搞定数学选择题的八大技巧方法
- 格式:docx
- 大小:15.59 KB
- 文档页数:2
数学九招搞定选择题招式一排除法排除法,又名筛选法,是充分利用有且只有一个正确选项这一信息,从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一进行排除,从而获得正确结论的方法,数学选择题的本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的结论。
解题时可通过排除一些较易判定的、不符合题目要求的选项,以缩小选择的范围,再从剩余的选项中求得正确的答案。
若排除不符合题目要求的选项之后,只剩下一个选项,则该选项即为符合题目要求的选项,恰当使用排除法,可以提高解题的效率,从而提升考试分数。
招式二特例法特例法,又名特值法,是指运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选项进行检验或推理,利用“某一命题在某一特殊条件下为假命题,则它在一般条件下也为假命题”的原理,由此判断选项正误的方法。
有些选择题直接求解比较困难,若根据选项提供的信息,选择某些特殊情况、特殊值、特殊形式进行分析,或将字母参数换成具体数值代入,则可将一般形式变为特殊形式,此时再进行判断,往往会使解题变得简单。
不等式比较大小、求圆锥曲线的离心率时常常用到此方法。
招式三数形结合法数形结合法就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的方法。
数形结合法的应用大致可分为两种情形:第一,借助于数的精确性来阐明形的某些属性,第二,借助形的几何直观性来阐明数之间的某种关系,即“以数解形”和“以形助数”.数形结合法可用于解决集合问题、函数问题、方程与不等式问题、三角函数问题、线性规划问题、解析几何问题、立体几何问题等招式四验证法所谓验证法,就是通过对试题的观察、分析、确定,将各选项逐个代入题干中进行检验,或适当选取特殊值进行检验,或采取其他验证手段,以判断选项正误的方法在解选择题时,有时可直接将各选项代入题干中进行验证,有时也可以从条件的特殊处入手,对题目加以分析、验证,从而得出正确答案.在使用验证法解题时,要确保计算准确无误,在计算、解答过程中要注意图形的运用、特值的选取。
2019高考快速提分法: 数学选择题十大解题法数学选择题是高考数学三大基本题型之一, 一组高考
数学选择题, 只要备题充分的扬长避短, 运用好群体效应, 就能在较大的知识范围内, 实现对基础知识、基本技能和基本的数学思想方法的全面考察。
能比较确切地测试考生对概念、原理、性质、法则、定理和公式的理解和掌握程度, 还能在一定程度上有效考察逻辑思维能力、运算能力、空间想象能力以及灵活和综合地运用数学知识解决问题的能力。
以上十种方法, 配合应用就可以使得选择填空题解答又快
又准。
比如, 有些方程的解, 我们可以翻过来用选择支代入验证, 这就是逆向代入法, 它比直接求解对号入座有时候
要来得快。
再比如估值法, 某年一道高考题是说, 一个正方体的表面积是a的平方, 那么, 它的外接球的表面积是: 题目中给出了四个选择支, 我们估计圆的表面积比它的内接
正方体的表面积要大一些, 但也大不到哪里去, 有两个答
案说, 外接球的表面积, 分别是正方体表面积的六倍多和
九倍多, 显然应该排除另一个选择支, 所求的表面积是正
方体表面积的1.01倍, 显然, 也不对。
而剩下的一个选择支, 球的表面积是正方体表面积的1.57倍, 显然, 它就应
该是正确的选择题。
我们这里只是对球的表面积进行了估算, 就可以得到正确结果, 还有许多高考选择填空题都可以用
近似计算和估算的方法进行解答, 估算也是一种能力, 考试中心在命题的时候, 特别提到提倡运用估值判断的方法。
不用这样的方法, 费时较多, 用上这样的方法, 简洁明快, 它可以把不同层次的考生区别开来。
数学选择题10种答题技巧答题技巧是提高解题效率和正确率的重要手段,对于数学选择题也是如此。
以下是10种数学选择题的答题技巧:1.阅读题目细致全面:在做数学选择题时,首先要仔细阅读题目,理解题意。
要注意每个细节,避免错误的理解或忽略关键信息。
2.分析选项:在考虑答案之前,先看一下选项。
有时候选项中会提供有用的信息,帮助你解题。
换句话说,通过分析选项,你可以先了解一下答案的可能性,然后根据这些信息更好地解题。
3.适当使用图表和图像:对于一些图形题,可以尝试将其转化为图表或图像来帮助理解和解答。
画出图表或图像可以直观地展示问题,有时会激发一些思路和突破口。
4.制定解题计划:在解决一道复杂的数学选择题之前,制定一个解题计划是很有必要的。
可以列出需要使用的公式、定义、定理等,然后按照一定的逻辑顺序进行解答。
这样可以避免混乱和遗漏,节省时间。
