精细陶瓷
- 格式:ppt
- 大小:1.01 MB
- 文档页数:25
精细陶瓷标准精细陶瓷是一种高品质的陶瓷制品,广泛应用于各个领域,如航空航天、医疗、电子、能源等。
为了确保精细陶瓷的质量和性能达到国家标准,制定了一系列的标准和规范。
本文将介绍精细陶瓷的标准,包括其定义、分类、常见标准和相关测试方法。
一、定义精细陶瓷,又称为高性能陶瓷,是一种由非金属氧化物、硼化物、碳化物、氮化物等组成的陶瓷制品。
与传统的陶瓷材料相比,精细陶瓷具有较高的硬度、耐磨性、耐腐蚀性、绝缘性和高温稳定性等特点。
二、分类根据不同的用途和性能要求,精细陶瓷可以分为多个不同的类别,常见的有以下几种:1.结构陶瓷:用于承重和耐磨的陶瓷部件,如陶瓷刀、陶瓷轴承等。
2.功能陶瓷:具有特殊功能性能的陶瓷材料,如氧化铝陶瓷用于电介质、锆瓷用于磁气体传感器等。
3.生物医用陶瓷:用于人工关节、义齿、人工骨等医疗器械的陶瓷材料,具有良好的生物相容性和耐磨性。
三、常见标准以下是精细陶瓷常见的标准之一:1.GB/T 12703-2008 《陶瓷气隙率测定方法》:该标准规定了精细陶瓷气隙率的测定方法,通过测量陶瓷样品的密度和质量,计算得出气隙率。
2.GB/T 26310-2010 《精细陶瓷材料光学性能测定方法》:该标准规定了精细陶瓷材料的折射率、透过率、反射率等光学性能的测试方法。
3.GB/T 32127-2015 《陶瓷瓷化膜的显微组织观察方法》:该标准规定了陶瓷瓷化膜的显微组织观察方法,包括显微镜观察和扫描电镜观察等。
四、测试方法对于精细陶瓷的质量控制和性能评估,常常需要进行一系列的测试。
以下是几种常见的测试方法:1.密度测定:通过测量陶瓷样品的质量和体积,计算出其密度。
常用方法有水法浮度法和气体静压法。
2.硬度测定:用于评估陶瓷的硬度,常用方法有洛氏硬度和维氏硬度等。
3.抗压强度测定:用于评估陶瓷材料在压力作用下的强度,常用方法有三点弯曲法和压缩试验等。
4.耐磨性测定:通过在陶瓷表面施加一定的载荷和摩擦,评估陶瓷的耐磨性能。
精细陶瓷概论一、概念精细陶瓷是指采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术制造、加工的,便于进行结构设计的,具有优异特性的陶瓷。
而“新型陶瓷”是相对于传统陶瓷而言,是指用新的原料或新的加工方法而制成的具有某县新的特性、功能和用途的一类陶瓷材料。
“特种陶瓷”是相对于普通陶瓷而言,是指那些具有某些特殊性能和用于某些特殊目的的陶瓷材料。
“工业陶瓷”是指除了传统的日用陶瓷、建筑陶瓷之外,所有用于工业目的作为设备零件和原材料的陶瓷材料。
以上几个概念的主体内容上是相互重合的,但都包含了一些模糊的边界。
精细陶瓷与传统陶瓷的区别有:在原料上,突破了传统陶瓷以粘土为主要原料的界限,精细陶瓷一般以氧化物、氮化物、硅化物、硼化物、碳化物等为主要原料。
在成分上,传统陶瓷的组成由粘土的成分决定,由于精细陶瓷的原料是纯化合物,因此,成分由人工配比决定。
在制备工艺上,突破了传统陶瓷以炉窑为主要生产手段的界限,广泛采用真空烧结,保护气氛烧结、热压、热静压等手段。
在性能上,精细陶瓷具有不同的特殊性质和功能。
二、精细陶瓷的功能和用途1、热学功能精细陶瓷的热学功能包括耐热性、隔热性、导热性、抗热震性、集热性等。
耐热性的优良材料有氧化钍(ThO2)、炭化铬、硼化锆(ZrB2)等,可望作为超高温材料,用于与原子能有关的高温结构材料、高温电极材料等方面。
隔热性的优良材料有除了发泡性硅酸铝、硅酸钙等外,还有氧化铝、氧化锆、二氧化硅、钛酸钾、莫来石等的纤维材料,可作为新的高温材料。
导热性的优良材料有氧化铍、氮化铝、氮化硼等材料,有优良的电绝缘性。
抗热震性的优良材料有氧化铝、氧化镁、二氧化钛、氧化锆、氮化硅等,可用作高温炉材料,交变热应力状态下的结构材料。
