高中数学(必修2)单元测试-第一次月考
- 格式:doc
- 大小:815.50 KB
- 文档页数:11
高中数学必修一第一、二章数学测试题试题姓名: 班级: 学号:一、选择题(共5分×10=50分) 命题人: 1.下列说法正确的是()A .Q Z ⊆ B. N R ∈ C. N Q ⊆ D. *Z N ⊆ 2.设集合 A ={x|-1<x <2},集合B ={x|1<x <3},则 A∪B 等于( )A. {x|-1<x <3}B. {x|-1<x <1}C. {x|1<x <2}D. {x|2<x <3}3.集合{}2*|70,A x x x x =-<∈N ,则*|,8B y y A y ⎧⎫=∈∈⎨⎬⎩⎭N 中元素的个数为A. 1个B. 2个C. 3个D. 4个 4.已知集合M 满足{}1,2M{}1,2,3,则集合M 的个数为( )A. 0B. 1C. 2D. 4 5.下列表达的是函数关系的是( )A. 某地区的时间与气温;B. 人的睡眠质量与身体状况的关系;C. 小麦的亩产量与土壤的关系;D. 人的身高与其饮食情况 6.下列各组函数表示同一函数的是( )A. ()()22,f x x g x x ==B. ()()01,f x g x x ==C. ()()233,f x x g x x == D.()()2,f a g x x a ==7.函数1y x =- )A. [],1-∞B. []1,+∞C. [)1,+∞D. (],1-∞8.下列表示正确的是()A. []{},/a b x a x b =<< B .[){},/a b x a x b =<≤ C. (]{},/a b x a x b =≤< D. R=(),-∞+∞ 9.下列函数中哪个与函数y x =-相等( )A. 2y x =-B. ()11x x y x --=-C.33x - D. y x x =-10.已知函数()(]()0,1g 2,f x x x =+的定义域为,那么()()f g x 的定义域是() A.(]2,3 B.(]2,1-- C.(]0,1 D.[)0,1 二、填空题(共5分×6=30分)11.已知{}21,x x ∈-,则实数x 的值是_______. 12.函数()21f x x =-的定义域是__________.13.下列与函数1y x =-是相同函数的是________.①()21y x =- ②()211x f x x -=+③()331y x =- ④()1f a a =-, ()1a >14.函数()1214f x x x =--的定义域是 . 15.已知()2x mf x x -=+,且()30f =,则()3f -=__________.16.已知函数()1g x x +=的定义域为(]1,3 ,()221f x x +=+,那么()()2g f x + 的定义域是__________.三、解答题(共30分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知集合{|24}A x x =≤<, {|23}B x a x a =+≤≤, (1)当2a =时,求A B ⋂(2)若B A ⊆,求实数a 的取值范围18.(8分)求下列函数定义域 (1)y =(2)()()22f x x x =-(3)()f x =19.(12分)已知函数()f x =(1)当()2b f x b =∅时,若的定义域为,求实数的取值范围;(2)若()f x 的定义域为R ,且()2220a b b a -+-=,求实数a b 和的取值范围。
第二章单元测试1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交 3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面 4.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行5.下列命题中,错误的是…………………………………………( ) A .平行于同一条直线的两个平面平行 B .平行于同一个平面的两个平面平行 C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交 6.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .07.下列命题中错误的是……………………………………( ) A .如果平面βα⊥,那么平面α内所有直线都垂直于平面βB .如果平面βα⊥,那么平面α一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面τα⊥,τβ⊥,l =⋂βα,那么τ⊥l 8.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成 60 ④DM 与BN 垂直 以上四个命题中,正确命题的序号是( ) A .①②③ B .②④ C .③④ D .②③④9.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 10.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ⊂α,b ⊂β,a ∥b D .a ⊂α,b ⊂α,a ∥β,b ∥β 11.下列四个说法 ①a //α,b ⊂α,则a // b ②a ∩α=P ,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 12.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组13.(12分)已知正方方体111'D C B A ABCD -,求:(1)异面直线11CC BA 和的夹角是多少? (2)B A 1和平面11B CDA 所成的角?(3)平面11B CDA 和平面ABCD 所成二面角的大小?AB CDEFMN C A 1B 11P A BCDCABPMN14.(12分)如图,在三棱锥P —ABC 中,PA 垂直于平面ABC ,AC ⊥BC . 求证:BC ⊥平面PAC .15.(10分)如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证: PAC BC 平面⊥16.(12分)如图,在四棱锥P —ABCD 中,M ,N 分别是AB ,PC 的中点,若ABCD 是平行四边形.求证:MN ∥平面PAD .,M N 分别是17. 如图:S 是平行四边形ABCD 平面外一点,,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SCDA BCP O17.(14分)如图正方形ABCD 中,O 为中心,P O ⊥面ABCD ,E 是PC 中点, 求证:(1)PA ||平面BDE ; (2)面PAC ⊥面BDE.18.(14分)如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面 C 1DF ?并证明你的结论.19.在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.必修2第三章《直线与方程》单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23- D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )274. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0二、填空题(本大题共4小题,每小题5分,共20分)11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 . 三、解答题(本大题共3小题,每小题10分,共30分)15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值. ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*17.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.261;14.2x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. 16.m=0或m=-1;17.x=1或3x-4y-3=0.必修2第四章《圆与方程》单元测试题一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )(A)5 (B) 3 (C)10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6π B 、4π C 、3π D 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共4小题,每小题5分,共20分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 . 2+y 2-8x=0的弦OA 。