5.从容答题:在做数学选择题时,切忌匆忙行事。
要保持冷静,不要急于求成。
首先,仔细阅读和理解题目,然后按照自己的解题计划进行解答。
只有在确信自己的答案正确,才从容地选择选项。
6.多试多练:数学选择题的解答能力需要长时间的积累和训练。
因此,建议多做一些选择题,尤其是做一些难度较高的题目,以此来提升对解题方法的掌握和运用的熟练程度。
通过反复练习,你会渐渐找到解题的窍门。
7.特例法:在面对特殊情况的数学选择题时,可以考虑使用特例法。
特例法是指选择特殊的数值或数据,然后通过计算得出答案。
这种方法可以简化复杂的问题,加快解题速度。
8.排除法:排除法是一种常用的解答选择题的方法。
通过排除错误的选项,只剩下一个或少数几个可能的选项,这样就能更准确地选择正确答案。
要善于分析选项中存在的错误信息,判断哪些选项是不可能的。
9.经验法则:做数学选择题的时候,经验法则有时比纯粹的计算或推理更有用。
例如,如果一个答案比其他答案都要小很多,那么它很有可能是正确的答案。
这种经验法则可以帮助你更快地找到答案。
数学选择题答题技巧1.审题十分重要:在开始解答选择题之前,首先要仔细阅读题目。
了解题目要求、条件以及给出的选择项,并将题目中关键信息标注出来。
这样可以避免因未完全理解题意而做错选择。
2.排除绝对错误选项:在四个或多个选项中,有时存在一些明显错误的答案。
通过通过排除掉这些错误答案,剩余的选项中可能会有正确答案。
3.估算答案:有些选择题的答案选项可能会给出计算结果,这时可以通过比较选项与自己估算的结果来确定正确的答案。
估算可以帮助缩小选项范围,提高答题准确性。
4.代入法:对于代数式或方程题,将给出的答案代入题目中,验证是否满足题目条件。
这种方法可以帮助排除错误答案和确认正确答案,尤其在选项和计算比较复杂的题目中更加有效。
5.图形法:对于几何或图形题,尽量画出图形,帮助理解题目条件和推导结论。
通过观察图形的性质、角度、边长等特点,可以快速找到解答。
6.利用选项关系:在一些选择题中,选项之间可能存在逻辑关系。
例如,给定一个等差数列,四个选项中只有一个符合等差关系。
通过观察选项之间的差异和递推关系,能够迅速找到正确答案。
7.检查答案:在答题完毕后,花一些时间复查和检查答案。
尤其是容易出错的计算题、代数式题等,不要忽略对结果和步骤的检查。
8.多做练习题:通过多做数学选择题的练习,熟悉各种题型和解题思路。
掌握不同类型题目的解题技巧,能够提高解题的速度和准确性。
总之,解答数学选择题需要注意审题、排除错误选项、进行估算、代入验证、利用图形和选项关系等技巧。
同时,通过不断训练和练习,掌握解题思路和技巧,能够有效提高解题能力。
高考数学选择题解题的方法归纳高考数学选择题解题窍门01正难则反法从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论,在做排列组合或者概率类的题目时,经常使用。
02数形结合法由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
03递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法,例如分析周期数列等相关问题时,就常用递推归纳法。
04特征分析法对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
如下题,如果不去分析该几何体的特征,直接用一般的割补方法去做,会比较头疼。
细细分析,其实该几何体是边长为2的正方形体积的一半,如此这般,不用算都知道选C。
高考数学选择题的解法选择题得分关键是考生能否精确、迅速地解答。
数学选择题的求解有两种思路:一是从题干出发考虑,探求结果;二是题干和选择的分支联合考虑或从选择的分支出发探求是否满足题干条件,由于答案在四个中找一个,随机分一定要拿到。
选择题解题的基本原则是:"充分利用选择题的特点,小题尽量不要大做"。
一、直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密推理和准确计算,从而得出正确结论,然后对照题目所给出的选择支“对号入座”.涉及概念、性质的辨析或运算较简单的题目,常用此法.例1 关于函数f(x)=sin2x-(23)|x|+12,看下面四个结论:①f(x)是奇函数;②当x20__时,f(x)12恒成立; ③f(x)的最大值是32; ④f(x)的最小值是-12.其中正确结论的个数为( ).A.1个B.2个C.3个D.4个解析 f(x)=sin2x-(23)|x|+12=1-cos2x2-(23)|x|+12=1-12cos2x-(23)|x| ∴f(x)为偶函数,①错.∵当x=1000π时,x20__, sin21000π=0,∴f(1000π)=12-(23)1000π12,②错.