大物第二章课后习题答案
- 格式:doc
- 大小:155.50 KB
- 文档页数:6
第2章 动量守恒定律与能量守恒定律一 基本要求1 理解冲量、动量等概念。
掌握动量定理及动量守恒定律,能运用它们解简单系统在平面内运动的力学问题。
2 理解功的概念,能计算变力做功的问题 。
3 理解保守力做功的特点和势能的概念,会计算重力、弹性力和万有引力做的功及对应的势能 。
4 理解动能定理、功能原理和机械能守恒定律,掌握运用守恒定律解问题 的思想和方法 。
二 基本概念 1 质点的动量、冲量质点的动量定义:m =p υ,p 为矢量,也是状态量。
质点的冲量定义 :21t t dt =⎰I F ,它也是矢量,是过程量。
2 冲力 在解决冲击、碰撞问题时,将两个物体在碰撞瞬间的相互作用力称为冲力,冲力作用时间短,量值变化也很大,所以很难确定每一时刻的冲力,常用平均冲力的冲量来代替变力的冲量 。
3内力和外力 对于质点系,其内部各个质点之间的相互作用力称为内力,质点系以外的其他物体对其中的任一质点的作用力称为外力。
4功 功率(1)功 力对质点所作的功为力在质点位移方向的分量与位移大小的乘积。
cos BBAAW dW d F dr θ==⋅=⎰⎰⎰F r(2) 功率 功随时间的变化率,反映的是做功的快慢。
dW P dt =cos d d P F dt dtυθ⋅==⋅=⋅=F r r F F υ5动能 质量为m 的物体,当它具有速度υ时,定义212m υ为质点在速度为υ时的动能,用k E 表示。
6保守力和非保守力 如果力F 对物体做的功只与物体初、末位置有关而与物体所经过的路径无关,我们把具有这种特点的力称为保守力,否则称为非保力。
保守力做功0ld ⋅=⎰F l ,非保守力作功 0ld ⋅≠⎰F l 。
重力、弹性力、万有引力均为保守力,而摩擦力、汽车的牵引力等都是非保守力。
7势能 系统某点的势能等于在保守力作用下将物体从该点沿任意路径移动到零势能点保守力做的功,用p E 表示。
8机械能,系统的动能和势能统称为机械能,用E 表示。
第2章 质点和质点系动力学2.1 一斜面的倾角为α, 质量为m 的物体正好沿斜面匀速下滑. 当斜面的倾角增大为β时, 求物体从高为h 处由静止下滑到底部所需的时间.解:设斜面摩擦系数为μ。
当倾角为α时,1sin 0f mg α-=1cos 0N mg α-= 11f N μ= 求得:tg μα=当斜面倾角为β角时,设物块的下滑加速度为a2cos 0N mg β-= 2sin mg f ma β-= 222f N N tg μα==求得:sin cos a g g tg ββα=- 物体从斜面下滑所需要的时间为:21sin 2h at β=t ==2.2 用力f 推地面上的一个质量为m 的木箱,力的方向沿前下方, 且与水平面成α角. 木箱与地面之间的静摩擦系数为0μ, 动摩擦系数为k μ. 求:⑴要推动木箱,f 最小为多少?使木箱作匀速运动, f 为多少?⑵证明当α大于某值时, 无论f 为何值都不能推动木箱, 并求α值.解:⑴当f 的水平分力克服最大静摩擦力时,木箱可以运动,即 ()0cos sin f mg f αμα≥+ 00cos sin mgf μαμα≥-0min 0cos sin mgf μαμα=-使木箱做匀速运动,则()cos sin k f mg f αμα=+ cos sin k k mgf μαμα=-⑵由能推动木箱的条件: ()0cos sin f mg f αμα≥+ 00cos sin f f mg αμαμ-≥若0cos sin 0f f αμα-<时,上式不可能成立,即不可能推动木箱的条件为: 01tg αμ>, 01arctgαμ>2.3 质量为5000kg 的直升飞机吊起1500kg 的物体, 以0.6m/s 2的加速度上升, 求:(1)空气作用在螺旋桨上的升力为多少. (2)吊绳中的张力为多少.