2018-2019学年必修二第三章训练卷直线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( )A.k 1<k 3<k 2B.k 3<k 1<k 2C.k 1<k 2<k 3D.k 3<k 2<k 12.直线x +2y -5=0与2x +4y +a =0之间的距离为5,则a 等于( ) A.0B.-20C.0或-20D.0或-103.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值是( ) A.-3B.2C.-3或2D.3或-24.下列说法正确的是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过定点A (0,b )的直线都可以用方程y =kx +b 表示C.不经过原点的直线都可以用方程x a +yb=1表示 D.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示5.点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则( ) A.m =-3,n =10 B.m =3,n =10 C.m =-3,n =5D.m =3,n =56.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( ) A.3x -y -8=0 B.3x +y +4=0 C.3x -y +6=0D.3x +y +2=07.过点M (2,1)的直线与x 轴,y 轴分别交于P ,Q 两点,且|MP |=|MQ |,则l 的方程是( ) A.x -2y +3=0 B.2x -y -3=0 C.2x +y -5=0D.x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A.(-2,1)B.(2,1)C.(1,-2)D.(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A.第一象限B.第二象限C.第三象限D.第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A.3x -2y +2=0 B.2x +3y +7=0 C.3x -2y -12=0D.2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A.x +y =0 B.x -y =0C.x +y -1=0D.x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A.15,1 B.0,1C.0,15D.15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________. 16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________. 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)此卷只装订不密封班级 姓名 准考证号 考场号 座位号17.(10分)已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值:(1)过点(1,1);(2)直线在y轴上的截距为-3.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点, 18.(12分)直线l过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.2018-2019学年必修二第三章训练卷直线与方程(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A. 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D. 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D. 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B. 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D. 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A. 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C. 10.【答案】D【解析】所求直线与已知直线平行,且和点(1,-1)等距,不难求得直线为2x +3y +8=0.故选D. 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D.12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1), 得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′), 则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.。
人教版高中数学必修二第一章测试题及答案高一数学人教版必修二第一章测试题及答案一、选择题1.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是().答案:C.2+2/22.棱长都是1的三棱锥的表面积为().答案:B.2√23.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是().答案:B.50π4.正方体的棱长和外接球的半径之比为().答案:B.3∶25.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是().答案:A.π/96.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是().答案:D.1607.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF=3/2,且EF与平面ABCD的距离为2,则该多面体的体积为().答案:B.58.下列关于用斜二测画法画直观图的说法中,错误的是().答案:D.水平放置的圆的直观图是椭圆二、填空题9.若三个球的表面积之比是1∶2∶3,则它们的体积之比是1∶2∶3.10.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-A1BD1的体积为a^3/6.11.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是√29,它的体积为√108.12.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为4厘米.三、解答题暂无。
解析:V = Sh = πr²h = πR³,其中R = 364 × 27 = 12.三、解答题13.参考答案:V = (S + SS' + S')h,其中h =14.参考答案:V = 1/3( S + SS' + S')h = 1/3 × × 75 = xxxxxxx/3.S表面积 = S下底面积 + S台侧面积 + S锥侧面积 = π×5² + π×(2+5)×5 + π×2²×2 = (60+42)π.V台= 1/3πr₁²h = 1/3π(5²+5×2+2²)×5 = 148π/3.V锥 = 1/3πr₁²h = 1/3π5²×5 = 25π/3.V = V台 - V锥= 148π/3 - 25π/3 = 123π/3 = 41π.。
安徽省部分高中2019-2020学年高一数学上学期第一次月考试题考生须知:1.本试卷满分150分,考试时间120分钟。
2.考生答题时,将答案写在专用答题卡上。
选择题答案请用2B 铅笔将答题卡上对应题目的答案涂黑;非选择题答案请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内规范作答,凡是答题不规范一律无效...........。
3.考生应遵守考试规定,做到“诚信考试,杜绝舞弊”。
