计算机图形学实验报告-二维裁剪
- 格式:doc
- 大小:110.50 KB
- 文档页数:5
专业班级:学号:姓名:一、试验名称:二维裁剪二、试验目的:在二维观察中,需要在观察坐标系下对窗口进行裁剪,即只保留窗口内的那部分图形,去掉窗口外的图形。
二维裁剪是用计算机生成图形最基本的技能,通过本实验使学生掌握如何用计算机进行二维裁剪并熟悉开发环境。
三、实验原理:算法源代码:void CMyView::OnDraw(CDC* pDC){CMyDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data herePoint FrameLT,FrameRB;Point P[5];FrameLT.x=150;FrameLT.y=150;FrameRB.x=320;FrameRB.y=320;pDC->Rectangle((int)FrameLT.x,(int)FrameLT.y,(int)FrameRB.x,(int)FrameRB. y);for(int i = 0; i < 5; i++){P[i].x = (float)(260 + 150*cos(72*i*PI/180) +0.5);P[i].y = (float)(260 + 150*sin(72*i*PI/180) +0.5);}专业班级:学号:姓名:pDC->MoveTo((int)P[0].x,(int)P[0].y);pDC->LineTo((int)P[2].x,(int)P[2].y);pDC->LineTo((int)P[4].x,(int)P[4].y);pDC->LineTo((int)P[1].x,(int)P[1].y);pDC->LineTo((int)P[3].x,(int)P[3].y);pDC->LineTo((int)P[0].x,(int)P[0].y);}void CMyView::Code(Point FrameLT,Point FrameRB,Point P,unsigned char *Flag){unsigned char flag=0;if(P.x<FrameLT.x) flag+=1;if(P.x>FrameRB.x) flag+=2;if(P.y>FrameRB.y) flag+=4;if(P.y<FrameLT.y) flag+=8;(*Flag)=flag;}void CMyView::Clipping(Point FrameLT,Point FrameRB,Point LineSP,Point LineEP){CClientDC dc(this);unsigned char flagSP,flagEP,flagAND,flagOR;double k=(LineEP.y-LineSP.y)/(LineEP.x-LineSP.x);Code(FrameLT,FrameRB,LineSP,&flagSP);Code(FrameLT,FrameRB,LineEP,&flagEP);专业班级:学号:姓名:flagAND=flagSP & flagEP;if(flagAND!=0)return;while(flagSP!=0||flagEP!=0){flagOR=flagSP|flagEP;if((flagOR&0x01)==1){if((flagSP&0x01)==1){LineSP.y=(float)(LineSP.y+k*(FrameLT.x-LineSP.x)); LineSP.x=FrameLT.x;Code(FrameLT,FrameRB,LineSP,&flagSP);}else{LineEP.y=(float)(LineEP.y+k*(FrameLT.x-LineEP.x)); LineEP.x=FrameLT.x;Code(FrameLT,FrameRB,LineEP,&flagEP);}}if((flagOR&0x02)==2){if((flagSP&0x02)==2){LineSP.y=(float)(LineSP.y+k*(FrameRB.x-LineSP.x)); LineSP.x=FrameRB.x;专业班级:学号:姓名:Code(FrameLT,FrameRB,LineSP,&flagSP);}else{LineEP.y=(float)(LineEP.y+k*(FrameRB.x-LineEP.x)); LineEP.x=FrameRB.x;Code(FrameLT,FrameRB,LineEP,&flagEP);}}if((flagOR&0x04)==4){if((flagSP&0x04)==4){LineSP.x=(float)(LineSP.x+(FrameRB.y-LineSP.y)/k); LineSP.y=FrameRB.y;Code(FrameLT,FrameRB,LineSP,&flagSP);}else{LineEP