解:(1)对飞机物体整体进行受力分析,得()()f M m g M m a -+=+()()4650010.2 6.8910f M m g a N =++=⨯=⨯ (2)对物体m 进行受力分析,得T mg ma -=()4150010.6 1.5910T m g a N =+=⨯=⨯2.4质量为m 汽车以速率0v 高速行驶, 受到2kv f -=的阻力作用, k 为常数.当汽车关闭发动机后, 求:(1)速率v 随时间的变化关系. (2)路程x 随时间的变化关系. (3)证明速率v 与路程x 之间的函数关系为x mke v v -=0.(4)若020/v m s =, 经过15s 后, 速率降为10/t v m s =, 则k 为多少?解:由题意, 2dvmkv dt =- 两边积分 020v tv dv k dt v m =-⎰⎰011kt v v m ⎛⎫-=- ⎪⎝⎭即 00001v mv v k m kv t v t m ==+⎛⎫+ ⎪⎝⎭(2)由上式两边积分 0000xtmv dx dt m kv t =+⎰⎰即 0ln m kv t m x k m +⎛⎫=⎪⎝⎭(3)由(1)中得 00mv kv t m v =-,代入(2)中的结果,得 00ln ln mv m m v m m v x k m k v ⎛⎫+- ⎪⎛⎫== ⎪ ⎪⎝⎭⎪⎝⎭即 0k x mv v e-=(4)020/v m s =,15t s =,10/t v m s =代入00mv v m kv t=+,求得300m k =2.5质量为m 的质点以初速度0v 竖直上抛, 设质点在运动中受到的空气阻力与质点的速率成正比, 比例系数为0>k .试求:(1)质点运动的速度随时间的变化规律. (2)质点上升的最大高度.解:(1) dvm mg kv dt=--mdvdt mg kv=-+1()kd kv mg dt mg kv m+=-+两边积分 001()vtv k d kv mg dt mg kv m +=-+⎰⎰0lnkv mg kt kv mg m+=-+即 k mg e k mg v v t m k-⎪⎭⎫ ⎝⎛+=-0 (2)由(1)中方程得 dv dv dy dv mg kv mm mv dt dy dt dy--=== ()mg kv mg mvdv m dy dv mg kv k mg kv+--==-++两边积分 00(1)yv v m mgdy dv k mg kv=--+⎰⎰ ()2020ln m m g mg kvy v v k k mg kv +=-++当0v =时,有 20max02ln mg kv m m g y v k k mg ⎛⎫+=- ⎪⎝⎭2.6自动枪以每分钟发射120发子弹的速率连续发射. 每发子弹的质量为7.9g , 出口速率为735/m s . 求射击时枪托对肩部的平均压力.解:设肩部所受的平均作用力为F ,由动量定理得 Ft mv =∑即 31207.91073511.660mv F N t-⨯⨯⨯==≈∑2.7 质点在x 轴上受x 方向的变力F 的作用.F 随时间的变化关系为:在刚开始的0.1s 内均匀由0增至20N ,又在随后的0.2s 内保持不变,再经过0.1s 从20N 均匀地减少到0. 求:(1)力随时间变化的t F -图. (2)这段时间内力的冲量和力的平均值. (3)如果质点的质量为3kg , 初始速度为1/m s , 运动方向与力的方向相同. 当力变为零时, 质点速度为多少?解:(1)由题意得(2)由上图得11200.1200.2200.1622I N s =⨯⨯+⨯+⨯⨯=⋅0.5200.1200.20.5200.1150.4I F N t ⨯⨯+⨯+⨯⨯=== (3)由动量定理得 0t I mv mv =-0.10.30.4即 06313/3t I mv v m s m ++⨯===2.8子弹脱离枪口的速度为300/m s , 在枪管内子弹受力为5400410/3F t =-⨯(SI ), 设子弹到枪口时受力变为零. 求:(1)子弹在枪管中的运行的时间. (2)该力冲量的大小. (3)子弹的质量.