2、力学功能精细陶瓷的力学功能包括硬质、耐磨性、高强度、润滑性、低热膨胀性、尺寸稳定性等。
耐磨性优良的硬质材料有氧化铝、碳化钨、立方氮化硼、金属陶瓷、金刚石、碳化硅、氧化锆、碳化硼等,主要用于切削工具、磨削材料等。
精细陶瓷密度和显气孔率试验方法
精细陶瓷密度和显气孔率试验方法
一、目的
本试验方法旨在测定精细陶瓷材料的密度和显气孔率,以评估其物理性能。
二、原理
密度是指物质的质量与其所占体积的比值,而显气孔率则表示材料中开口气孔所占的体积分数。
通过测量试样的质量和体积,结合相关计算公式,可获得密度和显气孔率的结果。
三、试验材料与设备
试验材料:精细陶瓷试样
设备:天平、溢流水槽、干燥箱、测量筒、真空泵、烘箱、切割机等
四、试验步骤
试样制备:使用切割机将试样加工成标准尺寸的小块,确保其尺寸准确,表面平整。
试样干燥:将试样放入烘箱中干燥至恒重,记录干燥后的质量m1。
浸水测量:将干燥后的试样放入测量筒中,加入足够的水淹没试样,然后使用真空泵排除试样内的空气。
将装有试样的测量筒置于溢流水槽中,直至气泡不再逸出。
测量溢流水槽中水的体积V1。
试样处理:将浸水后的试样取出,用湿布擦拭表面水分,然后放入烘箱中干燥至恒重,记录干燥后的质量m2。
计算密度:根据公式ρ=m/V,其中m为干燥后试样的质量(m1或m2),V为水的体积(V1),计算出试样的密度ρ。
计算显气孔率:根据公式显气孔率=(m1-m2)/ρ,其中m1为干燥后试样的质量,m2为浸水后干燥的试样质量,ρ为试样的密度,计算出试样的显气孔率。
五、结果分析
根据试验数据,分析试样的密度和显气孔率,并与相关标准或文献数据进行比较,评估其物理性能。
精细陶瓷标准精细陶瓷是一种经过精密加工的高性能陶瓷材料,具有优异的物理、化学和机械性能,广泛应用于航空航天、电子、汽车、医疗等领域。
为了规范精细陶瓷的生产和使用,制定了一系列精细陶瓷标准。
一、精细陶瓷的定义和分类精细陶瓷是指采用高纯度无机非金属材料,经过精密加工和烧结而成的陶瓷材料。
根据不同的用途和性能要求,精细陶瓷可以分为功能陶瓷和结构陶瓷两大类。
功能陶瓷主要指具有电、磁、光、热等功能的陶瓷材料,如压电陶瓷、磁性陶瓷、光纤陶瓷等;结构陶瓷主要指具有高强度、高韧性、耐高温、耐腐蚀等优异性能的陶瓷材料,如氧化铝陶瓷、氮化硅陶瓷等。
二、精细陶瓷的制备工艺精细陶瓷的制备工艺主要包括配料、成型、烧结和加工等环节。
其中,配料是基础,要求材料具有高纯度、高密度和均匀性;成型方法有多种,如干压成型、注射成型、流延成型等,应根据产品形状和性能要求选择合适的成型方法;烧结是关键环节,需要控制烧结温度、气氛和时间等因素,以保证材料的致密性和性能;加工主要是对烧结后的产品进行车削、铣削、磨削等机械加工,以获得所需的形状和精度。
三、精细陶瓷的性能要求精细陶瓷应具备优异的物理、化学和机械性能。
具体来说,功能陶瓷应具备稳定的物理和化学性能,如电性能、磁性能、光学性能等;结构陶瓷应具备高强度、高韧性、耐高温、耐腐蚀等性能。
此外,精细陶瓷还应具备良好的加工性能和可靠性,以满足使用要求。
四、精细陶瓷的质量控制为了保证精细陶瓷的性能和质量,需要在生产过程中进行严格的质量控制。
具体来说,需要控制原材料的质量和稳定性,严格控制生产工艺参数,对生产过程中的关键环节进行实时监控和记录,并对产品进行严格的检验和测试。
同时,还需要对生产设备进行定期维护和检查,确保设备的稳定性和可靠性。
五、精细陶瓷的应用领域精细陶瓷具有广泛的应用领域。
在航空航天领域,精细陶瓷可用于制造航空发动机零部件、卫星天线等高性能产品;在电子领域,精细陶瓷可用于制造电子元器件、集成电路封装等产品;在汽车领域,精细陶瓷可用于制造汽车发动机零部件、刹车片等产品;在医疗领域,精细陶瓷可用于制造人工关节、牙科种植物等生物医学产品。