.x=(float)(LineEP.x+(FrameRB.y-LineEP.y)/k); LineEP.y=FrameRB.y;Code(FrameLT,FrameRB,LineEP,&flagEP);}}if((flagOR&0x08)==8){专业班级:学号:姓名:if((flagSP&0x08)==8){LineSP.x=(float)(LineSP.x+(FrameLT.y-LineSP.y)/k); LineSP.y=FrameLT.y;Code(FrameLT,FrameRB,LineSP,&flagSP);}else{LineEP.x=(float)(LineEP.x+(FrameLT.y-LineEP.y)/k); LineEP.y=FrameLT.y;Code(FrameLT,FrameRB,LineEP,&flagEP);}flagAND=flagSP&flagEP;if(flagAND!=0)return;}dc.MoveTo((int)LineSP.x,(int)LineSP.y);dc.LineTo((int)LineEP.x,(int)LineEP.y);}}void CMyView::OnCut() //裁剪{// TODO: Add your command handler code hereCClientDC dc(this);CPen pen(PS_SOLID,1,RGB(255,255,255));CPen *pOldpen = dc.SelectObject(&pen);专业班级:学号:姓名:CBrush*pBrush=CBrush::FromHandle((HBRUSH)GetStockObject(NULL_BRUSH));dc.SelectObject(pBrush);Point FrameLT,FrameRB;Point P[5];FrameLT.x=150;FrameLT.y=150;FrameRB.x=320;FrameRB.y=320;dc.Rectangle((int)FrameLT.x,(int)FrameLT.y,(int)FrameRB.x,(int)FrameR B.y);for(int i = 0; i < 5; i++){P[i].x = (float)(260 + 150*cos(72*i*PI/180) +0.5);P[i].y = (float)(260 + 150*sin(72*i*PI/180) +0.5);}dc.MoveTo((int)P[0].x,(int)P[0].y);dc.LineTo((int)P[2].x,(int)P[2].y);dc.LineTo((int)P[4].x,(int)P[4].y);dc.LineTo((int)P[1].x,(int)P[1].y);dc.LineTo((int)P[3].x,(int)P[3].y);dc.LineTo((int)P[0].x,(int)P[0].y);dc.SelectObject(pOldpen);专业班级:学号:姓名:dc.Rectangle((int)FrameLT.x,(int)FrameLT.y,(int)FrameRB.x,(int)FrameR B.y);Clipping(FrameLT,FrameRB,P[0],P[2]);Clipping(FrameLT,FrameRB,P[2],P[4]);Clipping(FrameLT,FrameRB,P[4],P[1]);Clipping(FrameLT,FrameRB,P[1],P[3]);Clipping(FrameLT,FrameRB,P[3],P[0]);}四、实验总结:裁剪处理的主要步骤是:①图元关于窗口内外关系的判别;②图元与窗口的求交。
计算机图形学中的二维裁剪算法研究计算机图形学研究的是如何在计算机上制图,根据研究对象的不同又分为二维图形学和三维图形学。
二维图形学研究的范畴是点,线,面。
本文就是介绍计算机图形学中的众多基本算法之一的二维剪裁算法。
在二维剪裁算法中,椭圆形窗口线剪裁算法又是应用最为广泛的算法之一,所以将是本文重点论述的对象。
标签:计算机图形学;二维剪裁算法;椭圆形窗口线剪裁算法计算机图形学中的基本算法对于计算机图形学应用于实践有着重要的作用,而且算法需要时时更新才能够发挥出计算机图形学在实践中的作用。
本文对计算机二维剪裁算法进行介绍,并对其中的椭圆窗口线剪裁算法进行着重的研究分析,探讨如何使该算法更加的稳定高效,方便易行。
算法可以指导人们的工作与生活,所以笔者在本文通过坐标分析设计出一个算法以供读者参考。
1 二维剪裁算法的基本介绍剪裁算法是计算机图形学中的基础算法之一。
剪裁在日常生活和工作中的应用十分广泛,最典型的一个应用就是对整体场景中的局部目的物进行剪裁。
剪裁的过程其实就是将场景中的目的物标记圈出来,一般为矩形窗口框圈出。