解:(1)由541040003tF ⨯=-=得3310t s -=⨯ (2)35310004104000.63tt I Fdt dt N s -⨯⎛⎫⨯==-=⋅ ⎪⎝⎭⎰⎰(3)由0I Ft mv ==-得 30.6210300I m kg v -===⨯2.9 自由电子在沿x 轴的振荡电场()0cos E t ωϕ=+E i中运动, 其中0E , ω,ϕ为常数. 设电子电量为e -, 质量为m , 初始条件为:0=t 时, 00v =v i, 00x =r i . 略去重力和阻力的作用, 求电子的运动方程.解:由()0cos F eE t ωϕ=-+得 0tvv Fdt mdv =⎰⎰解得()000sin sin eE eEv v t m m ϕωϕωω=+-+ 两边同乘dt 积分,()000sin sin eE eE dx v t dt m m ϕωϕωω⎛⎫=+-+ ⎪⎝⎭两边积分,()ϕωωϕωϕω++⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=t m eE t m eE v m eE x x cos sin cos 20002002.10 质量为m 的物体与一劲度系数为k 的弹簧连接, 物体可以在水平桌面上运动, 摩擦系数为μ. 当用一个不变的水平力拉物体, 物体从平衡位置开始运动. 求物体到达最远时, 系统的势能和物体在运动中的最大动能.解:分析物体水平受力,物体受外力、弹性力以及摩擦力,如图所示 物体到达最远时,速度为0。
第二章 牛顿运动定律一、填空题1、考察直线运动,设加速度为()a t ,初速度为00v =,则由dv a dv adt dt =⇒= 两边定积分,即 00v t v dv adt =⎰⎰ 得质点在任意时刻t 的速度为 110()()t v t a t dt =⎰ (2-1)再由ds v ds vdt dt =⇒= 两边定积分,即 00s t s ds vdt =⎰⎰ 得质点在任意时刻t 的路程为 0220()t s s s v t dt ∆=-=⎰ 把(2-1)式代入上式,得211200()tt s a t dt dt ∆=⎰⎰依题设可知两物体必做直线运动,设某时刻两物体间作用力为F ,则两物体的加速度分别为11F a m = 和 22F a m = 所以两物体在相同时间内发生的路程分别为:2221111121211200000011()1()()tt tt t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰ 2221221121211200000022()1()()t t t t t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰所以 11222111s m m s m m ∆==∆ 此即为所求。
2、箱子在最大静摩擦力的作用下,相对地面具有的最大加速度为2max 0max 00.49.8 3.92()F mg a g m s m mμμ-====⨯=⋅ (1)若设箱子相对卡车静止,即物体相对地面的加速度2max 2a m s a -=⋅<表明箱子与卡车底板间是静摩擦,摩擦力的大小为40280()F ma N ==⨯=(2)依然设箱子相对卡车静止,即物体相对地面的加速度2max 4.5a m s a -=⋅>表明箱子与卡车底板间是滑动摩擦,摩擦力的大小为0.25409.898()F mg N μ==⨯⨯=3、如图2-1(a)所示建立直角坐标系,再分析滑块的受力情况,如图2-1(b)所示,滑块受到三个力的作用,分别是地球施加的重力mg ,斜面对它的支持力1N 和滑动摩擦力1f ,并设其加速度为a 。
⼤学物理教程第2章习题答案思考题2.1 从运动学的⾓度看,什么是简谐振动?从动⼒学的⾓度看,什么是简谐振动?答:从运动学的⾓度看,弹簧振⼦相对平衡位置的位移随时间按余弦函数的规律变化,所作的运动就是简谐振动。
从动⼒学的⾓度看,如果物体受到的⼒的⼤⼩总是与物体对其平衡位置的位移成正⽐,⽽⽅向相反,那么该物体的运动就是简谐振动。
