(2021年整理)焊接冶金学(基本原理)
- 格式:doc
- 大小:176.50 KB
- 文档页数:82
焊接冶金学,焊接科学中的战斗机,O Ye!1.对被焊材质经过加热加压或者二者并用的方法,并且用或者不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程叫焊接。
2.当被焊接的固体金属表面接近相距ra时,就可以在接触面上进行扩散,再结晶等物理化学过程,从而形成金属健,达到焊接的目的。
(原子间的作用力随距离变化的图中,在ra的距离时,吸引力最大。
)3.焊接过程中加压,目的是为了破坏工件表面的氧化物,使结合处增大有效接触的面积,从而达到紧密接触,行成化学键。
4.对被焊工价加热,是为了使金属结合处达到塑性或熔化状态,破坏氧化膜,降低金属的变形阻力,同时增加原子的振动能,促进扩散,再结晶,化学反应和结晶过程的进行。
5.金属成功焊接所需的压力和温度是有关系的,压力大,则温度低,反之亦然。
6.一般焊接和钎焊的区别是:钎焊母材没有熔化,所以只有钎料和母材间原子相互渗透的机械组合,而没有形成共同晶粒,但是一般熔化焊接是通过原子的扩散形成共同晶粒的。
7.粘贴是靠粘贴剂与母材之间的粘合作用,一般讲没有原子的相互渗透和扩散。
8.高频感应热是利用高频感应所产生的二次电流作为热源,实质上也是电阻热的另一种形式。
这种方法热量高度集中,所以可以实现很高的焊接速度,如高频焊管等,但对于不锈钢和铝等不易导磁的金属难以实现高频焊接。
9.电子束焊接,在真空中利用高速运动的电子撞击金属表面,使之加热熔化,达到焊接的目的。
由于在真空中所以焊接质量比较好而且可焊接得较深的焊缝。
10.等离子焊接,就是利用等离子电弧,是将普通电弧压缩形成的高能量密度的电弧经行焊接。
11.热焊接性,冶金焊接性,工艺焊接性:分别指在不同的热循环,不同冶金过程,和不同的焊接工艺,所能得到优质焊缝的能力。
12.使用焊接性:整个焊接接头能满足技术规范和使用性能的程度。
13.焊接接头形成过程,一般包括:加热,熔化,液晶反应,凝固和固态相变。
14.焊接的化学冶金过程:指高温时进行的氧化,还原,脱硫,脱磷等反应,可以影响最终的成分,组织和性能。
焊接冶金学基本原理引言:焊接冶金学是研究焊接过程中金属材料的物理和化学变化的学科。
它涉及到金属的熔化、凝固、晶体生长和相变等过程。
本文将介绍焊接冶金学的基本原理,包括焊接过程中的热力学、动力学和金相学等方面。
一、热力学原理焊接过程中的热力学原理是理解焊接过程中金属材料的熔化和凝固行为的基础。
焊接过程中,金属材料受到加热而达到熔点,然后在熔融状态下进行熔化和混合。
热力学原理研究了焊接过程中的相变行为,包括熔化、凝固和晶体生长等过程。
通过控制焊接过程中的温度和冷却速率,可以影响焊缝的组织和性能。
二、动力学原理焊接过程中的动力学原理研究了焊接过程中金属材料的相变速率和晶体生长行为。
焊接过程中,金属材料经历了熔化、凝固和晶体生长等过程。
动力学原理研究了这些过程中的相变速率和晶体生长速率,以及它们与焊接参数(如焊接速度、焊接电流等)的关系。
通过控制焊接参数,可以调节焊缝的组织和性能。
三、金相学原理焊接过程中的金相学原理研究了焊接过程中金属材料的组织和相变行为。
金相学是研究金属材料的组织和结构的学科,通过显微镜观察和分析焊接接头的金相组织,可以了解焊接过程中的相变行为和组织演变规律。
金相学原理对于评估焊接接头的质量和性能具有重要意义。
结论:焊接冶金学的基本原理包括热力学、动力学和金相学等方面。
热力学原理研究了焊接过程中的相变行为,动力学原理研究了相变速率和晶体生长行为,金相学原理研究了焊接接头的组织和相变行为。
通过深入理解焊接冶金学的基本原理,可以优化焊接过程,提高焊接接头的质量和性能。
参考文献:[1] Smith W F. Principles of Materials Science and Engineering[M]. McGraw-Hill, 2006.[2] Kou S. Welding Metallurgy[M]. Wiley, 2003.。
绪论一、焊接过程的物理本质1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。
物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。
2.怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。
然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
二、焊接热源的种类及其特征1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。
2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。
3)电阻热:利用电流通过导体时产生的电阻热作为热源。