矩形窗口框为闪动的虚线框,可以根据剪裁的目的物大小随意变换矩形框的大小。
此外具体说来,剪裁算法还有其他的形式。
如:点剪裁,线段剪裁,多边形剪裁,曲线及文字剪裁等。
现在笔者再详细介绍二维剪裁算法。
二维剪裁算法分为两种,一种是对线段的剪裁,一种是对多边形的剪裁。
因为线段和多边形往往是二维平面中的图形,故而使用二维剪裁算法对其进行剪裁。
目前对该领域的研究已经取得了很丰硕的成果,已经有很多成熟也高效实用的二维剪裁算法。
详细地来说,这些经典的算法有Cyrus—berk二维剪裁算法,Cohen—Sutherland二维多边形剪裁算法等等。
2 椭圆形窗口线剪裁算法的简介在计算机图形学中,椭圆形窗口线剪裁算法是十分重要的一种基础算法。
该算法之所以十分重要,笔者总结为两点原因:首先椭圆形是几何图形中最基础的图形之一,其次在我们的日常生活和工作当中有很多地方的剪裁工作是更适合椭圆形的(我们生活与工作之中,很少有标准的圆形目的物去剪裁,更多情况下是不规则的图像剪裁,而椭圆形可以更好的,更多的剪裁出合适的目的物)。
计算机图形学实验报告2015-2016学年第一学期班级计自1302 学号姓名一.实验内容与实验步骤1.实验内容实现一个二维或三维裁剪算法,或实现一个Bezier曲线或Bezier曲面算法,并能够实现曲线曲面的形状修改。
2.主要思路每一裁剪窗口边界将二维空间划分成内部和外部的两个半空间。
一旦给所有的的线段端点建立了区域码,就可以快速判断哪条线段完全在裁剪窗口之内,哪条线段完全在窗口之外。
3.部分源代#include"stdafx.h"#include<GL/glut.h>#include<math.h>#include<GL/gl.h>#include<stdio.h>#include<stdlib.h>int flag;void setPixel(GLintx,GLint y){glBegin(GL_POINTS);glVertex2i(x, y);glEnd();}/* Bresenham line-drawing procedure for |m| < 1.0. */void lineBres (float x0, float y0, float xEnd, float yEnd){int dx =fabs(xEnd - x0), dy =fabs(yEnd - y0);int p = 2 * dy - dx;int twoDy = 2 * dy, twoDyMinusDx = 2 * (dy - dx);int x, y;/* Determine which endpoint to use as start position. */if (x0 >xEnd) {x = xEnd;y = yEnd;xEnd = x0;}else {x = x0;y = y0;}setPixel (x, y);while (x <xEnd) {x++;if (p < 0)p += twoDy;else {y++;p += twoDyMinusDx;}setPixel (x, y);}}class wcPt2D {public:GLfloat x, y;};inline GLint round (const GLfloat a) { return GLint (a + 0.5); }/* Define a four-bit code for each of the outside regions of a * rectangular clipping window.*/const GLintwinLeftBitCode = 0x1;const GLintwinRightBitCode = 0x2;const GLintwinBottomBitCode = 0x4;const GLintwinTopBitCode = 0x8;inline GLint inside (GLint code) { return GLint (!code); } inline GLint reject (GLint code1, GLint code2){ return GLint (code1 & code2); }inline GLint accept (GLint code1, GLint code2){ return GLint (!