4.本卷命题范围:必修①第一章第I 卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A ={x |x 2-2x ≤0},B ={x |x ≤a }.若A ⊆B ,则实数a 的取值范围是A .[2,+∞)B .(2,+∞)C .(-∞,0)D .(-∞,0]2.已知集合1{|12}{|22}8x M x x x P x x =-≤∈=<<∈Z R ,,,,则图中阴影部分表示的集合为A .{1}B .{–1,0}C .{0,1}D .{–1,0,1}3.已知函数f (x )21x -x ∈{1,2,3}.则函数f (x )的值域是A .{}35,,B .(–∞,0]C .[1,+∞)D .R4.已知函数y =()()21020x x x x ⎧+≤⎪⎨>⎪⎩,若f (a )=10,则a 的值是 A .3或–3 B .–3或5 C .–3 D .3或–3或55.设偶函数()f x 的定义域为R ,当x [0,)∈+∞时()f x 是增函数,则(2)f -,(π)f ,(3)f -的大小关系是A .(π)f <(2)f -<(3)f -B .(π)f >(2)f ->(3)f -C .(π)f <(3)f -<(2)f -D .(π)f >(3)f ->(2)f -6.定义域为R 的奇函数()y f x =的图像关于直线2x =对称,且(2)2018f =,则(2018)(2016)f f +=A .4034B .2020C .2018D .27.若函数()f x =的定义域为R ,则实数m 取值范围是A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞8.已知()f x 在R 上是奇函数,且()()2f x f x +=-, 当()0,2x ∈时,()22f x x =,则()7f = A .98 B .2 C .98- D .2-9.函数()f x 定义域为R ,且对任意x y 、R ∈,()()()f x y f x f y +=+A .(0)0f =B .(2)2(1)f f =C .11()(1)22f f =D .()()0f x f x -<10.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为A .9B .14C .18D .2111.已知函数y =f (x +1)定义域是[-2,3],则y =f (2x-1)的定义域是A .[0,25] B .[-1,4] C .[-5,5]D .[-3,7]12.已知函数()266,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是A.11,63⎛⎫⎪⎝⎭B.18,33⎛⎫-⎪⎝⎭C.11,63⎛⎤-⎥⎝⎦D.18,33⎛⎤- ⎥⎝⎦第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知集合A={a,b,2},B={2,b2,2a},且A=B,则a=__________.14.奇函数f(x)的图象关于点(1,0)对称,f(3)=2,则f(1)=___________.15.不等式的mx2+mx-2<0的解集为,则实数的取值范围为__________.16.设函数y=ax+2a+1,当-1≤x≤1时,y的值有正有负,则实数的范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演示步骤.17.(本小题满分10分)设全集为R,A={x|2≤x<4},B={x|3x–7≥8–2x}.(1)求A∪(C R B).(2)若C={x|a–1≤x≤a+3},A∩C=A,求实数a的取值范围.18.(本题满分12分)已知函数1 ()f x xx=+,(1)求证:f(x)在[1,+∞)上是增函数;(2)求f(x)在[1,4]上的最大值及最小值.19.(本题满分12分)已知函数()222(0)f x ax ax a a =-++<,若()f x 在区间[2,3]上有最大值1.(1)求a 的值;(2)若()()g x f x mx =-在[2,4]上单调,求实数m 的取值范围.20.(本题满分12分)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若A∪B=A ,求实数m 的取值范围; (2)当x∈Z 时,求A 的非空真子集的个数; (3)当x∈R 时,若A∩B=∅,求实数m 的取值范围.21.(本题满分12分)已知函数()273++=x x x f .(1)求函数的单调区间;(2)当()2,2-∈x 时,有()()232m f m f >+-,求m 的范围.22.(本题满分12分)已知函数+∈=N x x f y ),(,满足:①对任意,a b N +∈,都有)()()(b af b bf a af >+)(a bf +;②对任意n ∈N *都有[()]3f f n n =. (1)试证明:()f x 为N +上的单调增函数; (2)求(1)(6)(28)f f f ++;(3)令(3),nn a f n N +=∈,试证明:121111.424n n n a a a <+++<+2019~2020学年度第一学期第一次月考联考高一数学参考答案一、选择题:本题共12小题,每小题5分,共60分。
第1章立体几何初步(时间:120分钟,满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.有下列四个结论,其中正确结论的个数为________.①互相垂直的两直线,有且只有一个公共点;②经过一点有且只有一条直线垂直于已知直线;③垂直于同一条直线的两条直线平行;④两平行线之一垂直于一条直线,则另一条也垂直于此直线.解析:①错误,异面直线也可能垂直.②错误,应有无数条.③错误,可能平行,相交或异面.④正确.答案:12.给出下列命题,其中正确的命题的序号是________.①直线上有两点到平面的距离相等,则此直线与平面平行;②直线m⊥平面α,直线n⊥m,则n∥α;③a、b是异面直线,则存在惟一的平面α,使它与a、b都平行且与a、b距离相等.解析:①错误,如果这两点在该平面的异侧,则直线与平面相交;②错误,直线n可能在平面α内;③正确,如图,设AB是异面直线a、b的公垂线段,E为AB的中点,过E作a′∥a,b′∥b,则a′、b′确定的平面即为与a、b都平行且与a、b距离相等的平面,并且它是惟一确定的.答案:③3.P为△ABC所在平面外一点,AC=2a,连结PA、PB、PC,得△PAB和△PBC都是边长为a的等边三角形,则平面ABC和平面PAC的位置关系为________.解析:如图所示,由题意知,PA=PB=PC=AB=BC=a,取AC中点D,连结PD、BD,则PD⊥AC,BD⊥AC,则∠BDP为二面角P-AC-B的平面角,又∵AC=2a,∴PD=BD=22a,在△PBD中,PB2=BD2+PD2,∴∠PDB=90°.答案:垂直4.如图甲,在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体(图乙),使G1、G2、G3三点重合于点G,这样,下面结论成立的是________.①SG⊥平面EFG;②SD⊥平面EFG;③GF⊥平面SEF;④GD⊥平面SEF.解析:在图甲中,SG1⊥G1E,SG3⊥G3F;在图乙中,SG⊥GE,SG⊥GF,∴SG⊥平面EFG.答案:①5.如图所示,正方体ABCD-A1B1C1D1中,三棱锥D1-AB1C的表面积与正方体的表面积的比为________.解析:设正方体的棱长为a ,则S 正方体=6a 2,正四面体D 1-AB 1C 的棱长为2a ,S 正四面体=4×34×(2a )2=23a 2,所以S 四面体S 正方体=236=33.答案:336.如果底面直径和高相等的圆柱的侧面积是S ,那么圆柱的体积等于________. 解析:设底面半径为r ,则2πr ·2r =S ,故r =S4π,所以V =πr 2·2r =S 4Sπ.答案:S 4Sπ7.圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________ cm.解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r ,解得r =4. 答案:48.在空间四边形ABCD 中,AD =BC =2,E ,F 分别是AB ,CD 的中点,EF =3,则异面直线AD 与BC 所成角的大小为________.解析:取AC 中点M ,连结EM ,FM ,F 为DC 中点,M 为AC 中点,∴FM ∥AD ,且FM =12AD =1,同理EM ∥BC ,且EM =12BC =1.△EMF 中作MN ⊥EF 于N . Rt△MNE 中,EM =1,EN =32, ∴sin ∠EMN =32,∠EMN =60°, ∴∠EMF =120°,∴AD 与BC 所成角为60°. 答案:60° 9.降水量是指水平地面上单位面积降雨的深度,用上口直径为38 cm ,底面直径为24 cm ,深度为35 cm 的圆台形水桶(轴截面如图所示)来测量降水量,如果在一次降雨过程中,此桶盛得的雨水正好是桶深的17,则本次降雨的降水量是________(精确到1 mm).