又∵-1≤cos2x≤1,∴12≤1-12cos2x ≤32,从而1-12cos2x-(23)|x|32,③错.又∵sin2x≥0,-(23)|x|≥-1,∴f(x) ≥-12,当且仅当x=0时等号成立,可知④正确.故应选A.题后反思直接法是解答选择题最常用的基本方法,中、低档选择题可用此法迅速求解,直接法运用的范围很广,只要运算正确必能得到正确答案.二、特例法也称特值法、特形法,就是运用满足题设条件的某些特殊值、特殊关系或特殊图形对选项进行检验或推理,从而得到正确选项的方法,常用的特例法有特殊的数值、数列、函数、图形、角、位置等.例2 设函数f(x)=2-x-1,x≤0x(1/2),x0,若f(x0)1,则x0的取值范围为( ).A.(-1,1)B.(-1,+∞)C.(-∞,-2)∪(0,+∞)D.(-∞,-1)∪(1,+∞)解析∵f(12)=221,∴12不符合题意,∴排除选项A、B、C,故应选D.图1例3 已知函数f(x)=ax3+bx2+cx+d的图像如图1所示,则b的取值范围是( ).A.(-∞,0)B.(0,1)C.(1,2)D.(2, +∞)解析设函数f(x)=x(x-1)(x-2)=x3-3x2+2x.此时a=1, b=-3, c=2, d=0. 故应选A.题后反思这类题目若是脚踏实地来求解,不仅运算量大,而且很容易出错,但通过选择特殊值进行运算,则既快又准.当然,所选值必须满足已知条件.三、排除法排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.例4直线ax-y+b=0与圆x2+y2-2ax+2by=0的图像可能是( ).解析由圆的方程知圆必过原点,∴排除A、C选项.因圆心为(a,-b),由B、D两图中的圆可知a0,-b0.而直线方程可化为y=ax+b,故应选B.题后反思用排除法解选择题的一般规律是:①对于干扰支易于淘汰的选择题,可采用排除法,能剔除几个就先剔除几个;②允许使用题干中的部分条件淘汰选择支;③如果选择支中存在等效命题,因答案唯一,故等效命题应该同时排除;④如果选择支存在两个相反的或互不相容的,则其中至少有一个是假的;⑤如果选择支之间存在包含关系,须据题意定结论.高考数学选择题的蒙题技巧1.选择与填空中出现不等式的题目,优选特殊值法,选取中间值带入,选取好算易得的;2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法,将各种函数模型牢记于心,每个模型特点也要牢记;3.函数或方程或不等式的题目,先直接思考后建立三者的联系。
高考数学选择题十大解题方法高考数学解题方法与技巧高考数学选择题十大解题方法高考数学选择题十大解题方法高考数学选择题十大解题方法如下:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆42+5y2=6上,其中A、B两点关于原点 O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为 A.-5/4B.-4/5C.4/5D.2√5/5 解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则:将所要研究的问题向极端状态进行分析^p ,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析^p ,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
例:银行计划将某资金给项目M和N投资一年,其中40的资金给项目M,60的资金给项目N,项目M能获得10的年利润,项目N能获得35的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户.为了使银行年利润不小于给M、N总投资的10而不大于总投资的15,则给储户回扣率最小值为A.5B.10C.15D.20 解析:设共有资金为α,储户回扣率χ,由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α 解出0.1≤χ≤0.15,故应选B.7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
高考数学选择题十大解题法则高考数学选择题一直是考生最为头疼的问题之一。
其实,只要掌握了一些解题方法,就可以在考场上游刃有余地处理这些题目。
以下是高考数学选择题十大解题法则,希望对考生们备考有所帮助。
一、审题认真,确保理解清题目要求。
在解题之前,一定要仔细阅读题目,看懂题目的意思和要求,不要匆忙从题目中得出结论。
有时候,题目中的条件可能相对比较复杂,需要我们通读各项条件,理清思路。
二、逐一排除错误选项。