2.2 弹簧振⼦的振幅增⼤到2倍时,其振动周期、振动能量、最⼤速度和最⼤加速度等物理量将如何变化?答:弹簧振⼦的运动⽅程为0cos()x A t ω?=+,速度为0sin()v A t ωω?=-+,加速度的为)cos(02?ωω+-=t A a ,振动周期2T =221kA E =。
所以,弹簧振⼦的振幅A 增⼤到2倍时,其振动周期不变,振动能量为原来的4倍,最⼤速度为原来的2倍,最⼤加速度为原来的2倍。
2.3 下列运动是否为简谐振动?(1)⼩球在地⾯上作完全弹性的上下跳动;(2)⼩球在半径很⼤的光滑凹球⾯底部作⼩幅度的摆动;(3)曲柄连杆机构使活塞作往复运动;(4)⼩磁针在地磁的南北⽅向附近摆动。
答:(2)、(4)为简谐振动,(1)、(3)、不是简谐振动。
2.4 三只相同的弹簧(质量忽略不计)都⼀端固定,另⼀端连接质量为m 的物体,它们放置情况不同,其中⼀个平放,⼀个斜放,另⼀个竖直放。
如果它们振动起来,则三者是否均为简谐振动,它们振动的周期是否相同?答:三者均为简谐振动,它们振动的周期也相同。
2.5 当谐振⼦作简谐振动的振幅增⼤为原来的2倍时,谐振⼦的什么量也增⼤为原来的2倍?答:最⼤速度和最⼤加速度。
2.6 ⼀弹簧振⼦作简谐振动,其振动的总能量为E 1。
如果我们将弹簧振⼦的振动振幅增加为原来的2倍,⽽将重物的质量增加为原来的4倍,则新的振⼦系统的总能量是否发⽣变化?答:弹簧振⼦212E kA = ,所以新的振⼦系统的总能量增加为原来的4倍。
2.7 ⼀质点作简谐振动,振动频率为n,则该质点动能的变化频率是多少?答:该质点动能的变化频率是2n。
第二章 牛顿运动定律一、选择题1.下列说法中哪一个是正确的A 合力一定大于分力B 物体速率不变,所受合外力为零C 速率很大的物体,运动状态不易改变D 质量越大的物体,运动状态越不易改变2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时A 将受到重力,绳的拉力和向心力的作用B 将受到重力,绳的拉力和离心力的作用C 绳子的拉力可能为零D 小球可能处于受力平衡状态3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率A 不得小于gRμ B 不得大于gRμ C 必须等于gRμ2 D 必须大于gRμ34.一个沿x 轴正方向运动的质点,速率为51s m -⋅,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg,则它到达m 10=x 处的速率为A 551s m -⋅B 1751s m -⋅C 251s m -⋅D 751s m -⋅5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大A mgB mg μC )(a g m +μD )(a g m -μ6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F与水平方向的夹角θ应满足 A 1cos =θ B 1sin =θC μθ=tgD μθ=ctg 二、简答题1.什么是惯性系什么是非惯性系2.写出任一力学量Q 的量纲式,并分别表示出速度、加速度、力和动量的量纲式;三、计算题质量为10kg 的物体,放在水平桌面上,原为静止;先以力F 推该物体,该力的大小为20N,方向与水平成︒37角,如图所示,已知物体与桌面之前的滑动摩擦因数为,求物体的加速度;质量M=2kg 的物体,放在斜面上,斜面与物体之间的滑动摩擦因数2.0=μ,斜面仰角︒=30α,如图所示,今以大小为的水平力F 作用于m, 求物体的加速度;雨下降时,因受空气阻力,在落地前已是等速运动,速率为5m/s;假定空气阻力大小与雨滴速率的平方成正比,问雨滴速率为4m/s 时的加速度多大一装置,如图所示,求质量为1m 和2m 两个物体加速度的大小和绳子的张力,假设滑轮和绳的质量以及摩擦力可以忽略不计;题 图桌面上叠放着两块木板,质量各为21,m m .如图所示, 2m 和 桌面间的摩擦因数为2μ,1m 和2m 间静摩擦因数1μ,问沿水平方向用多大的力才能把下面的木块抽出来.