解析:桶内水的深度为17×35=5(cm),设水面半径为x cm ,则有x -1219-12=535,解得x =13.V 水=13π·5(122+12×13+132)=2 3453π.设单位面积雨水深度为h ,则V 水=π·192·h ,∴π·192·h =2 3453π,∴h ≈2.2 cm=22 mm. 答案:22 mm10.在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为________.解析:利用三棱锥A 1-AB 1D 1的体积变换:VA 1-AB 1D 1=VA -A 1B 1D 1,则13×2×4=13×6×h ,h=43. 答案:4311.在空间四边形ABCD 中,平面ABD ⊥平面BCD ,且DA ⊥平面ABC ,则△ABC 的形状是________. 解析:如图,在△ABD 内,作AH ⊥BD 于H ,∵平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD , ∴AH ⊥平面BCD . 又BC ⊂平面BCD . ∴BC ⊥AH .又∵DA ⊥平面ABC ,BC ⊂平面ABC , ∴DA ⊥BC .又AH ∩DA =A , ∴BC ⊥平面ABD ,∴BC ⊥AB ,故△ABC 是以∠B 为90°角的直角三角形. 答案:直角三角形12.如图(1)所示,一个装了水的密封瓶子,其内部可以看成是由半径为1 cm 和半径为3 cm 的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20 cm ;当这个几何体如图(3)水平放置时,液面高度为28 cm ,则这个简单几何体的总高度为________.解析:设上、下圆柱的半径分别是r 、R ,高分别是h ,H .由水的体积不变得πR 2H +πr 2(20-H )=πr 2h +πR 2·(28-h ),又r =1,R =3,故H +h =29.则这个简单几何体的总高度为29 cm. 答案:2913.在正三棱柱ABC -A 1B 1C 1中,AB =1,若二面角C -AB -C 1的大小为60°,则点C 到平面ABC 1的距离为________.解析:如图,取AB 中点为O ,连结C 1O 和CO .∵三棱柱ABC -A 1B 1C 1是正三棱柱,∴CO ⊥AB . ∵AC 1=BC 1,∴C 1O ⊥AB ,则∠C 1OC即为二面角C -AB -C 1的平面角.又AB =1,∴CO =32,C 1C =32,OC 1= 3.下面用等体积法求距离. VC 1-ABC =VC -ABC 1, ∴13S △ABC ·CC 1=13S △ABC 1·d , 即34×32=12×1×3×d .∴d =34. 答案:3414.已知Rt △ABC 的斜边在平面α内,直角顶点C 是α外一点,AC 、BC 与α所成角分别为30°和45°,则平面ABC 与α所成锐角为________.解析:如图所示,过点C 作垂直于α的直线CO ,交α于点O . ∴∠CAO =30°,∠CBO =45°.设CO =a ,∴Rt △ACO 中,AC =2a , 在Rt △BCO 中,BC =2a .过C 点在平面ABC 内作CD ⊥AB ,连结OD ,则∠CDO 为平面ABC 与α所成的锐角,AB =6a ,∴CD =23a ,∴在Rt △CDO 中,sin ∠CDO =a 2a 3=32,∴∠CDO =60°.答案:60°二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)(2014·淄博高一检测)直三棱柱的高为6 cm ,底面三角形的边长分别为3 cm ,4 cm ,5 cm ,将棱柱削成圆柱,求削去部分体积的最小值. 解:如图所示,只有当圆柱的底面圆为直三棱柱的底面三角形的内切圆时,圆柱的体积最大,削去部分体积才能最小,设此时圆柱的底面半径为R ,圆柱的高即为直三棱柱的高6 cm. ∵在△ABC 中,AB =3 cm , BC =4 cm ,AC =5 cm , ∴△ABC 为直角三角形.根据直角三角形内切圆的性质可得7-2R =5,∴R =1 cm ,∴V 圆柱=πR 2·h =6π cm 3.而三棱柱的体积为V 三棱柱=12×3×4×6=36(cm 3),∴削去部分的体积为36-6π=6(6-π)(cm 3). 16.(本小题满分14分)底面是平行四边形的四棱锥P -ABCD ,点E 在PD 上,且PE ∶ED =2∶1.问:在棱PC 上是否存在一点F ,使BF ∥平面AEC? 证明你的结论.解:如图所示,连接BD 交AC 于点O ,连接OE ,过点B 作OE 的平行线交PD 于点G ,过点G 作GF ∥CE 交PC 于点F ,连接BF . ∵BG ∥OE ,BG ⊄平面AEC ,OE ⊂平面AEC , ∴BG ∥平面AEC . 同理GF ∥平面AEC , 又BG ∩GF =G ,∴平面BFG ∥平面AEC ,BF ⊂平面BFG . ∴BF ∥平面AEC .下面求点F 在PC 上的具体位置: ∵BG ∥OE ,O 是BD 的中点, ∴E 是GD 的中点. 又∵PE ∶ED =2∶1, ∴G 是PE 的中点.而GF ∥CE .∴F 为PC 的中点.综上可知,存在点F ,当点F 是PC 的中点时,BF ∥平面AEC .17.(本小题满分14分)如图,已知平面α∩平面β=AB ,PC ⊥α,PD ⊥β,垂足分别是C ,D . (1)求证:AB ⊥平面PCD ;(2)若PC =PD =1,CD =2,试判断平面α与平面β的位置关系,并证明你的结论.解:(1)证明:因为PC ⊥α,AB ⊂α,所以PC ⊥AB .同理PD ⊥AB .又PC ∩PD =P ,故AB ⊥平面PCD .(2)设AB 与平面PCD 的交点为H ,连结CH ,DH .因为 AB ⊥平面PCD ,所以AB ⊥CH ,AB ⊥DH ,所以∠CHD 是二面角C -AB -D 的平面角.又PC =PD =1,CD =2,所以CD 2=PC 2+PD 2=2,即∠CPD =90°.在平面四边形PCHD 中,∠PCH =∠PDH =∠CPD =90°,所以∠CHD =90°,故平面α⊥平面β.18.(本小题满分16分)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?解:(1)如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=13Sh =13π×82×4=2563π(m 3);如果按方案二,仓库的高变成8 m ,则仓库的体积V 2=13Sh =13×π×62×8=2883π(m 3).(2)如果按方案一,仓库的底面直径变成16 m ,半径为8 m .棱锥的母线长为l =82+42=45(m),则仓库的表面积S 1=π×8×45=325π(m 2); 如果按方案二,仓库的高变成8 m.棱锥的母线长为l =82+62=10(m), 则仓库的表面积S 2=π×6×10=60π(m 2). (3)V 2>V 1,S 2<S 1,所以方案二比方案一经济.19.(本小题满分16分)已知侧棱垂直于底面的四棱柱ABCD-A1B1C1D1的底面是菱形,且AD =AA1,点F为棱BB1的中点,点M为线段AC1的中点.(1)求证:MF∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.证明:(1)如图,延长C1F交CB的延长线于点N,连结AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,∴MF∥AN.又MF⊄平面ABCD,AN⊂平面ABCD,∴MF∥平面ABCD,(2)连结BD,由题意知A1A⊥平面ABCD,又∵BD⊂平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC⊂平面ACC1A1,A1A⊂平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN,且DA=BN,∴四边形DANB为平行四边形∴NA∥BD,∴NA⊥平面ACC1A1.又∵NA⊂平面AFC1,∴平面AFC1⊥平面ACC1A1.20.(本小题满分16分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过E作EF⊥PB于点F.(1)求证:PA∥平面EDB;(2)求证:PB⊥平面EFD;(3)求二面角C-PB-D的大小.解:(1)证明:连结AC,BD,交于点O,连结EO.∵底面ABCD是正方形,∴O是AC的中点,∴在△PAC中,EO是中位线,∴PA∥EO.又∵EO⊂平面EDB,PA⊄平面EDB,∴PA∥平面EDB.(2)证明:∵PD⊥底面ABCD,且DC⊂底面ABCD,∴PD⊥DC.∵PD=DC,∴△PDC是等腰直角三角形.又∵DE是斜边PC的中线,∴DE⊥PC.∵PD⊥底面ABCD,∴PD⊥BC.∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.又∵DE⊂平面PDC,∴BC⊥DE.∴DE⊥平面PBC.又∵PB⊂平面PBC,∴DE⊥PB.又∵EF⊥PB,且DE∩EF=E,∴PB⊥平面EFD.(3)由(2)知,PB⊥DF,EF⊥PB,∴∠EFD 是二面角C -PB -D 的平面角. 由(2)知DE ⊥EF ,PD ⊥DB .设正方形ABCD 的边长为a ,则PD =DC =a ,BD =2a ,∴PB =PD 2+BD 2=3a ,PC =PD 2+DC 2=2a ,∴在Rt △PDB 中,DF =PD ·BD PB =a ·2a 3a =63a .又∵DE =12PC =22a ,∴在Rt△EFD 中,sin ∠EFD =DE DF =22a63a =32,∴∠EFD =60°.∴二面角C -PB -D 的大小是60°.。