(code1 | code2)); }GLubyte encode (wcPt2D pt, wcPt2D winMin, wcPt2D winMax){GLubyte code = 0x00;if (pt.x<winMin.x)code = code | winLeftBitCode;if (pt.x>winMax.x)code = code | winRightBitCode;if (pt.y<winMin.y)code = code | winBottomBitCode;if (pt.y>winMax.y)code = code | winTopBitCode;return (code);}void swapPts (wcPt2D * p1, wcPt2D * p2){wcPt2Dtmp;tmp = *p1; *p1 = *p2; *p2 = tmp;}void swapCodes (GLubyte * c1, GLubyte * c2){GLubytetmp;tmp = *c1; *c1 = *c2; *c2 = tmp;}void lineClipCohSuth (wcPt2D winMin, wcPt2D winMax, wcPt2D p1, wcPt2D p2) {GLubyte code1, code2;GLint done = false, plotLine = false;GLfloat m;while (!done) {code1 = encode (p1, winMin, winMax);code2 = encode (p2, winMin, winMax);if (accept (code1, code2)) {done = true;plotLine = true;}elseif (reject (code1, code2))done = true;else {/* Label the endpoint outside the display window as p1. */if (inside (code1)) {swapPts (&p1, &p2);swapCodes (&code1, &code2);}/* Use slope m to find line-clipEdge intersection. */if (p2.x != p1.x)m = (p2.y - p1.y) / (p2.x - p1.x);if (code1 &winLeftBitCode) {p1.y += (winMin.x - p1.x) * m;p1.x = winMin.x;}elseif (code1 &winRightBitCode) {p1.y += (winMax.x - p1.x) * m;p1.x = winMax.x;}elseif (code1 &winBottomBitCode) {/* Need to update p1.x for nonvertical lines only. */if (p2.x != p1.x)p1.x += (winMin.y - p1.y) / m;p1.y = winMin.y;}elseif (code1 &winTopBitCode) {if (p2.x != p1.x)p1.x += (winMax.y - p1.y) / m;p1.y = winMax.y;}}}if (plotLine)lineBres (round (p1.x), round (p1.y), round (p2.x), round (p2.y)); void myDisplay(){wcPt2DwinMin , winMax , p1 , p2;winMin.x=100; winMin.y=200;winMax.x=400; winMax.y=400;p1.x=50; p1.y=50;p2.x=450; p2.y=450;glClear(GL_COLOR_BUFFER_BIT);glColor3f (1.0f, 0.0f, 0.0f);glRectf(winMin.x ,winMin.y ,winMax.x,winMax.y);glColor3f (1.0f, 1.0f, 1.0f);if (flag){lineClipCohSuth (winMin, winMax,p1,p2);}else{glBegin(GL_LINES);glVertex2i(p1.x,p1.y);glVertex2i(p2.x,p2.y);glEnd();}glFlush();}void Init(){glClearColor(0.0, 0.0, 0.0, 0.0);glMatrixMode (GL_PROJECTION);gluOrtho2D (0.0, 640.0, 0.0, 480.0);}void Reshape(int w, int h){glViewport(0, 0, (GLsizei) w, (GLsizei) h);glMatrixMode(GL_PROJECTION);glLoadIdentity();gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);}void keyboard(unsignedchar key, int x, int y) {if (key=='c' || key=='C') flag=true;if (key=='r' || key=='R') flag=false;glutPostRedisplay();}int main(int