4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。
如高频焊管等。
5)摩擦热:由机械摩擦而产生的热能作为热源。
6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。
7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。
8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。
焊接冶金原理知识点总结一、焊接的概念和分类1. 焊接的概念焊接是利用热或压力,或两者的联合作用,在接头表面形成一层永久性连接的材料,使毗邻金属连接,在一定程度上具有熔融结合或压力结合作用,从而使接头处的材料成为一个整体的金属连接工艺。
2. 焊接的分类(1)按焊接方式分类:手工焊、气体保护焊、电弧焊、搅拌摩擦焊、激光焊等;(2)按焊接材料分类:金属焊接、非金属焊接、金属与非金属焊接等;(3)按焊接方法分类:熔化焊接和压力焊接;(4)按焊接环境分类:气氛焊、真空焊等。
二、熔化焊接的冶金原理1. 熔化焊接的工艺熔化焊接是利用焊条、焊丝或焊粉,在熔化的金属表面形成永久连接的工艺。
通常分为气焊、电弧焊、氩弧焊和激光焊等。
2. 熔化焊接的冶金原理(1)熔化焊接中金属熔池的形成:熔化焊接时,焊接热能使金属焊件熔化,产生熔池;(2)熔化焊接中金属熔池的流动:在熔池形成后,金属熔池受到表面张力的影响,会形成流动;(3)熔化焊接中金属熔池的凝固:熔化焊接过程中,金属熔池冷却,从而形成焊缝。
三、压力焊接的冶金原理1. 压力焊接的工艺压力焊接是在金属材料表面施加压力,使得其表面产生剪切位移,从而实现永久连接的工艺。
2. 压力焊接的冶金原理(1)压力焊接中金属材料的塑性变形:在压力作用下,金属材料表面发生塑性变形;(2)压力焊接中金属材料的分子力作用:在压力作用下,金属材料表面分子间产生相互吸引,并使得金属材料形成永久连接;(3)压力焊接中金属材料的冷却:压力焊接过程中,金属材料冷却,并形成焊缝。
四、焊接质量控制1. 焊接质量的检测方法(1)焊缝外观检查:检查焊缝表面是否有裂纹、气孔、夹渣等缺陷;(2)X射线检测:用X射线透射技术检查焊接接头内部是否有气孔、夹渣、非金属夹杂等;(3)超声波探伤:利用超声波穿透焊缝进行波阵面扫描,检测焊缝内部是否有夹杂、裂纹等;(4)磁粉探伤:在焊缝表面施加可磁化的粉末,然后利用磁粉检测设备检测焊缝是否有裂纹等。
焊接冶金学基本原理1.第一章1、氮对焊接质量的影响?(1).有害杂质(2).促使产生气孔(3).促使焊缝金属时效脆化。
影响焊缝含氮量的因素及控制措施? 1)、机械保护2)、焊接工艺参数(采用短弧焊;增加焊接电流; 直流正接高于交流,高于直流反接(焊缝含N量); 增加焊丝直径;N%,多层焊>单层焊;N%,小直径焊条>大直径焊条3)合金元素( 增加含碳量可降低焊缝含氮量;Ti、Al、Zr和稀土元素对氮有较大亲和力2.、氢对焊接质量的影响?1).氢气孔2)、白点3)、氢脆4)、组织变化和显微斑点5)、产生冷裂纹控制氢的措施?1)、限制焊接材料的含氢量,药皮成分2)、严格清理工件及焊丝:去锈、油污、吸附水分3)、冶金处理4)、调整焊接规范5)、焊后脱氢处理3、氧对焊接质量的影响?1)、机械性能下降;化学性能变差2)、产生CO气孔,合金元素烧损3)、工艺性能变差应采取什么措施减小焊缝含氧量?1)纯化焊接材料2)控制焊接工艺参数3)脱氧4.CO2保护焊焊接低合金钢时,应采用什么焊丝,为什么?答:采用高锰高硅焊丝,原因:(1)Mn,Si被烧损;(2)Mn,Si联合脱氧。
5.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低?答:L=(FeO)/[FeO] T↑L↓,焊接温度下L>1同样温度下,FeO在碱性渣中比酸性渣中更容易向金属中分配在熔渣含FeO量相同的情况下,碱性渣时焊缝含氧量比酸性渣时多。
然而碱性焊条的焊缝含氧量比酸性焊条低碱性焊条药皮的氧化势小的缘故6为什么焊接高铝钢时,即使焊条中不含SiO2,只是由于水玻璃作粘结剂焊缝还会严重增硅?1)焊接电弧的弧定性(稳弧性) 2)表面成型3)在各种位置焊接适应性4)脱渣性5)飞溅6)焊条的熔化速度7)药皮发红问题8)焊条发尘量2,低氢型焊条为什么对铁锈、油污、水份很敏感?同样温度下,FeO在碱性渣中比酸性渣中更容易向金属中分配在熔渣含FeO量相同的情况下,碱性渣时焊缝含氧量比酸性渣时多碱性渣含SiO2、TiO2等酸性氧化物较少,FeO 活度大,易向金属中扩散,使焊缝增氧➢第三章1.试述氢气孔和CO气孔的形成原因,特征以及防止措施:答: 氢气孔形成原因:高温时氢在熔池和熔滴金属中的溶解度急剧下降,特别是液态转为固态时,氢的溶解度发生突变,可从32ml/100g下降至10ml/100g。