第一章 单元质量测评对应学生用书P41 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( ) A .棱柱的侧面可以是三角形B .由6个大小一样的正方形所组成的图形是正方体的展开图C .正方体各条棱长都相等D .棱柱的各条棱都相等 答案 C解析 根据棱柱的定义可知,棱柱的侧面都是平行四边形,侧棱长相等,但是侧棱和底面内的棱长不一定相等,而正方体的所有棱长都相等.2.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A∶B 等于( )A .11∶8 B.3∶8 C.8∶3 D.13∶8 答案 A解析 设扇形的半径为R ,围成的圆锥的底面圆的半径为r ,则扇形弧长l =135πR 180=34πR,又2πr=34πR,∴r=38R ,S 扇形=135π360R 2=38πR 2,S 圆锥全=S 底+S 侧=πr 2+S 扇形=π⎝ ⎛⎭⎪⎫38R 2+38πR 2=3364πR 2,∴S 扇形S 圆锥全=38πR 23364πR 2=811,∴A B =118, 故选A .3.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )答案 C解析由几何体的俯视图与左视图的宽度一样,可知C不可能是该锥体的俯视图,故选C.4.给出下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行线确定三个平面.正确的结论个数有( )A.1 B.2 C.3 D.4答案 A解析①中不共线的三点确定一个平面;②中一条直线和直线外一点确定一个平面;③中若四点不共面,则每三点一定不共线,故③正确;④中不共面的三条平行线确定三个平面.5.设l为直线,α,β是两个不同的平面,下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若α∥β,l∥α,则l∥βD.若α⊥β,l∥α,则l⊥β答案 B解析若l∥α,l∥β,则α∥β或α∩β=m,l∥m,故A错误.若α∥β,l∥α,则l∥β或l在β内,故C错误.若α⊥β,l∥α,则l∥β或l在β内或l⊥β或l与β相交,故D错误.6.体积为27,全面积为54的长方体( )A.必是正方体 B.不存在C.有无穷多个 D.最多只能有三个答案 A解析 设长、宽、高分别为a ,b ,c ,则abc =27. 2(ab +bc +ac)=54,∴ab+bc +ac =abc . 易知a =b =c ,故应为棱长为3的正方体.7.如图,平行四边形ABCD 中,AB⊥BD,沿BD 将△ABD 折起,使面ABD⊥面BCD ,连接AC ,则在四面体ABCD 的四个面所在平面中,互相垂直的平面的对数为( )A .1B .2C .3D .4 答案 C解析 ①平面ABD⊥平面BCD ,②平面ABC⊥平面BCD ,③平面ACD⊥平面ABD . 8.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1,S 2,S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 2 答案 A解析 由截面性质可知,设底面积为S . S S 1=⎝ ⎛⎭⎪⎫212⇒S 1=14S ; S S 2=21⇒S 2=12S ; S S 3=3212⇒S 3=134S .可知S 1<S 2<S 3,故选A . 9.夹在两个平行平面间的圆柱、圆锥、球,若它们在平行平面上的正投影是等圆,那么它们的体积之比为( )A .3∶1∶4 B.9∶3∶4 C .3∶1∶2 D.1∶2∶3 答案 C解析 它们的高都等于两平行平面间的距离设为h ,圆柱体积V 1,圆锥体积V 2,球体积V 3,正投影的面积为S ,则V 1=Sh ,V 2=13Sh ,V 3=43π⎝⎛⎭⎪⎫S π3=43S Sπ.又因为h =2S π,所以S π=h 2.所以V 3=43S·h 2=23Sh ,所以V 1∶V 2∶V 3=1∶13∶23=3∶1∶2.10.已知集合A ,B ,C ,A ={直线};B ={平面},C =A∪B,若a∈A,b∈B,c∈C,给出下列命题:①⎩⎪⎨⎪⎧a∥b,c∥b⇒a∥c;②⎩⎪⎨⎪⎧a⊥b,c⊥b⇒a∥c;③⎩⎪⎨⎪⎧a⊥b,c∥b⇒a⊥c.其中正确的命题的个数是( )A .0B .1C .2D .3 答案 B解析 ①当c 为直线时,⎩⎪⎨⎪⎧a∥b,c∥b ⇒a∥c 或a ,c 异面或相交,故①错误.②当c 为平面时,⎩⎪⎨⎪⎧a⊥b,c⊥b⇒a∥c 或a ⊂c ,故②错误.经验证得③正确.11.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1的面对角线A 1B 上存在一点P ,使得AP +D 1P 最短,则AP +D 1P 的最小值为( )A .2+ 2B .2+62C .2+ 2D .2 答案 A解析 D 1-A 1B -A 展成平面,如图所示,则AD 1即为AP +D 1P 的最小值.过D 1作D 1M⊥AA 1的延长线于M ,由∠AA 1D 1=∠AA 1B +∠BA 1D 1=45°+90°=135°,可知∠MA 1D 1=45°.所以A 1M =D 1M =22.在Rt△MD 1A 中,AD 1=MA 2+MD 21= 2+2.12.三棱锥P -ABC 的高PO =8,AC =BC =3,∠ACB=30°,M ,N 分别在BC 和PO 上,且CM =x ,PN =2x(x∈[0,3]),下列四个图象大致描绘了三棱锥N -AMC 的体积V 与x 的变化关系,其中正确的是( )答案 A解析 V =13S △AMC ·NO=13⎝ ⎛⎭⎪⎫12×3x×sin30°· (8-2x)=-12(x -2)2+2,x∈[0,3],故选A .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.直线a ,b 分别是长方体相邻两个面上的对角线所在直线,则a 与b 的位置关系为________.答案 相交或异面解析 画一个长方体,则有两直线交于一顶点或两直线异面.14.设A ,B ,C ,D 为球O 上四点,若AB ,AC ,AD 两两互相垂直,且AB =AC =6,AD =2,则A ,D 两点间的球面距离为________.答案2π3解析 由题意知,球O 的直径为以AB ,AC ,AD 为棱的长方体的体对角线,即2R =AB 2+AC 2+AD 2=4,即R =2,则OA =OD =AD =2,∴△OAD 为正三角形,则∠AOD=π3,∴A,D 球面距离为2π3.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.答案 2 3解析由三视图可知该多面体的直观图如图所示,即图中的四棱锥P -ABCD ,所以最长的一条棱的长为PA =PC 2+AC 2=PC 2+AB 2+BC 2=23.16.一个正六棱锥的底面边长为2、高为1,则过两条不相邻侧棱所作的截面中,面积最大值为________.答案6解析 如图先计算截面PAD 的面积,由题知h =PO =1,AD =4,∴S △PAD =12×1×4=2,下面计算截面PAC 的面积,连接OB 交AC 于M 点,连接PM ,则PM⊥AC,AC =23,BM =1,∴OM=1,∴PM=PO 2+OM 2=12+12=2,∴S △PAC =12×AC×PM=12×23×2=6,6>2,∴S △PAC >S △PAD ,∴填6.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)定线段AB所在直线与定平面α相交,P为直线AB外任一点,且P∉α,直线AP,PB与α交于A′,B′.求证:不论P在什么位置,A′B′过一定点.证明设定线段AB所在直线与定平面α相交于定点O.∵AP,AB相交于点A,∴由AP,AB可确定平面β.∵AP∩α=A′,PB∩α=B′,AB∩α=O,∴A′,B′,O为平面α与平面β的公共点.∴A′,B′,O三点共线,即A′B′过定点O.18.