一般来说,高考数学选择题答案选项只有四个,其中必有三个是错误的,一个是正确答案。
考生可以通过排除错误的答案,缩小范围,提高答题效率。
三、找寻规律,依据题目特点处理。
许多高考数学选择题存在一定的规律性,通过发掘它们的规律结构、有效运用规律特性,就能够比较容易地得出答案。
四、借助代数化解,缩短计算时间。
有时候,高考数学选择题很难逐一计算,这时候可以借助代数化解,使用公式计算,从而缩短计算时间,提高答题速度。
五、运用图形分析,直观理解。
很多高考数学选择题与图形有关,考生可以通过画图直观理解问题,从而更好地解答问题。
有时候,在视觉上感受一下,可能会比进行大量计算要更高效。
六、用逆向思维,解决复杂难题。
很多时候,高考数学选择题非常复杂,脑力负担不能直接计算解答。
这时候,可以尝试逆向思维,从答案出发,结合题目条件,寻找能够满足题目要求的解法。
七、根据已知要求,寻找相似问题解法。
有一些高考数学选择题可能与以前做过的题目相似,考生可以通过对比和寻找相同之处,极大地提高解题效率。
在备考期间,做一些类似题目的练习是非常有必要的。
八、关注题干变动,注意细节问题。
有时候,高考数学选择题中出现的区别可能会非常细小,要求考生格外谨慎,一定要仔细审查,不要失之交臂。
九、合理估计数值,选择较接近的答案。
在考试过程中,考生可能无法得到准确的答案。
此时,可以通过合理的数值估测,尽可能选出一个比较接近的答案。
十、巧用三角变形,利用几何常识推荐答案。
数学选择题八大解题方法数学选择题记住这八句话错误类型一:读题失误口诀一:勤分已知待求,明辨信息去留理解题意是当前高考对同学们最为基本的要求。
那么,怎样的状态算是对题意完全理解了呢?对于数学而言,只要你在开始解题之前就通过读题准确区分出了已知条件和待求的结论,那么你距离完全理解题意就非常近了:接下来,你只需要弄清楚已知条件和待求结果之间的关系,并成功运用自己学到的知识将这种关系用公式表达出来,进行计算就可以获得正确答案了。
但是,近几年来高考数学中实际应用的问题和具有物理背景、传统文化背景的问题越来越多,因此每次考试中都有至少一到两题的题面非常的长,例如2017年数学全国卷的“宝塔灯笼与等比数列”那一题。
这类题目与传统的选择题相比实际只多了一个难度层次:要求考生自行从文本中提取已知条件和待求的结论。
事实上,这也是目前高考数理类科目对咱们同学的新要求:理论与实践结合。
因此,对于这类信息量比较大的题目,我们往往可以将其简化为一个更加抽象而简单的数学问题,求解之后即可获得答案。
只要明确了已知和待求的问题,做选择题基本不会跑偏。
口诀二:理清逻辑线,答案自然现在明确了一道选择题里面的已知条件、待求结果之后,接下来的工作就是理清它们的逻辑关系。
一般而言,已知和待求之间的逻辑线是由我们平时课上学到的知识点组成的,每一个知识点之间在逻辑上本身就存在相互导出的关系,因此逻辑线的整理实质上就是通过所学的知识建立起已知和待求之间的逻辑关系,为后面使用公式、确定求解预备条件打下基础。
此外,整理逻辑线的过程中,也能通过知识点的回顾,在不求解题目的情况下预判题目是否可解,或者说题目若能求解,究竟需要哪些条件。
这样,一个比较复杂的数学问题就有较大的可能转换成一个比较简单的数学问题,或者从一个为止的特殊问题转化为一个已知的一般问题。
做到这一步以后,基本上就能制定有效的求解方案,给出计算公式并得到答案了。
错误类型二:解题方案错误口诀三:一步一个脚印,一题一组公式相信各位同学的数学老师应该在课上多次强调过一个问题:做题不能全靠感觉。
龙源期刊网 8个技巧,快速拿下数学选择题作者:来源:《学生导报·高中版》2017年第29期1.直接法:有些题目就是沒有技巧,只能直接做,比如涉及概念、性质的辨析或运算较简单的题目常用直接法,所以这就要求你掌握的基础知识是有一定的储备的。
2.特殊值法:有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而做出正确的判断。
常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。
3.筛选法:数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。
可以通过筛除一些较易判定的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。
从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断。
如筛去不合题意的以后,结论只有一个,则为应选项。
4.验证法(也称代入法):通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证,或适当选取特殊值进行检验,或采取其他验证手段,以判断选择支正误的方法。