argc, char *argv[]){glutInit(&argc, argv);glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);glutInitWindowPosition(100, 100);glutInitWindowSize(640, 480);glutCreateWindow("Cohen-Sutherland直线裁减算法,C 键裁减,R键复原"); Init();glutDisplayFunc(myDisplay);glutReshapeFunc(Reshape);glutKeyboardFunc(keyboard);glutMainLoop();return 0;}二.实验结果三.实验总结这次实验我的收获主要有两个方面:一是编程水平的提高,还有一个是对计算机图形学理论知识的巩固。
计算机科学与技术学院
2013-2014学年第一学期《计算机图形学》实验报告
班级:
学号:
姓名:
教师:
成绩:
实验项目(3、二维裁剪)
一、 实验目的与要求
(1) 掌握线段裁剪算法原理,并实现其算法。
(2) 理解多边形裁剪、字符裁剪算法思想,能编程实现其算法。
二、 实验内容
设计菜单程序,利用消息处理函数,完成以下要求:
(1) 实现直线段的标号法(Cohen-Sutherland )、矩形窗口裁剪算法。
(2) 参考教材中的算法,用矩形窗口实现多边形的Sutherland-Hodgman 裁剪算法。
三、 重要算法分析
以下分析Cohen-Sutherland 和Sutherland-Hodgma n 两个算法,其中Cohen-Sutherland 算法的基本思想通过编码的方法快速实现对直线段的裁剪;Sutherland-Hodgman 算法基本思想是用窗口的四条边所在的直线依次来裁剪多边形。
(一) Cohen-Sutherland 算法
该算法的基本思想是:对于每条待裁剪的线段P 1,P 2分三种情况处理:
(1) 若P 1P 2完全在窗口内,则显示该线段。
(2) 若P 1P 2完全在窗口外,则丢弃该线段。
(3) 若线段既不满足“取”的条件,也不满足“舍”的条件,则求线段与窗口边界的交点,在交点处把线段分为两段。
1. 编码原则
具体编码过程为将延长线窗口的四条边线(y T 、y B 、x R 、x L ),将二维平面分成九个区域,全为0的区域是裁剪窗口,其中各位编码的定义如下:
{T y y other T C >=
10 {B y y other B C <=10 {R x x other R C >=
10 {L x x other L C <=10 按照如上定义,相应区域编码如图1所示。
图1 区域编码
2.裁剪算法:
依据上面的编码原则,可以总结出对一条线段的可见性进行测试:
1)若线段两个端点的四位二进制编码全为0000,即两端点编码逻辑或运算为0,那么该线段完全位于窗口内,可直接保留。
2)对端点的四位二进制编码进行逻辑与运算,若结果不为零,那么整条线段必位于窗口外,可直接舍弃。
3)否则,这条线段既不能保留也不能舍弃,它可能与窗口相交。
此时,需要对窗口进行再分割,并对分割后的线段按照一定顺序进行检查,决定保留、舍弃或
再分割。
重复这过程,直到全部线段均被舍弃或保留为止。
(二) Sutherland-Hodgman算法
算法的基本思想是利用窗口的四条边所在的直线依次来裁剪多边形。
多边形的每条边与裁剪线的位置关系有4种情况,如图2所示。
图2 多边形边界与裁剪窗口的关系
其中a)为从外到内的输出P和I,b)为从内到内输出P,c)为从内到外输出I,d)为从外到外不输出。
假设当前处理的多边形为SP。
1)在图2a的情况中,端点S在外侧,P在内侧,则按顺序将交点I和P都输出到结果多边形的顶点表中。
2)在图2b的情况中,端点S和都在内侧,则输出P到结果多边形的顶点表中。
3)在图2c的情况中,端点S在内侧,P在外侧,则输出交点I到结果多边形的顶点表中。
4)在图2d的情况中,端点S和P在外侧,没有输出。
四、程序运行截图
1.用Cohen-Sutherland算法实现线段的裁剪,如图3所示,其中a)图中的线段为裁
剪前的,b)图将超出裁剪多边形的线段部分裁剪后的结果。
图3 Cohen-Sutherland算法裁剪前和后
a)裁剪前 b)裁剪后
2.Sutherland-Hodgman算法实现多边形裁剪,如图4所示。
图4 Sutherland-Hodgman算法裁剪多边形前和后
a)裁剪多边形前 b)裁剪多边形后
五、总结与调试经验
(1)通过这次实验,加深了对图形学的理解,尤其对线段裁剪和多边形裁剪有了更加深入的理解。
(2)我学会了多边形裁剪算法,从刚开始的不知道到现在的理解,这是一个很大的进步,当然我也遇到了些困难,比如用某一条多边形的窗口边界裁剪多边形,
它要分为四种情况来分别考虑,也看出了我的思维不够周密,需要多多锻炼。