(本小题满分12分)如图,已知平面α∥β,O为α,β外一点,三条射线OA,OB,OC分别交β于A,B,C,交α于A1,B1,C1.(1)求证:△ABC∽△A1B1C1;(2)若OA=a,AA1=b,B1C1=c,求BC的长.解(1)证明:因为α∥β,平面AOB∩α=A1B1,平面AOB∩β=AB,所以A1B1∥AB,所以OA1OA=OB1OB=A1B1AB,同理B1C1∥BC,所以OB1OB=OC1OC=B1C1BC.同理,A1C1∥AC,OA1OA=OC1OC=A1C1AC,所以A1B1AB=B1C1BC=C1A1CA.所以△ABC∽△A1B1C1.(2)由(1)知,OA1OA=B1C1BC,又因为OA1=OA-AA1=a-b,∴a-ba=cBC,∴BC=aca-b.19.(本小题满分12分)如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:(1)PA∥平面BDE;(2)平面PAC⊥平面PBD.证明(1)连接AC交BD于点O,连接OE.∵四边形ABCD是菱形,∴AO=CO.∵E为PC的中点,∴EO∥PA.∵PA⊄平面BDE,EO⊂平面BDE,∴PA∥平面BDE.(2)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵四边形ABCD是菱形,∴BD⊥AC.∵AC∩PA=A,∴BD⊥平面PAC,∵BD⊂平面PBD,∴平面PAC⊥平面PBD.20.(本小题满分12分)如图,平行六面体ABCD-A1B1C1D1的底面是菱形,∠C1CB=∠C1CD =∠BCD=60°.(1)求证:C1C⊥BD;(2)当CDCC1的值为多少时,可使A1C⊥平面C1BD?解(1)证明:连接A1C1,AC,设AC和BD交于点O,连接C1O.∵四边形ABCD是菱形,∴AC⊥BD,BC=CD.又∵∠BCC1=∠DCC1,C1C是公共边,∴△C1BC≌△C1DC,∴C1B=C1D.∵DO=OB,∴C1O⊥BD.又∵AC∩C1O=O,∴BD⊥平面ACC1A1.又∵C1C⊂平面ACC1A1,∴C1C⊥BD.(2)由(1)知BD⊥平面ACC1A1.∵A1C⊂平面ACC1A1,∴BD⊥A1C.当CDCC1=1时,平行六面体的六个面是全等的菱形.同理可证BC1⊥A1C.又∵BD∩BC1=B,∴A1C⊥平面C1BD.21.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC =2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.解(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1,BC为平面B1BCC1内两条相交直线,所以AB⊥平面B1BCC1,又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG,如图.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG =12AC ,EC 1=12A 1C 1.因为AC∥A 1C 1,且AC =A 1C 1, 所以FG∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F∥EG.又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB⊥BC, 所以AB =AC 2-BC 2=3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.22.(本小题满分12分)已知某几何体的直观图(图1)与它的三视图(图2),其中俯视图为正三角形,主视图及左视图是矩形.(1)求该几何体的体积;(2)D 是棱A 1C 1上的一点,若使直线BC 1∥平面AB 1D ,试确定点D 的位置,并证明你的结论; (3)在(2)成立的条件下,求证:平面AB 1D⊥平面AA 1D .解 由三视图可知该几何为正三棱柱,底面是高为3的正三角形,三棱柱的高h =3,(1)底面是高为3的正三角形,易知底面边长为2,word- 11 - / 11 所以底面面积S =12×2×3=3, 所求体积V =Sh =33.(2)连接A 1B ,且A 1B∩AB 1=O ,因为正三棱柱侧面是矩形,所以点O 是A 1B 的中点, 解法一:若BC 1∥平面AB 1D ,连接DO ,BC 1⊂平面A 1BC 1,平面AB 1D∩平面A 1BC 1=DO ,所以BC 1∥DO,所以DO 是△A 1BC 1的中位线,所以D 为A 1C 1的中点.即D 为A 1C 1的中点时,BC 1∥平面AB 1D .解法二:若D 为棱A 1C 1的中点.连接DO ,所以DO 是△A 1BC 1的中位线.所以BC 1∥DO,又DO ⊂平面AB 1D ,BC 1⊄平面AB 1D ,所以BC 1∥平面AB 1D .即D 为A 1C 1的中点时,BC 1∥平面AB 1D .解法三:在△A 1BC 1中,过O 作OD∥BC 1,交A 1C 1于D ,所以OD 为△A 1BC 1的中位线,所以D 为A 1C 1的中点,又DO ⊂平面AB 1D ,BC 1⊄平面AB 1D ,所以C 1B∥平面AB 1D .即D 为A 1C 1的中点时,BC 1∥平面AB 1D .(3)证法一:在正三棱柱ABC -A 1B 1C 1中,三角形A 1B 1C 1为正三角形,所以B 1D⊥A 1C 1, 又由三棱柱性质知平面A 1B 1C 1⊥平面ACC 1A 1,且平面A 1B 1C 1∩平面ACC 1A 1=A 1C 1, B 1D ⊂平面A 1B 1C 1,所以B 1D⊥平面AA 1D ,又B 1D ⊂平面AB 1D ,所以平面AB 1D⊥平面AA 1D .证法二:在正三棱柱ABC -A 1B 1C 1中,三角形A 1B 1C 1为正三角形,所以B 1D⊥A 1C 1,又因为AA 1⊥平面A 1B 1C 1,所以AA 1⊥B 1D .AA 1∩A 1C 1=A 1,AA 1⊂平面AA 1D ,A 1C 1⊂平面AA 1D ,所以B 1D⊥平面AA 1D ,又B 1D ⊂平面AB 1D ,所以平面AB 1D⊥平面AA 1D .。
班级:________姓名:________得分:________直线的两点式方程单元测试试卷一、基础过关1.过点A(3,2),B(4,3)的直线方程是( ) A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=02.一条直线不与坐标轴平行或重合,则它的方程( ) A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式3.直线xa2-yb2=1在y轴上的截距是( ) A.|b| B.-b2C.b2D.±b4.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=05.过点P(6,-2),且在x轴上的截距比在y轴上的截距大1的直线方程是________________.6.过点P(1,3)的直线l分别与两坐标轴交于A、B两点,若P为AB的中点,则直线l的截距式方程是______________.7.已知直线l的斜率为6,且被两坐标轴所截得的线段长为37,求直线l的方程.8.已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:(1)△ABC中平行于BC边的中位线所在直线的方程并化为截距式方程;(2)BC边的中线所在直线的方程并化为截距式方程.二、能力提升9.直线xm-yn=1与xn-ym=1在同一坐标系中的图象可能是( )10.过点(5,2),且在x轴上的截距(直线与x轴交点的横坐标)是在y轴上的截距的2倍的直线方程是( )A.2x+y-12=0 B.2x+y-12=0或2x-5y=0C.x-2y-1=0 D.x+2y-9=0或2x-5y=011.已知点A(2,5)与点B(4,-7),点P在y轴上,若|PA|+|PB|的值最小,则点P的坐标是________.12.三角形ABC的三个顶点分别为A(0,4),B(-2,6),C(-8,0).(1)求边AC和AB所在直线的方程;(2)求AC边上的中线BD所在直线的方程;(3)求AC边上的中垂线所在直线的方程.三、探究与拓展13.已知直线l经过点(7,1)且在两坐标轴上的截距之和为零,求直线l的方程.答案1.D 2.B 3.B 4.B 5.x 3+y 2=1或x2+y =1 6.x 2+y6=1 7.解 设所求直线l 的方程为y =kx +b .∵k =6,∴方程为y =6x +b .令x =0,∴y =b ,与y 轴的交点为(0,b );令y =0,∴x =-b6,与x 轴的交点为⎝ ⎛⎭⎪⎫-b 6,0.根据勾股定理得⎝ ⎛⎭⎪⎫-b 62+b 2=37,∴b =±6.因此直线l 的方程为y =6x ±6.8.