5.数形结合法:在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图像的特征,得出结论。
但是数形结合法图像画得不准尤其容易出现问题,所以数形结合法一定要考虑图像的位置、单调性、周期性等内容。
6.割补法:“能割善补”是解决几何问题(内切外接球)常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度。
7.极限法:从有限到无限,从近似到精确,从量变到质变。
应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程。
高考数学选择题答题技巧总结(十大速解方法)一、特殊值检验法在解题的过程中,考生们可以将问题特殊化,利用问题在某一种特殊情况下不真,那么在一般情况下也不真的这个原因,达到辨别正确与否的目的,这种办法常常和下文提到的排除法同时使用。
二、极端性原则很简单,就是遇到问题时,将所要研究的问题向极端进行分析,因为在极端状态下,因果关系会更加明显,这样可以达到迅速解决问题的目的。
这种办法适用于求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题也可以采用这种极端性去分析解决。
三、逆推验证法简单来说,就是将答案代入题目去验证的办法。
选择题总共也就4个选项,实在不行的情况下,是可以一一代入进行验证的。
四、反证法从否定结论出发,经过逻辑推理推导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的,它的依据是原命题与逆否命题同真假。
这种办法经常在排列组合或者是概率问题的时候用到。
五、排除法利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
六、估算法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从而得出正确判断的方法。
七、递推归纳法通过已知的条件进行推理,寻找到规律,进而归纳出正确答案。
八、特征分析法对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
九、数形结合法由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
十、顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
如下题,根据题意,依次将点代入函数及其反函数即可。
搞定数学选择题的八大技巧方法
搞定数学选择题的八大技巧方法
在管理类联考中,许多考生表示,对数学选择题还是有一些问题的,下面小编为大家介绍8种方法,轻松搞定联考数学选择题,希望对各位读者有帮助。
直推法
直推法即直接分析推导法。
直推法是由条件出发,运用相关知识,直接分析、推导或计算出结果,从而作出正确的判断和选择。
计算类选择题一般都用这种方法,其它题也常用这种方法,这是最基本、最常用、最重要的方法。
反推法
反推法即反向推导或反向代入法。
反推法是由选项(即选择题的各个选项)反推条件,与条件相矛盾的选项则排除,相吻合的则是正确选项,或者将某个或某几个选项依次代入题设条件进行验证分析,与题设条件相吻合的就是正确的选项。
反证法
在选择题的4个选项中,若假设某个选项不正确(或正确)可以推出矛盾,则说明该选项是正确选项(或不正确选项)。
选择先从哪个选项着手证明,须根据题目条件具体分析和判断,有时可能需要一些直觉。
反例法
如果某个选项是一个命题,要排除该选项或说明该命题是错误的',有时只要举一个反例即可。
举反例通常是用一些常用的、比较简单但又能说明问题的例子。
如果大家在平时复习或做题时适当注意积累一下与各个知识点相关的不同反例,则在考试中可能会派上用场。
特例法(特值法)
如果题目是一个带有普遍性的命题,则可以尝试采取一种或几种特殊情况、特殊值去验证哪些选项是正确的、哪些是错误的,或者哪些极有可能是正确的或错误的,从而做出正确的选择。
特例法用于以下几种情况时特别有效:(1)条件和结论带有一定的
普遍性时,通过取特例来确定或排除某些选项;(2)对于不成立或极有可能不成立的结论需用举反例的方法证明其是错误时;(3)对于一些难以作出判断的题,假设在特殊情况下来考察其正确与否。
数形结合法
根据条件画出相应的几何图形,结合数学表达式和图形进行分析,从而做出正确的判断和选择。
这种方法常用于与几何图形有关的选择题,如:定积分的几何意义,二重积分的计算,曲线和曲面积分等。
排除法
如果可以通过一种或几种方法排除4个选项中的3个,则剩下的那个当然就是正确的选项,或者先排除4个选项中的2个,然后再对其余的2个进行判断和选择。