焊接冶金学基本原理要点归纳总计.焊接冶金学基本原理绪论1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。
2)焊接、钎焊和粘焊本质上的区别: 焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒;钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的机械结合;粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。
3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。
压力焊和钎焊热源:电阻热、摩擦热、高频感应热。
4)焊接加热区:可分为活性斑点区和加热斑点区5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。
表示方法:等温线或者等温面。
特点:焊接时焊件上各点的温度在每一瞬时都在有规律的变化。
影响因素:(1)热源的性质;(2)焊接线能量;(3)被焊金属的热物理性质;;(4)焊件的板厚和形状。
6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊。
,件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。
8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。
9)焊接热传递的三种形式:传导、对流和辐射。
由热源传热给焊件的热量以辐射和对流为主,而母材和焊丝获得热能后热的传播以传导为主。
10)焊接线能量:热源功率q与焊接速度v的比值。
热输入:在单位时间内,在单位长度上输入的热能。
第一章焊接化学冶金1)平均熔化速度:单位时间内熔化焊芯质量或长度。
平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。
(真正反应焊接质量的指标)损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。
《焊接冶金学》知识点总结第一篇:《焊接冶金学》知识点总结焊接冶金学,焊接科学中的战斗机,O Ye!1.对被焊材质经过加热加压或者二者并用的方法,并且用或者不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程叫焊接。
2.当被焊接的固体金属表面接近相距ra时,就可以在接触面上进行扩散,再结晶等物理化学过程,从而形成金属健,达到焊接的目的。
(原子间的作用力随距离变化的图中,在ra的距离时,吸引力最大。
)3.焊接过程中加压,目的是为了破坏工件表面的氧化物,使结合处增大有效接触的面积,从而达到紧密接触,行成化学键。
4.对被焊工价加热,是为了使金属结合处达到塑性或熔化状态,破坏氧化膜,降低金属的变形阻力,同时增加原子的振动能,促进扩散,再结晶,化学反应和结晶过程的进行。
5.金属成功焊接所需的压力和温度是有关系的,压力大,则温度低,反之亦然。
6.一般焊接和钎焊的区别是:钎焊母材没有熔化,所以只有钎料和母材间原子相互渗透的机械组合,而没有形成共同晶粒,但是一般熔化焊接是通过原子的扩散形成共同晶粒的。
7.粘贴是靠粘贴剂与母材之间的粘合作用,一般讲没有原子的相互渗透和扩散。
8.高频感应热是利用高频感应所产生的二次电流作为热源,实质上也是电阻热的另一种形式。
这种方法热量高度集中,所以可以实现很高的焊接速度,如高频焊管等,但对于不锈钢和铝等不易导磁的金属难以实现高频焊接。
9.电子束焊接,在真空中利用高速运动的电子撞击金属表面,使之加热熔化,达到焊接的目的。
由于在真空中所以焊接质量比较好而且可焊接得较深的焊缝。
10.等离子焊接,就是利用等离子电弧,是将普通电弧压缩形成的高能量密度的电弧经行焊接。
11.热焊接性,冶金焊接性,工艺焊接性:分别指在不同的热循环,不同冶金过程,和不同的焊接工艺,所能得到优质焊缝的能力。
12.使用焊接性:整个焊接接头能满足技术规范和使用性能的程度。
13.焊接接头形成过程,一般包括:加热,熔化,液晶反应,凝固和固态相变。