解 (1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12,整理得,6x -8y -13=0,化为截距式方程为x136-y138=1. (2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为 y +43+4=x -12-1, 即7x -y -11=0,化为截距式方程为x 117-y11=1. 9.B 10.D 11.(0,1)12.解 (1)由截距式得x -8+y4=1,∴AC 所在直线的方程为x -2y +8=0,由两点式得y -46-4=x-2,∴AB 所在直线的方程为x +y -4=0.(2)D 点坐标为(-4,2),由两点式得y -26-2=x ---2--.∴BD 所在直线的方程为2x -y +10=0.(3)由k AC =12,∴AC 边上的中垂线的斜率为-2,又D (-4,2),由点斜式得y -2=-2(x +4),∴AC 边上的中垂线所在直线的方程为2x +y +6=0.13.解 当直线l 经过原点时,直线l 在两坐标轴上截距均等于0,故直线l 的斜率为17,∴所求直线方程为y =17x ,即x -7y =0.当直线l 不过原点时, 设其方程为x a +yb=1,由题意可得a +b =0,①又l 经过点(7,1),有7a +1b=1,②由①②得a =6,b =-6, 则l 的方程为x 6+y-6=1,即x -y -6=0.故所求直线l 的方程为x -7y =0或x -y -6=0.。
数学湘教版必修2第3章 三角函数单元检测(时间:45分钟 满分:100分)一、选择题(每小题5分,共40分) 1.(2011山东济南高一期末检测)29π6-是( ) A .第一象限的角 B .第二象限的角 C .第三象限的角 D .第四象限的角2.(2011山东邹城高一检测)半径为π cm ,圆心角为60°的扇形的弧长为( )A .π3cmB .2π3cmC .2π3cm D .22π3cm3.(2011浙江温州高一期末考试)若240°的终边上有一点P (-4,a ),则a 的值是( ) A .43 B .43- C .43± D .3 4.已知1sin 5α=,则下列各式中值为15的是( ) A .πcos 2α⎛⎫+⎪⎝⎭ B .si n(π+α) C .3πcos 2α⎛⎫+ ⎪⎝⎭D .sin(2π-α) 5.下列函数中是偶函数,并且最小正周期为π的是( )A .1πsin 22y x ⎛⎫=+⎪⎝⎭ B .πsin 22y x ⎛⎫=+ ⎪⎝⎭C .1πcos 22y x ⎛⎫=+ ⎪⎝⎭D .πcos 22y x ⎛⎫=+ ⎪⎝⎭6.如图是函数y =A sin(ωx +φ)的图象的一段,则该函数的解析式为( )A .2πsin 233y x ⎛⎫=+ ⎪⎝⎭ B .2πsin 324x y ⎛⎫=+ ⎪⎝⎭C .2πsin 33y x ⎛⎫=- ⎪⎝⎭D .22πsin 233y x ⎛⎫=+ ⎪⎝⎭7.将函数πsin 3y x ⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式是()A.1sin2y x=B.1πsin22y x⎛⎫=-⎪⎝⎭C.1πsin26y x⎛⎫=-⎪⎝⎭D.πsin26y x⎛⎫=-⎪⎝⎭8.已知sin θ,cos θ是方程4x2-4mx+2m-1=0的两个根,且3π2<θ<2π,则角θ等于()A.5π3B.7π4C.4π3D.11π6二、填空题(每小题5分,共15分)9.已知tan θ=-2,且cos θ>0,则sin θ=__________.10.(2011辽宁协作体联考)已知π3sin63x⎛⎫+=⎪⎝⎭,则25ππsin sin63x x⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭等于__________.11.在下列结论中:①函数y=sin(kπ-x)(k∈Z)为奇函数;②函数πtan26y x⎛⎫=+⎪⎝⎭的图象关于点π,012⎛⎫⎪⎝⎭对称;③函数πcos23y x⎛⎫=+⎪⎝⎭的图象的一条对称轴为2π3x=-;④若tan(π-x)=2,则cos2x=15.其中正确结论的序号为__________(把所有正确结论的序号都填上).三、解答题(每小题15分,共45分)12.(2011福建师大附中高一期末检测)已知角α的终边过点P43,55⎛⎫-⎪⎝⎭.(1)求sin α的值;(2)求式子πsintan(π)2sin(π)cos(3π)αααα⎛⎫-⎪-⎝⎭⋅+-的值.13.(2012湖北高考,文18)设函数f(x)=sin2ωx+23ωx·cos ωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈1,1 2⎛⎫ ⎪⎝⎭.(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点π,04⎛⎫⎪⎝⎭,求函数f(x)的值域.14.如图是函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π2)的一段图象.(1)求φ的值及函数f(x)的解析式;(2)若将函数f(x)的图象向右平移π4个单位得到函数g(x)的图象,求函数g(x)的最值及零点.参考答案1. 答案:C 解析:由于29π7π6π66-=-+,而7π6是第三象限角,所以29π6-是第三象限角,选C .2. 答案:B解析:所求弧长为l =π3·π=2π3(cm),故选B .3. 答案:B解析:由三角函数的定义知tan 240°=4a -,即34a =-, 所以43a =-,故选B .4. 答案:C 解析:3ππ1cos cos sin 225ααα⎛⎫⎛⎫+=-+==⎪ ⎪⎝⎭⎝⎭,故选C .5. 答案:B解析:函数1π1sin cos 222y x x ⎛⎫=+=⎪⎝⎭是偶函数,但最小正周期是4π,函数πsin 2cos22y x x ⎛⎫=+= ⎪⎝⎭是偶函数,但最小正周期是π,符合要求,所以选B .6. 答案:D解析:由图象可得23A =,周期T =2π7π1212⎛⎫-+ ⎪⎝⎭=π,所以2ππω=,解得ω=2.这时y =23sin(2x +φ), 又因为图象过点π2,123⎛⎫- ⎪⎝⎭,代入可得22πsin 23312ϕ⎡⎤⎛⎫=⋅-+ ⎪⎢⎥⎝⎭⎣⎦,解得2π3ϕ=,故解析式为22πsin 233y x ⎛⎫=+ ⎪⎝⎭.7. 答案:C解析:将函数πsin 3y x ⎛⎫=-⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数1πsin 23y x ⎛⎫=- ⎪⎝⎭的图象,再将所得的图象向左平移π3个单位,得到的图象对应的解析式是1ππsin 233y x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,即1πsin 26y x ⎛⎫=- ⎪⎝⎭. 8. 答案:A解析:因为2sin cos ,21sin cos ,416(21)0,m m m m θθθθ+=⎧⎪-⎪⋅=⎨⎪∆=-+≥⎪⎩代入(sin θ+cos θ)2=1+2sin θ·cos θ,得132m ±=, 又3π2<θ<2π, ∴sin θ·cos θ=214m -<0,sin θ+cos θ=m =13-,∴sin θ=3-,cos θ=12.又∵3π2<θ<2π,∴5π3θ=.9. 答案:255-解析:依题意得22sin 2,cos sin cos 1,θθθθ⎧=-⎪⎨⎪+=⎩解得25sin θ=±.又因为tan θ<0,cos θ>0, 所以θ是第四象限角,故25sin 5θ=-. 10. 答案:233+ 解析:25ππsin sin 63x x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=2ππsin π1cos 63x x ⎡⎤⎛⎫⎛⎫-++--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2πππsin 1cos 626x x ⎡⎤⎛⎫⎛⎫++--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2ππsin 1sin 66x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭ =31231333++-=. 11. 答案:①③④解析:函数y =sin(k π-x )=±sin x 为奇函数,故①正确;函数πtan 26y x ⎛⎫=+⎪⎝⎭的图象不关于点π,012⎛⎫ ⎪⎝⎭对称,故②错误;当2π3x =-时,函数πcos 23y x ⎛⎫=+ ⎪⎝⎭取得最小值,故2π3x =-是函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象的一条对称轴,故③正确;若tan(π-x )=2,则tan x =-2,所以22222cos 11cos sin cos tan 15x x x x x ===++,故④正确.12.