如图所示,物体A,B 放在光滑的桌面上,已知B 物体的质量是A 物体质量的两倍,作用力1F 和2F 的四倍.求A,B 两物体之间的的相互作用力.北京设有供试验用高速列车环形铁路,回转半径9km,将要建设的京沪列车时速250km/h,若在环路上此项列车试验且铁轨不受侧压力,外轨应比内轨高多少 设轨距为1.435m.在一只半径为R 的半球形碗内,有一个质量为m 的小钢球,当以角速度ω在水平面内沿碗内壁 做匀速圆周运动时, 它距碗底又多高一质量为10kg 质点在力)(40120N t F +=作用下,沿x 轴作直线运动;在t=0时,质点位于05x m=处,其速度06/m sυ=;求质点在任意时刻的速度和位置;mg θFN fmgθFNfyx第二章 牛顿运动定律答案一、选择题 二、简答题1.什么是惯性系什么是非惯性系在这样的参照系中观察,一个不受力作用的物体将保持静止或匀速直线运动状态不变,这样的参照系称惯性系;简言之,牛顿第一定律能够成立的参照系是惯性系,反之,牛顿第一定律不成立的参照系是非惯性系;2.任一力学量Q 的量纲式:[]p q r Q L M T =;速度、加速度、力、动量的量纲式分别为:1221[],[],[],[]LT a LT F MLT P MLT υ----==== 三、计算题质量为10kg 的物体,放在水平桌面上,原为静止;先以力F 推该物体,该力的大小为20N,方向与水平成︒37角,如图所示,已知物体与桌面之前的滑动摩擦因数为,求物体的加速度; 解:研究对象是物体桌上面的运动情况:外力静止开始均速直线运动;隔离体讨论受力情况物体受右边所式的四种力的作用;它们是重力G ,弹力N,推力F,滑动摩擦力f 建立坐标系:左边图所示, 在x 轴上:)1(cos maf F =-θ轴上在y :)2(0sin =--θF mg N滑动摩擦力为: )3(Nf μ=式 1,2,3结合求解a 可得:mg2υk f =a2/5.0)]6.02098(1.01.020[101)]37sin 208.910(1.037cos 20[101)]sin (cos [1)sin (cos s m F mg F m a maF mg F =⨯+-⨯=︒⨯+⨯-︒⨯=+-==+-θμθθμθ 答:该物体的加速度为 2/5.0s m质量M=2kg 的物体,放在斜面上,斜面与物体之间的滑动摩擦因数2.0=μ,斜面仰角︒=30α,如图所示,今以大小为的水平力F 作用于m, 求物体的加速度;解:以物体为研究对象;讨论物体的运动方向; 斜面向上的力:N F 38.930cos 6.19cos =︒⨯=α 斜面向下的力:N mg 8.930sin 8.92sin =︒⨯⨯=α ααsin cos mg F >∴ 物体沿斜面向上运动,对物体受力分析 )1(0sin cos =-+N F mg αα)3()2(cos sin N f maF f mg μαα==+--结合式 1,2,3可得:2/909.0)]sin cos (sin cos [1s m F mg mg F ma =+--=ααμαα 答:该物体加速度大小为2/909.0s m a =,方向沿斜面向上;雨下降时,因受空气阻力,在落地前已是等速运动,速率为5m/s;假定空气阻力大小与雨滴速率的平方成正比,问雨滴速率为4m/s 时的加速度多大解:根据牛顿第二定律 雨滴等速运动时,加速度为零)1(021=-υk mgmg1FαF题 图1ag m 11T2ag m 22T'1T '1T '2T 2a1 2 3222212221212221/53.38.9)541()1(s m g a mamgmg ma k mg mgk ≈⨯-=-==-=-=υυυυυυ一装置,如图所示,求质量为1m 和2m 两个物体加速度的大小和绳子的张力,假设滑轮和绳的质量以及摩擦力可以忽略不计; 解:假定1m 加速度竖直向上; 对1m 受力分析得)1(1111a m g m T =-对2m 受力分析得)2(2222a m T g m =-对动滑轮受力分析得 )0()3(02212===-m ma T T因为相同时间内1m 下落高度是2m 的2倍,所以)4(221a a =由1—4可得:21112244m m a g m m -=+ 2121224m m a g m m -=+ 1211234m m T g m m =+ 1221264m m T g m m =+桌面上叠放着两块木板,质量各为21,m m .