第二讲 激光原理 激光器基本结构
- 格式:ppt
- 大小:2.44 MB
- 文档页数:42
光纤激光器的基本结构和工作原理一、光纤激光器的基本结构光纤激光器是一种利用光纤作为光学谐振腔的激光器。
它由光纤、泵浦光源、谐振腔和输出耦合器件组成。
1. 光纤:光纤作为光传输的介质,具有较高的光学质量和较低的损耗。
它通常由二氧化硅或氟化物等材料制成。
2. 泵浦光源:泵浦光源是提供激发能量的装置,常见的泵浦光源有半导体激光器、氘灯等。
泵浦光源通过能级跃迁将电能转化为光能,将光纤中的掺杂物激发至激发态。
3. 谐振腔:谐振腔是产生激光放大的空间,由两个反射镜构成,其中一个是部分透射的输出耦合镜。
谐振腔中的光纤被反射镜反射多次,形成光学谐振,增强光的幅度。
4. 输出耦合器件:输出耦合器件是将放大的激光从谐振腔中输出的装置,常见的输出耦合器件有反射镜、光栅等。
它通过调节输出耦合器件的透射率,实现激光的输出。
二、光纤激光器的工作原理光纤激光器的工作原理是基于激光的受激辐射过程。
其工作过程主要可以分为三个步骤:泵浦、光放大和激射。
1. 泵浦:泵浦光源产生的高能量光通过耦合装置输入光纤,激发光纤中的掺杂物(如铥、镱、铍等)的原子或离子跃迁到激发态,形成一个能级反转。
2. 光放大:光纤中的激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。
这些光子经过多次反射,在谐振腔中不断放大,形成光的增强。
3. 激射:当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射。
激射的激光经过输出耦合器件,部分透射出光纤,形成激光输出。
光纤激光器的工作原理可以通过能级图来解释。
在泵浦过程中,泵浦光源提供的能量使得光纤中的掺杂物原子或离子跃迁到激发态。
在光放大过程中,激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。
这些光子通过多次反射,在谐振腔中不断受到增益介质的放大。
当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射,形成激光输出。
光纤激光器具有很多优点,如小型化、高效率、高质量光束、稳定性好等。
激光器基本结构一、激光器的基本原理激光器是一种能够产生高强度、高单色性的光束的装置。
它的核心部分是一个能够产生受激辐射的介质,通常采用激光介质,如Nd:YAG晶体或CO2气体等。
当这个介质被能量激发时,它会放出一束相干的光束。
二、激光器的基本结构1. 激发源:用于提供能量以激发介质产生受激辐射。
通常采用电子束、闪光灯和半导体等。
2. 激光介质:用于产生受激辐射的物质,通常采用固态、液态或气态介质。
3. 光学谐振腔:由两个反射镜组成,其中一个为半透明镜。
它们将产生的光束反复反射在内部形成一条相干且强度增强的光线。
4. 准直系统:用于控制输出光束方向和形状,通常由透镜和棱镜组成。
5. 输出窗口:将准直后的光线引出谐振腔,输出到外界。
三、激光器的工作原理1. 激发介质:激光器的激发源提供能量,使介质中的原子或分子进入高能态。
2. 受激辐射:当介质中的原子或分子处于高能态时,它们会受到外界光线的刺激,并发生受激辐射,产生相干光束。
3. 谐振腔:产生的相干光束在谐振腔内反复反射,形成一条强度增强、相干性好的光线。
4. 输出:准直系统控制输出光线方向和形状,通过输出窗口将光线引出谐振腔。
四、常见的激光器类型1. 固态激光器:采用固体介质,如Nd:YAG晶体等。
2. 气体激光器:采用气体介质,如CO2气体等。
3. 半导体激光器:采用半导体材料作为介质。
4. 其他类型:还包括自由电子激光器、化学气相激光器等。
五、应用领域1. 制造业:激光器在制造业中广泛应用,如激光切割、激光打标等。
2. 医疗领域:激光器在医疗领域中常用于手术、皮肤美容等。
3. 通信领域:激光器在通信领域中被用于传输信息。
4. 科学研究:激光器在科学研究中也有广泛的应用,如原子物理实验等。
六、发展趋势1. 激光器技术将继续发展,产生更高功率和更高质量的激光束。
2. 激光器应用领域将不断扩大,特别是在智能制造和高精度加工等方面。
3. 激光器将成为未来通信、医疗和科学实验的重要工具。
说明激光器的基本组成和产生激光的基本原理激光器是一种能够产生单色、高亮度、高定向性的光束的装置。
它的基本组成主要包括激光介质、泵浦源、光学反馈装置和输出耦合装置等。
激光介质是激光器中最关键的部分,它是产生激光的核心。
激光介质通常是一种高度浓缩的气体、液体或固体材料,当它受到泵浦源的能量输入时,激发介质中的原子或分子从基态跃迁到激发态,产生光辐射并逐渐放大形成激光。
泵浦源通常使用强光脉冲或高电压放电等方式,将能量输入到激光介质中。
光学反馈装置主要是由反射镜和激光介质构成的,利用这些装置将激发的光反复地在激光介质中反射,逐渐放大光的强度,最终形成一束高亮度、高定向性的激光束。
输出耦合装置则是将激光束从激光器中输出的装置,它通常是由一个反射镜和透镜构成的。
产生激光的基本原理是受激辐射。
当激光介质中的原子或分子受到外界的能量输入时,它们从基态跃迁到激发态,处于激发态的原子或分子会受到周围激光辐射的刺激,从而再次跃迁到基态并放出能量。
这些放出的能量与初始能量的相位一致,形成了一束相干光,并通过光学反馈装置逐渐放大形成激光。
由于激发态的原子或分子只在一个非常短的时间内存在,因此激光器所产生的激光通常是脉冲性的。
- 1 -。
激光器的基本结构_激光器的基本构造特点内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.激光器一般包括以下部分。
1、激光工作介质激光的产生必须选择合适的工作介质,可以是常体、液体、固体或半导体。
在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。
显然亚稳态能级的存在,对实现粒子数反转世非常有利的。
现有工作介质近千种,可产生的激光波长包括从真空紫外道远红外,非常广泛。
作为激光器的核心,是由激活粒子(都为金属)和基质两部分组成,激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。
根据激活粒子的能级结构形式,可分为三能级系统(例如红宝石激光器)与四能级系统(例如Er:YAG激光器)。
工作物质的形状目前常用的主要有四种:圆柱形(目前使用最多)、平板形、圆盘形及管状。
2、激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。
一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。
各种激励方式被形象化地称为泵浦或抽运。
为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。
泵浦源能够提供能量使工作物质中上下能级间的粒子数翻转,目前主要采用光泵浦。
泵浦光源需要满足两个基本条件:有很高的发光效率和辐射光的光谱特性应与工作物质的吸收光谱相匹配。
常用的泵浦源主要有惰性气体放电灯、太阳能及二极管激光器。
其中惰性气体放电灯是当前最常用的,太阳能泵浦常用在小功率器件,尤其在航天工作中的小激光器可用太阳能最为永久能源,二极管(LD)泵浦是目前固体激光器的发展方向,它集合众多优点于一身,已成为当前发展最快的激光器之一。