的过程,寻找事物发展变化的规律,并预测未来的走势。
在日常生产生活中,时间序列比比皆是,目前时间序列分析方法广泛地应用于经济、金融、天文、气象、海洋、物理、化学、医学、质量控制等诸多领域,成为众多行业经常使用的统计方法。
作为数理统计学的一个分支,时间序列分析遵循数理统计学的基本原理,但由于时间的不可重复性,使得我们在任意一个时刻只能获得唯一的序列观察值,这种特殊性的数据结构导致时间序列分析又存在其非常特殊,自成的一套分析方法。
应用时间序列分析根据时序分析方法对各种社会、金融等现象进行认识分析,并使用时间序列分析的相关软件,具有较强的应用性和可操作性。
本课程主要介绍时间序列分析的基本理论和方法,包括AR 模型,MA 模型,ARMA 模型,单位根检验法,平稳序列的模型识别方法、模型检验、优化、预测,非平稳时序模型,无季节效应的非平稳序列分析,有季节效应的非平稳序列分析,包括因素分解理论、指数平滑预测模型等时间序列分析理论和方法。
其次,R语言不仅是一款统计软件,还是一个可以进行交互式数据分析和探索的强大平台,金融、经济、医疗、数据挖掘等诸多领域都基于R研发它们的分析方法。
在这个平台上,时间序列分析方法可以非常便捷地嵌入其他领域的研究中,成为各行业实务分析的基础方法。
最重要的一点是,由于R语言的开放性和资源共享性,它可以汇集全球R用户的智慧和创造力,以惊人的速度发展。
在R平台上,新方法的更新速度是以周为单位计算的,这是传统统计软件所无法比拟的。
学习使用Excel进行时间序列分析和预测建模时间序列分析和预测建模是一项重要的统计分析技术,在各个领域都得到了广泛应用。
本文将详细介绍如何使用Excel进行时间序列分析和预测建模。
第一章:时间序列分析基础时间序列是一系列按照时间顺序排列的数据点组成的序列。
时间序列分析的目标是找出数据中隐含的各种模式和趋势,并借此进行预测。
在Excel中,我们可以使用以下几种方法进行时间序列分析。
1.1 绘制时间序列图首先,我们需要将时间序列数据导入Excel,并将其按照时间顺序排列。
然后,选中数据并在插入菜单中选择“散点图”或“折线图”来绘制时间序列图。
通过观察时间序列图,我们可以初步了解数据的趋势和季节性变化。
1.2 计算平均值和标准差平均值和标准差是时间序列分析中常用的描述性统计量,可帮助我们了解数据的集中趋势和变异程度。
在Excel中,可以使用“AVERAGE”函数和“STDEV”函数来计算平均值和标准差。
第二章:时间序列分析方法在时间序列分析中,我们通常使用移动平均法和指数平滑法来找出数据中的趋势和季节性变化。
2.1 移动平均法移动平均法是一种简单的平滑方法,可以帮助我们过滤掉数据中的随机波动,突出数据的趋势。
在Excel中,可以使用“AVERAGE”函数和“OFFSET”函数来计算移动平均值,并将其绘制在时间序列图上。
2.2 指数平滑法指数平滑法通过对过去观察到的数据进行加权平均来预测未来的趋势。
在Excel中,可以使用“EXPONENTIAL”函数进行指数平滑,并将平滑后的趋势线与原始数据绘制在时间序列图上。
第三章:时间序列预测建模时间序列预测建模是基于历史数据来预测未来的趋势和模式。
在Excel中,我们可以使用线性回归模型和ARIMA模型进行时间序列预测建模。
3.1 线性回归模型线性回归模型通过拟合历史数据的线性趋势来进行未来的预测。
在Excel中,我们可以使用“TREND”函数来计算线性趋势,并将其绘制在时间序列图上。
input time monyy7. price;
format time monyy5. ;
cards;
jan2005 101
feb2005 82
mar2005 66
apr2005 35
may2005 31
jun2005 7
;
run;
proc print data=example1_1;
run;
实验结果:
实验分析:该程序的到了一个名为sasuser.example1_1的永久数据集。
所谓的永久数据库就是指在该库建立的数据集不会因为我们退出SAS系统而丢失,它会永久的保存在该数据库中,我们以后进入SAS系统还可以从该库中调用该数据集。
3.查看数据集
data example1_1;
input time monyy7. price;
format time monyy5. ;
cards;
jan2005 101
feb2005 82
mar2005 66
apr2005 35
may2005 31
jun2005 7
;
run;
proc print data=example1_1;
run;
实验结果:
2.序列变换
data example1_3;
input price;
logprice=log(price);
time=intnx('month','01jan2005'd,_n_-1);
format time monyy.;
cards;
3.41
3.45
3.42
3.53
3.45
;
proc print data=example1_3;
run;
实验结果:
实验分析:在时间序列分析中,我们得到的是观测值序列xt,但是需要分析的可能是这个观察值序列的某个函数变换,例如对数序列lnxt。
在建立数据集时,我们可以通过简单的赋值命令实现这个变换。
再该程序中,logprice=log(price);是一个简单的赋值语句,将price的对数函数值赋值给一个新的变量logprice,即建立了一个新的对数序列。
3.子集
data example1_4;
set example1_3;
keep time logprice;
where time>='01mar2005'd;
proc print data=example1_4;
run;
实验结果:。