§9.7第一型曲面积分的计算1
- 格式:ppt
- 大小:556.50 KB
- 文档页数:16
曲面积分总结曲面积分有第一型曲面积分和第二型曲面积分。
第一型曲面积分的实际意义是空间物质曲面的质量,第二型曲面积分的实际意义是流速场中沿某曲面某一侧的流量。
一、第一型曲面积分1、引例:设空间光滑曲面S 的方程为),(y x z z =,在xoy 平面上的投影区域为D , 物质曲面的密度函数为),,(z y x f ,则S 的质量为⎰⎰=Sds z y x f m ),,(.此种积分称为第一型曲面积分。
2计算方法定理1、设空间光滑曲面S 的方程为),(y x z z =,在x o y 平面上的投影区域为D , ),,(z y x f 在S 上连续,则⎰⎰⎰⎰++=D y x S dxdy z z y x z y x f ds z y x f 221)),(,,(),,(。
二、第二型曲面积分1、引例:设有流速场)),,(),,,(),,,((z y x R z y x Q z y x P F = ,在此场中有一双侧光滑曲面S ,指定一侧为正侧,则通过此曲面的流量为 ⎰⎰++Sdxdy z y x R dxdz z y x Q dydz z y x P ),,(),,(),,(。
这种形式的积分称为第二型曲面积分。
上述积分上是三个积分的和⎰⎰++Sdxdy z y x R dxdz z y x Q dydz z y x P ),,(),,(),,(⎰⎰=S dydz z y x P ),,(⎰⎰+S dxdz z y x Q ),,(⎰⎰+Sdxdy z y x R ),,(2、计算方法设函数),,(z y x R 在光滑曲面S :),(y x z z =,D y x ∈),(, 上连续,则 ⎰⎰⎰⎰±=DS dxdy y x z y x R dxdy z y x R )),(,,(),,(。
当曲面S 的正侧法线方向与z 轴成锐角时取正号,成钝角时取负号。
也就是说,曲面上侧为正侧时取正号,曲面下侧为正侧时取负号。
第一型曲面积分
一、第一型曲面积分的概念
定义1:设S是空间中可求面积的曲面,f(x,y,z)为定义在S上的函数,对曲面S作分割T,它把S分成n个小区面块Si (i=1,2,...,n).以ΔSi记小曲面块Si的面积,分割T的细度||T||=max(Si) (i=1,2,...,n),在Si上任取一点()(ξi,ζi,ηi)(i=1,2,...,n),若极限lim||T||→b0∑inf(ξi,ηi,ζi)ΔSi存在,且与分割T及(ξi,ηi,ζi) (i=1,2,...,n)的取法无关,则称此极限为f(x,y,z)在S的第一型曲面积分,记作∫∫f(x,y,z)dS .
注:当f(x,y,z)≡1时,曲面积分∫∫dS就是曲面块S的面积。
二、第二型曲面积分的计算
定理22.1:设有光滑曲面,:S:z=z(x,y),(x,y)∈D为S上的连续函数,f(x,y,z)
为S上的连续函数,则:∫∫f(x,y,z)dS=∫∫f(x,y,z(x,y))1+zx2+zy2dxdy .
第一型曲面积分公式。
eg1:计算∫∫dSz ,其中S是球面x2+y2+z2=a2 ,被平面z=1(0<h<a)所截的顶部。
解:曲面S的方程为z=a2−x2−y2 ,定义域D为圆域x2+y2≤a2−h2 ,由于
1+zx2+zy2=aa2−x2−y2
由第一型曲面积分公式得,∫∫dSz=∫∫1a2−x2−y2∗aa2−x2−y2dxdy=∫02πdθ∫0a2−h2aa2−r2rdr
=2πalnah
注意:(1)有哪位定义域为圆域,所以采用参数坐标来做,令x=rcos θ,y=rsinθ ;。
曲面积分的第一型和第二型曲面积分是数学中一个非常重要的概念,它广泛应用于物理和工程学中。
曲面积分有两个主要类型:第一型和第二型曲面积分。
本文将对这两种曲面积分进行详细的阐述和讲解。
一、第一型曲面积分第一型曲面积分是指对于向量函数在曲面上的积分。
换句话说,它是对曲面上的某个标量值函数的积分。
其计算公式为:∬S f(x,y,z) dS其中,S表示曲面,f(x,y,z)为被积函数,dS为曲面面积元素。
在计算第一型曲面积分时,我们需要知道曲面的参数方程。
通常,参数方程可以表示为:x = g(u,v)y = h(u,v)z = k(u,v)其中,u和v是曲面上的自变量,x、y和z是对应的函数值。
对曲面进行参数化之后,我们就可以将第一型曲面积分转化为一个二重积分:∬D f(g(u,v),h(u,v),k(u,v)) ||r_u × r_v|| du dv其中,D表示曲面的投影区域,||r_u ×r_v||是曲面的面积元素,r_u과 r_v分别是曲面参数方程的偏导数。
值得注意的是,有些曲面的参数方程比较复杂,因此需要使用微积分技巧对其进行简化。
此外,在计算第一型曲面积分时,我们还需要考虑曲面的方向。
有时候,我们需要在某个指定方向上计算曲面积分,这时我们需要用到曲面的法向量。
如果曲面法向量朝外,则为正方向;反之,则为负方向。
二、第二型曲面积分第二型曲面积分是指对向量函数在曲面上的积分。
也就是说,它是对曲面上的某个向量值函数的积分。
其计算公式为:∬S F · dS其中,S表示曲面,F为被积函数,dS为曲面衡量元素。
与第一型曲面积分相比,第二型曲面积分更加复杂一些。
在计算第二型曲面积分时,我们需要对被积函数进行向量积分。
我们需要将向量函数投影到曲面切平面上,然后再计算切平面上的积分。
这样才能得到正确的曲面积分结果。
与第一型曲面积分类似,对于第二型曲面积分我们也需要考虑曲面的法向量。
如果曲面法向量朝上,则为正方向;反之,则为负方向。