焊接冶金学(基本原理)习题名词解释: 焊接冶金过程碳当量韧性长(短)段多层焊药皮重量系数绪论影响温度场的因素?1.试述焊接、钎焊和粘接在本质上有何区别?2.怎样才能实现焊接,应有什么外界条件?3.能实现焊接的能源大致哪几种?它们各自的特点是什么?4.焊接电弧加热区的特点及其热分布?5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响?6.试述提高焊缝金属强韧性的途径?7.什么是焊接,其物理本质是什么?8.焊接冶金研究的内容有哪些第一章焊接化学冶金焊条金属的平均熔化速度熔焊方法的保护方式?碱度1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同?2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分?3.焊接区内气体的主要来源是什么?它们是怎样产生的?4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度?5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么?6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律?7.氢对焊接质量有哪些影响?8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少?9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。
10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施?11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量?12.保护焊焊接低合金钢时,应采用什么焊丝?为什么?13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么?14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。
15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量?16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低?17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅?18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。
焊接冶金学(基本原理)习题绪论1 •试述焊接、钎焊和粘接在木质上有何区别?2.怎样才能实现焊接,应有什么外界条件?3.能实现焊接的能源大致哪几种?它们各自的特点是什么?4.焊接电弧加热区的特点及其热分布?5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响?6.试述提高焊缝金属强韧性的途径?7•什么是焊接,其物理本质是什么?8 •焊接冶金研究的内容有哪些第一章焊接化学冶金1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主耍有哪些不同?2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分?3•焊接区内气体的主要来源是什么?它们是怎样产生的?4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度?5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么?6•手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律?7.氢对焊接质量有哪些影响?8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少?9.综合分析各种因素对手工电弧焊时焊缝含氢量的影响。
10.今欲制造超低氢焊条([H]〈lcn)7100g),问设计药皮配方时应采取什么措施?11.氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量?12•保护焊焊接低合金钢时,应采用什么焊丝?为什么?13•在焊接过程屮熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么?14.测得熔渣的化学成分为:Ca041. 94%、28. 34%、23. 76%、FeO5. 78%、7. 23%、3. 57%、MnO3.74%、4. 25%,计算熔渣的碱度和,并判断该渣的酸碱性。
15.已知在碱性渣和酸性渣中各含有15%的FcO,熔池的平均温度为1700°C,问在该温度下平衡时分配到熔池屮的FeO量各为多少?为什么在两种情况下分配到熔池屮的FeO 量不同?为什么焊缝中实际含FeO量远小于平衡时的含量?16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低?17•为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅?18.综合分析熔渣中的CaF?在焊接化学冶金过程是所起的作用。