如图所示, 2m 和 桌面间的摩擦因数为2μ,1m 和2m 间静摩擦因数1μ,问沿水平方向用多大的力才能把下面的木块抽出来.解:隔离物体进行受力分析 对图1:1111111a m g m N f ===μμ得 g a 11μ= 对图2:222222121212N f a m f f F g m g m g m N N μ==-'-+=+'=得])([12121122g m m g m F m a +--=μμ 将木块抽出的条件是 12a a > 得到g m m F ))((2121++>μμ如图所示,物体A,B 放在光滑的桌面上,已知B 物体的质量是A 物体质量的两倍,作用力1F 是2F 的四倍.求A,B 两物体之间的的相互作用力.解:条件是光滑的桌面,所以不考虑摩擦力再进行隔离体和受力分析:对物体A :设其向右以加速度a 运动 )1(1a m F F A BA =-对图2:)3()2(2BAAB B AB F F a m F F ==-已知条件代入上面等式中可得:⎩⎨⎧=-=-)2(2)1(422am F F a m F F A AB A AB解此方程组: 23F F F BA AB ==∴北京设有供试验用高速列车环形铁路,回转半径9km,将要建设的京沪列车时速250km/h,若在环路上此项列车试验且铁轨不受侧压力,外轨应比内轨高多少 设轨距为.解:根据列车受力的情况可得: 根据牛顿第二定律BA F1N Ag m A1F12F2Ng m BAB F2Rm mg F mgF n n 2tan tan υθθ===解得2tan gRυθ=m gRl l l h 078.0tan sin 2==≈=υθθ 在一只半径为R 的半球形碗内,有一个质量为m 的小钢球,当以角速度ω在水平面内沿碗内壁 做匀速圆周运动时, 它距碗底又多高解:取刚球为隔离体,其受力分析如图b)3()(cos )2(cos )1(sin sin 2Rh R mgF mR ma F n -====θθθωθ 由上述格式可解得刚球距碗底的高度为2ωgR h -=一质量为10kg 质点在力)(40120N t F +=作用下,沿x 轴作直线运动;在t=0时,质点位于05x m=处,其速度06/m s υ=;求质点在任意时刻的速度和位置;解:由牛顿第二定律F ma =,得124Fa t m ==+ 00002(124)646tt adtt dt t t υυυ=+=++=++⎰⎰0020032(646)2265ttx x dtx t t dtt t t υ=+=+++=+++⎰⎰mgmgxb。
简答题2.1 什么是伽利略相对性原理?什么是狭义相对性原理?答:伽利略相对性原理又称力学相对性原理,是指一切彼此作匀速直线运动的惯性系,对于描述机械运动的力学规律来说完全等价。
狭义相对性原理包括狭义相对性原理和光速不变原理。
狭义相对性原理是指物理学定律在所有的惯性系中都具有相同的数学表达形式。
光速不变原理是指在所有惯性系中,真空中光沿各方向的传播速率都等于同一个恒量。
2.2同时的相对性是什么意思?如果光速是无限大,是否还会有同时的相对性?答:同时的相对性是:在某一惯性系中同时发生的两个事件,在相对于此惯性系运动的另一个惯性系中观察,并不一定同时。
如果光速是无限的,破坏了狭义相对论的基础,就不会再涉及同时的相对性。
2.3什么是钟慢效应? 什么是尺缩效应?答:在某一参考系中同一地点先后发生的两个事件之间的时间间隔叫固有时。
固有时最短。
固有时和在其它参考系中测得的时间的关系,如果用钟走的快慢来说明,就是运动的钟的一秒对应于这静止的同步的钟的好几秒。
这个效应叫运动的钟时间延缓。
尺子静止时测得的长度叫它的固有长度,固有长度是最长的。