陶瓷材料概述陶瓷材料是指用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。
它具有高熔点、高硬度、高耐磨性、耐氧化等优点。
可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。
最初陶瓷就是指陶器和瓷器的通称。
也就是通过成型和高温烧结所得到的成型烧结体。
传统的陶瓷材料主要是指硅铝酸盐。
刚开始的时候人们对硅铝酸盐的选择要求不高,纯度不大,颗粒的粒度也不均一,成型压强不高。
这时得到陶瓷称为传统陶瓷。
后来发展到纯度高,粒度小且均一,成型压强高,进行烧结得到的烧结体叫做精细陶瓷。
接下来的阶段,人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。
陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。
这主要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。
他们都可以作为陶瓷材料。
其次人们借鉴三维成键的特点发展了纤维增强复合材料。
更进一步拓宽了陶瓷材料的范围。
因此陶瓷材料发展成了可以借助三维成键的材料的通称。
陶瓷的概念就发展成为可以借助三维成键的材料,通过成型和高温烧结所得到的烧结体。
(这个概念把玻璃也纳入了陶瓷的范围)研究陶瓷的结构和性能的理论也得到了展开:陶瓷材料,内部微结构(微晶晶面作用,多孔多相分布情况)对力学性能的影响得到了发展。
材料(光,电,热,磁)性能和成形关系,以及粒度分布,胶着界面的关系也得到发展,陶瓷应当成为承载一定性能物质存在形态。
陶瓷产品的生产过程是指从投入原料开始,一直到把陶瓷产品生产出来为止的全过程。
它是劳动者利用一定的劳动工具,按照一定的方法和步骤,直接或间接地作用于劳动对象,使之成为具有使用价值的陶瓷产品的过程。
在陶瓷生产过程的一些工序中,如陶瓷坯料的陈腐、坯件的自然干燥过程等。
还需要借助自然力的作用。
使劳动对象发生物理的或化学的变化,这时,生产过程就是劳动过程和自然过程的结合。
什么是精细陶瓷?
陶瓷是我们最熟悉的无机材料,我们吃饭用的碗、盘,建筑用的瓷砖、瓷片……都是陶瓷的天地。
不过,这些陶瓷都是用天然无机物烧结而成的传统陶瓷。
所谓精细陶瓷,是指以精制的高纯度人工合成的无机化合物为原料,采用精密控制工艺烧结的高性能陶瓷,因此又被称为“先进陶瓷”或“新型陶瓷”。
精细陶瓷按照其性能的不同,又可以分成许多种。
有的具有半导体性能;有的具有很好的绝缘性能;有些陶瓷能导电;有些陶瓷在一些温度下具有超导电性,即完全没有电阻;有些陶瓷有一种奇特的性能,在它上面加上压力,它就能产生电压,这种陶瓷被称为“压电陶瓷”。
精细陶瓷通常也都具备一般陶瓷通常具有的耐热、耐磨、高硬度、抗氧化等特点。
精细陶瓷是新型材料中特别值得注意的一种。
它有可能在很大的范围内代替钢铁以及其他金属而得到广泛应用,可以有效地节约能源、提高效率、降低某些产品的成本。
精细陶瓷和高分子合成材料相结合,可以使交通运输工具向轻量化、小型化和高效化发展。
有些科学家预言,由于精细陶瓷的出现,人类将从钢铁时代重新进入陶瓷时代。
精细陶瓷是怎么制成的呢?这就要谈一谈超微粒技术了。
超微粒技术是制造精细陶瓷的关键技术。
陶瓷微粒越小,单位重量的微粒总面积就越大,微粒之间的缝隙就越小,熔点就越低,在烧结时就越容易结合。
这样就可以降低烧结时需要的温度,可以在常温常压下进行烧结,从而大幅度地降低制造成本。
同时,微粒直径小,烧结过程中的体积变化也小,因此,精细陶瓷是一种可以用于制造对精密度要求很高的材料。