(完整)焊接冶金学(基本原理)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)焊接冶金学(基本原理))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)焊接冶金学(基本原理)的全部内容。
绪论一、焊接过程的物理本质1。
焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接.物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合.2.怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的.然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2)对被焊材料加热(局部或整体)对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
二、焊接热源的种类及其特征1) 电弧热:利用气体介质放电过程所产生的热能作为焊接热源。
2) 化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。
3)电阻热:利用电流通过导体时产生的电阻热作为热源。
4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。
如高频焊管等。
5)摩擦热:由机械摩擦而产生的热能作为热源。
6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。
7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。
8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。
三、熔焊加热特点及焊接接头的形成(一)焊件上加热区的能量分布热源把热能传给焊件是通过焊件上一定的作用面积进行的。
对于电弧焊来讲,这个作用面积称为加热区,加热区又可分为加热斑点区和活性斑点区;1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能;2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。
在该区内热量的分布是不均匀的,中心高,边缘低,如同立体高斯锥体。
(二)焊接接头的形成:熔焊时焊接接头的形成,一般都要经历加热、熔化、冶金反应、凝固结晶、固态相变,直至形成焊接接头。
(l)焊接热过程:熔焊时被焊金属在热源作用下发生局部受热和熔化,使整个焊接过程自始至终都是在焊接热过程中发生和发展的.它与冶金反应、凝固结晶和固态相变、焊接温度场和应力变形等均有密切的关系。
(2)焊接化学冶金过程:熔焊时,金属、熔渣与气相之间进行一系列的化学冶金反应,如金属氧化、还原、脱硫、脱磷、掺合金等。
这些冶金反应可直接影响到焊缝的成分、组织和性能。
(提高焊缝的强韧性:1 通过焊接材料向焊缝中加入微量合金元素(如 Ti、Mo、Nb、V 、Zr 、B 和稀土等)进行变质处理,从而提高焊缝的韧性;2 适当降低焊缝中的碳,并最大限度排除焊缝中的硫、磷、氧、氮、氢等杂质进行净化焊缝,也可提高焊缝的韧性)(3)焊接时的金属凝固结晶和相变过程:随着热源离开,经过化学冶金反应的熔池金属就开始凝固结晶,金属原子由近程有序排列转变为远程有序排列,即由液态转变为固态。
对于具有同素异构转变的金属,随温度下降,将发生固态相变。
因焊接条件下是快速连续冷却,并受局部拘束应力的作用,因此,可能产生偏析、夹杂、气孔、热裂纹、冷裂纹、脆化等缺陷.故而控制和调整焊缝金属的凝固和相变过程,就成为保证焊接质量的关键。
由此看来,焊接接头是由两部分所组成,即焊缝和热影响区,其间有过渡区,称为熔合区。
焊接时除必须保证焊缝金属的性能之外,还必须保证焊接热影响区的性能。
四、焊接温度场:(一)焊接传热的基本形式:在熔焊的条件下,由热源传热给焊件的热量,主要是以辐射和对流为主,而母材和焊条(焊丝)获得热能之后,热的传播则是以热传导为主.焊接传热过程所研究的内容主要是焊件上的温度分布及其随时间的温度变化何题,因研究焊接温度场,是以热传导为主,适当考虑辐射和对流的作用。
(二)焊接温度场的一般特征:焊接时焊件上各点的温度每一瞬时都在变化,而且是有规律地变化。
焊件上(包括内部)某瞬时的温度分布称为“温度场。
焊接温度场的分布情况可以用等温线或等温面表示。
所谓等温线或等温面,就是把焊件上瞬时温度相同的各点连接在一起,成为一条线或一个面。
各个等温线或等温面彼此之间不能相交,而存在一定的温度差,这个温度差的大小可以用温度梯度来表示。
焊接温度场各点的温度不随时间而变动时,称为稳定温度场;随时间而变动时,称为非稳定温度场。
在绝大多数情况下,焊件上各点的温度是随时间变动的,因此焊接温度场应属非稳定温度场。