在相对于其运动的参考系中测量其长度要收缩。
这个效应叫尺缩效应。
2.4狭义相对论的时间和空间概念与牛顿力学的有何不同?有何联系?答:牛顿力学的时间和空间概念即绝对时空观的基本出发点是:任何过程所经历的时间不因参考系而差异;任何物体的长度测量不因参考系而不同。
狭义相对论认为时间测量和空间测量都是相对的,并且二者的测量互相不能分离而成为一个整体。
牛顿力学的绝对时空观是相对论时间和空间概念在低速世界的特例,是狭义相对论在低速情况下忽略相对论效应的很好近似。
2.5能把一个粒子加速到光速c吗?为什么?答:真空中光速C是一切物体运动的极限速度,不可能把一个粒子加速到光速C。
从质速关系可看到,当速度趋近光速C 时,质量趋近于无穷。
粒子的能量为2mc ,在实验室中不存在这无穷大的能量。
2.6 什么叫质量亏损? 它和原子能的释放有何关系?答:粒子反应中,反应前后如存在粒子总的静质量的减少0m ∆,则0m ∆叫质量亏损。
原子能的释放指核反应中所释放的能量,是反应前后粒子总动能的增量k E ∆,它可通过质量亏损算出20k E m c ∆=∆。
2.7 在相对论的时空观中,以下的判断哪一个是对的?( C )(A)在一个惯性系中,两个同时的事件,在另一个惯性系中一定不同时;(B)在一个惯性系中,两个同时的事件,在另一个惯性系中一定同时;(C )在一个惯性系中,两个同时又同地的事件,在另一惯性系中一定同时又同地;(D)在一个惯性系中,两个同时不同地的事件,在另一惯性系中只可能同时不同地;2.8 S S '、为两个惯性系,S '相对S 匀速运动。
下列说法正确的是( C )(A )运动钟的钟慢效应是由于运动走的不准时了;(B)宇宙间任何速度都不能大于光速c ;(C )如果光速是无限大,同时的相对性就不会存在了;(D )运动棒的长度收缩效应是指棒沿运动方向受到了实际压缩。
2.9 以狭义相对论的观点,下列几种说法:(1)所有惯性系统对物理基本规律都是等价的;(2)在真空中,光的速度与光的频率、光源的运动状态无关;(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。
其中哪些说法是正确的?( D )(A)只有(1)、(2)是正确的; (B)只有(1)、(3)是正确的;(C)只有(2)、(3)是正确的; (D)三种说法都是正确的。
2.10 相对论中物体的质量M 与能量E 有一定的对应关系,这个关系是什么?静止质量为0M 的粒子,以速度v 运动,其动能怎样表示?答:相对论中物体的质量M 与能量E 有一定的对应关系是2E MC =。
其动能为:222001)k E MC M C M C =-=-课后习题2.1 一个在实验室中以0.8c 速度运动的粒子, 飞行了3米后衰变。
求观察到同样的静止粒子衰变时间。
解法一:选实验室参考系为S 系,相对运动粒子静止的参考系为S ′系,据题意有u=0.8c,Δx=3m,则)(1025.11038.0388s u x t -⨯=⨯⨯=∆=∆ 由洛伦兹变换可得观察到同样的静止粒子衰变时间)(105.7/1/)(92222s c u c x u t x c u t t -⨯=-∆-∆=∆-∆='∆γ 解法二:静止粒子衰变时间为固有时间,由时间延缓效应可得)(105.7/)8.0(11038.03/19228220s c c c u u x -⨯=-⨯⨯=-∆==γττ 2.2 天津和北京相距120km 。
某日上午9时正,北京有一工厂因过载而断电,天津于9时0分0.0003秒有一自行车与一卡车相撞。
试求在以0.8c 速率沿北京到天津方向飞行的飞行器中观测到那一事件先发生?解:选地面为S系,飞行器为S ’系,据题意有u=0.8c ,Δx=120000m ,Δt=0.0003秒,由洛伦兹变换可得0102.1)(52<⨯-=∆-∆='∆-s x cu t t γ 所以飞行器中观测到天津的事件先发生。
2.3 +π介子是不稳定的粒子,在它自己的参照系中测得平均寿命是8106.2-⨯s 。
如果它相对实验室以0.8c (c为真空中光速大小)的速率运动,那么实验室坐标系中测得的介子寿命是多少?解:选+π介子参考系为S 系,实验室参考系为S ′系,在S 系中两事件发生在同地,为固有时间,由时间延缓效应可得实验室坐标系中测得的介子寿命为 )(1033.48.01106.2/18282200s c u --⨯=-⨯=-==τγττ2.4 静止时边长为a 的正立方体,当它以速率v 沿与它的一个边平行的方向运动时,测得它的运动体积将是多大?解:沿运动方向有尺缩效应,运动方向测得正方体的边长为220/1c v a l l -==γ垂直运动方向无尺缩效应,所以测得此正方体运动体积为223222/1/1c v a a c v a V -=⋅-=2.5 在S 系中观察到两个事件同时发生在x 轴上,其间距离是1m。
在S '系中观察这两个事件之间的距离是2m。
求在S '系中这两个事件的时间间隔。
解:据题意可知,Δx =1m ,Δt =0s ,Δx ′=2m ,由洛伦兹变换有22/1)(c u t u x t u x x -∆-∆=∆-∆='∆γ 可以求出2/3c u =由洛伦兹变换可得S '系中这两个事件的时间间隔)(1077.5/1/)/(92222s c u c x u t c x u t t -⨯-=-∆-∆=∆-∆='∆γ2.6 在惯性系中,两个光子火箭(以非常接近光速c 运动的火箭)相向运时,它们相互接近速率的非常接近值是多少?解:选题中的惯性系为S系,其中一个光子火箭为S ′系,以另一火箭运动方向为x 轴正方向,由题意可知,另一火箭在S 系中的速度vx =c ,S ′系相对于S 系的运动速度u=-c 。
则由洛伦兹速度变换公式可得两火箭互接近速率为c c c c c c c uv u v v x x x =----=--=22'/)(1)(/1 2.7 在折射率为n 的静止连续介质水中,光速/c n 。
当水管中的水以速率v 流动时,沿着水流方向通过水的光速多大?解:选相对流动水静止的参考系为S 系,选水管参考系为S ′系,设水流方向为x 轴正方向,则在S 系中光速v x =/c n ,S ′系相对S 系的速度为u =-v ,根据洛伦兹速度变换,由题意得沿着水流方向通过水的光速大小为c vnc nv c c n c v v n c c uv u v v x x x ++=----=--=22'/)/)((1)(//1 2.8 静止质量为0m 以第二宇宙速度211.v =k m/s 运动的的火箭,其质量是多少? 解:由质速关系可得0283022000000000007.1)103/102.11(1/1m m c v m m m =⨯⨯-=-==γ2.9 将一静止质量为0m 的电子从静止加速到0.8c (c 为真空中光的速率)的速率时,加速器对电子作的功是多少?解:加速器对电子作的功等于电子能量的增量202022020232)/1(c m c m c v m c m mc E A =--=-=∆= 2.10 两个静止质量为0m 的小球,其一静止,另一个以8.0=v c的速率运动。
设它们作对心完全非弹性碰撞后粘在一起,求碰撞后它们的速率大小。
解:设两小球碰后质量为m′,速率为v ′,根据动量守恒和能量守恒分别有''0v m v m =γ (1)22020'c m c m c m =+γ (2)联立(1)和(2)式可得c v 5.0'=2.11 太阳发出的能量是由质子参与一系列反应产生的,其总结果相当于下述热核反应:e H H H H H e 1024111111112+→+++已知一个质子(H 11)的静质量是270106726.1-⨯=H m k g,一个氦核(e H 24)的静质量是270106425.6-⨯=e H m kg ,一个正电子(e 10)的静质量是270100009.0-⨯=e m kg,求这一反应所释放的能量。
解:由质能关系可得)(1015.4)103(10)0009.026425.66726.14()24(12282720002J c m m m mc E e e H H --⨯=⨯⨯⨯⨯--⨯=--=∆=∆。