恒定热功率的热源固定作用在焊件上时(相当于补焊缺陷的情况),开始一段时间内,温度是非稳定的.但经过一段时间之后便达到了饱和状态,形成了暂时稳定的温度场(即各点的温度不随时间而变),把这种情况称为准稳定温度场。
对于正常焊接条件下的移动热源,经过一定时间之后,焊件上同样会形成准稳定温度场,这时焊件上各点温度虽然随时间而变化,但各点以固定的温度跟随热源一起移动,也就是说,这个温度场与热源以同样的速度跟踪.如果采用移动坐标系,坐标原点与热源中心重合,则焊件上各点的温度只取决于这个系统的空间坐标,而与热源的移动距离和速度无关。
(三)影响温度场的因素: (l)热源的性质: 一般电弧焊的条件下, 25mm 以上的钢板就可以认为是点状热源,而 100mm以上的厚钢板电渣焊时却是线状热源。
电子束和激光焊接时,热能极其集中,所以温度场的范围很小;而气焊时,热源作用的面积较大,因此温度场的范围也大。
(2)焊接线能量(3)被焊金属的热物理性质( l 热导率:表示金属导热的能力,它的物理意义是在单位时间内,沿法线方向单位距离相差 l ℃时经过单位面积所传递的热能.2 比热容: 1克物质每升高1℃所需的热谓之比热容。
3 容积比热容:单位体积物质每升高 1 ℃所需的热量称为容积比热容,用 cρ表示。
4 )热扩散率:热扩散率是表示温度传播的速度. 5 热焓( H )单位物质所具有的全部热能,它与温度有关。
6 表面散热系数:表面散热系数的物理意义是散热体表面与周围介质每相差 1 ℃时,在单位时间内单位面积所散失的热量。
根据实验,在焊接过程中所散失的热能,在静止的空气中主要是通过辐射,而对流的作用很小。
因此,当焊接不锈钢和耐热钢时,所选用的焊接线能量( q/v的比值)应比焊接低碳钢时要小。
相反,焊接铜和铝时,由于导热性能良好,因此应选用比焊接低碳钢更大的线能量。
)4)焊件的板厚及形状: (l厚板焊接结构 2薄板焊接结构)第一章焊接化学冶金:在熔焊过程中,焊接区内各种物质之间在高温下相互作用的过程,称为焊接化学冶金过程。
它主要研究在各种焊接工艺条件下,冶金反应与焊缝金属成分、性能之间的关系及其变化规律。
研究的目的在于运用这些规律合理地选择焊接材料,控制焊缝金属的成分和性能使之符合使用要求,设计创造新的焊接材料。
第一节焊接化学冶金过程的特点一、焊条熔化及熔池形成:(一)焊条的加热及熔化: 1.焊条的加热: 电弧焊时用于加热和熔化焊条(或焊丝)的热能有:电阻热、电弧热和化学反应热。
在使用大电流密度焊接时,由于电阻热过大,焊芯和药皮的温升过高,将引起许多不良的后果。
如飞溅增加,药皮开裂或脱落,药皮丧失冶金作用,焊缝成形变坏,甚至产生气孔等缺陷.用不锈钢焊条焊接时,这种现象更为突出.因此,手工电弧焊时,应严格限制焊芯和药皮的加热温度。
2.焊条金属的平均熔化速度:在单位时间内熔化的焊芯质量或长度称为焊条金属的平均熔化速度.试验表明,在正常的焊接工艺参数范围内,焊条金属的平均熔化速度与焊接电流成正比.在焊接过程中并非所有熔化的焊条金属都进入了熔池形成焊缝,而是有一部分损失.通常把单位时间内真正进入焊缝金属的那一部分金属的质量叫平均熔敷速度。
在焊接过程中由于飞溅、氧化和蒸发损失的那一部分金属质量与熔化的焊芯质量之比,称为损失系数.熔敷系数是真正反映焊接生产率的指标。
3.焊条金属熔滴及其过渡特性:在电弧热的作用下,焊条端部熔化形成的滴状液态金属称为熔滴。
(l)熔滴过渡的形式:用药皮焊条焊接时,主要有三种过渡形式:短路过渡、颗粒状过渡和附壁过渡。
短路过渡的过程是:在短弧焊时焊条端部的熔滴长大到一定的尺寸就与熔池发生接触,形成短路,于是电弧熄灭.同时在各种力的作用下熔滴过渡到熔池中,电弧重新引燃.如此重复这一过程,形成稳定的短路过渡过程.颗粒状过渡过程是;当电弧的长度足够长时,焊条端部的熔滴长大到较大的尺寸,然后在各种力的作用下,以颗粒状落入熔池,此时不发生短路,接着进行下一个过渡周期。
附壁过渡是指熔滴沿着焊条端部的药皮套简壁向熔池过渡的形式。
溶滴的过渡形式、尺寸和过渡频率取决于药皮的成分与厚度、焊芯直径、焊接电流和极性等因素。
一般讲,碱性焊条在较大的焊接电流范围内主要是短路过渡和大颗粒状过渡。
用酸性焊条焊接时为细颗粒状过渡和附壁过渡.(2)熔滴的比表面积和相互作用时间: 焊接时金属与熔渣和气体的相互作用属于高温多相反应,因此熔滴的比表面积和它与周围介质相互作用的时间,对熔滴阶段的冶金反应有很大的影响。
熔滴越细其比表面积越大。
因此,凡是能使熔滴变细的因素,如增大焊接电流或在药皮中加入表面活性物质等,都能使熔滴的比表面积增大,从而有利于加强冶金反应.(3)熔滴的温度:熔滴的温度是研究熔滴阶段各种物理化学反应时不可缺少的重要参数。
试验表明,熔滴的平均温度随焊接电流的增加而升高,随焊丝直径的增加而降低。
最后应指出,药皮熔化后形成的熔渣也向熔池过渡,有两种过渡形式:一是以薄膜的形式包在熔滴外面或夹在熔滴内同熔滴一起落入熔池;二是直接从焊条端部流入熔池或以滴状落入熔池.当药皮厚度大时才会出现第二种过渡形式.(二)熔池的形成:熔焊时,在热源的作用下焊条熔化的同时被焊金属也发生局部熔化。