解:(1)依题意45x =,35y =-,221r x y =+=, 所以3sin 5α=-. (2)由于πsin tan(π)cos tan 12sin(π)cos(3π)sin (cos )cos ααααααααα⎛⎫- ⎪-⎝⎭⋅=⋅=+---,而角α的终边过点P 43,55⎛⎫- ⎪⎝⎭,所以角α是第四象限角,于是24cos 1sin 5αα=-=,故πsin tan(π)cos tan 152sin(π)cos(3π)sin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⋅==+-. 13. 解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=π2sin 26x ω⎛⎫-⎪⎝⎭+λ, 由直线x =π是y =f (x )图象的一条对称轴,可得πsin 26x ω⎛⎫- ⎪⎝⎭=±1. 所以2ωπ-π6=k π+π2(k ∈Z ),即123k ω=+(k ∈Z ). 又ω∈1,12⎛⎫⎪⎝⎭,k ∈Z ,所以56ω=.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点π,04⎛⎫ ⎪⎝⎭,得π04f ⎛⎫= ⎪⎝⎭,即λ=5ππ2sin 626⎛⎫-⨯- ⎪⎝⎭π2sin 4=-=2-,即2λ=-.故5π()2sin 236f x x ⎛⎫=-- ⎪⎝⎭f (x )的值域为[22-,22.14. 解:(1)由图可知,A =2. 函数的周期T =25ππ1212⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦=π, 所以ω=2πT=2. 因为图象过点π,012⎛⎫- ⎪⎝⎭,所以π2sin 2012ϕ⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦,即πsin 06ϕ⎛⎫-= ⎪⎝⎭. 所以φ-π6=k π(k ∈Z ).因为|φ|<π2,所以φ=π6.故π()2sin26f x x⎛⎫=+⎪⎝⎭.(2)依题意,πππ()2sin22sin2463g x x x⎡⎤⎛⎫⎛⎫=-+=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.当2x-π3=2kπ+π2,即x=kπ+5π12,k∈Z时,y取得最大值,且最大值等于2.当2x-π3=2kπ-π2,k∈Z,即x=kπ-π12,k∈Z时,y取得最小值,且最小值等于-2.因为2x-π3=kπ,k∈Z时,g(x)=0,所以函数g(x)零点为ππ26kx=+(k∈Z).。
2018—2018学年度林头中学高二年级第一次月考试卷数学试题一、选择题:(本大题共10小题,每小题5分,共50分)1.已知命题:“直线a上的两个点A、B在平面α内。
”与它不等价的命题是()A.直线a在平面α内B.平面α通过直线aC.直线a上只有两点在平面α内D.直线a上的所有点都在平面α内2.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④3.异面直线a、b分别在平面α、β内,若αβ⋂= ,则直线 必定是()A.分别与a、b相交B.与a、b都不相交C.至少与a、b中之一相交D.至多与a、b中之一相交4.已知ABCD为空间四边形,已知AB=CD,AD=BC,但AB≠AD,M、N为两对角线的中点,则()A.MN与AC、BD都垂直B.MN仅与AC、BD中之一垂直C.MN与AC、BD都不垂直D.无法确定MN与AC、BD是否垂直5.在正方体ABCD—A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,则()①四边形BFD1E一定是平行四边形;②四边形BFD1E有可能是正方形;③四边形BFD1E在底面ABCD内的投影一定是正方形;④平面BFD1E有可能垂直于平面BB1D1;其中结论正确的序号是A、①②③B、①③C、①④D、①③④6.正方体ABCD-A1B1C1D1中,E、F、G分别是A1D1、A1B1、CC1的中点。
则过E,F,G的截面是()A.等腰三角形 B.正六边形C.等腰梯形D.五边形7.已知////DCBAABCD-为长方体,对角线/AC与平面BDA/相交于点G,则G是BDA/∆的()A.垂心;B.重心;C.内心;D.外心;8.如图,直线P A垂直于圆O所在的平面,ABC∆内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①BC PC⊥;②//OM APC平面;③点B到平面P AC的距离等于线段BC的长.其中真命题的个数为()A.3 B.2 C.1 D.09.下列四个正方体图形中,A B、为正方体的两个顶点,M N P、、分别为其所在棱的中点,能得出//AB平面MNP的图形的序号是()①正方形②圆锥③三棱台④正四棱锥学校班级姓名学校(请不要在密封线内答题)A BCA. ①、③B. ①、④C. ②、③D. ②、④ 10.在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A.B.C .4D.二、填空题:(本大题共5小题,每小题5分,共25分) 11.已知E ,F ,G ,H 分别为空间四边形ABCD 四条边AB ,BC ,CD ,DA 的中点,若BD =2,AC =6,那么22EG +HF = .12.设A ,B ,C ,D 是不共面的四个点,P ,Q ,S ,R 为AC ,BC ,DB ,DA 的中点,若AB=,CD=PQRS的面积为AB 与CD 所成的角等于 . 13.在长方体ABCD -A 1B 1C 1D 1中,B 1C 和C 1D 与底面A 1B 1C 1D 1所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成的角的余弦值为 ;14.一个几何体的三视图如图,该几何体的表面积为 .15.如图:点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ; ③1DP BC ⊥; ④面1PDB ⊥面1ACD 。
其中正确的命题的序号是__________.(第14题图)AC MDCBPAO2018—2018学年度林头中学高二年级第一次月考试卷数学试题11、 12、 13、14、 15、三、解答题:本大题共6小,共75分.解答应写出文字说明、证明过程或演算步16. (12分)如图,P 是ABC ∆所在平面外一点,M ,N 分别是P A 和AB 的中点,试过点M ,N 作平行于AC 的平面α,要求:(1)画出平面α分别与平面ABC ,平面PBC ,平面P AC 的交线;(2)试对你的画法给出证明.17.(12分)如图,四边形ABCD 是正方形,MA ⊥平面ABCD ,MA ∥PB , PB =AB =2MA =2.(1)求证: DM ∥面PBC ;(2)求证:面PBD ⊥面P AC ;学校 班级 姓名学校(请不要在密封线内答题)1A 1BABC FD EC1D18.(12分)如图,在直四棱柱1111ABCD A BC D -中,已知122DC DD AD AB ===,AD DC AB DC ⊥,∥.(1)求证:11DC AC ⊥;(2)设E 是DC 上一点,试确定E 的位置,使1D E ∥平面1A BD ,并说明理由.19. (12分)已知:如图,在正方体1111ABCD A B C D -中,E 是1CC 的中点,F 是,AC BD的交点. (1)求证:1A F BED ⊥平面.(2)求1A F 与1B E 所成角的余弦值。
1D 1C ACD 1A 1B20.(文科)(13分)在如图所示的空间几何体中,△ABC,△ACD都是等边三角形,AE=CE,DE//平面ABC,平面ACD⊥平面ABC.(1)求证:DE⊥平面ACD;(2)若AB=BE=2,求多面体ABCDE的体积.20.(理科)(13分)在如图所示的空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上∠的平分线上.的射影落在ABC(1)求证:DE//平面ABC;(2)求二面角E—BC—A的余弦;(3)求多面体ABCDE的体积.21.(本小题满分14分)如图所示,在斜边为AB的Rt△ABC中,过A作P A⊥平面ABC,AM⊥PB于M ,AN⊥PC于N.(1)求证:BC⊥面P AC;(2)求证:PB⊥面AMN.(3)若P A=AB=4,设∠BPC=θ,试用tanθ表示△AMN 的面积,当tanθ取何值时,△AMN的面积最大?最大面积是多少?PAB CN MMDCBPAOG2018—2018学年度林头中学高二年级第一次月考试卷数学试题(参考答案)11、20 12、45o13、、36015、① ② ④ 16.解 (1)过N 点作NE //AC 交BC 于E ,过M 点作MF //AC交PC 于F ,连结EF ,则平面MNEF 为平行于AC 的平面α,NE ,EF ,MF 分别是平面α与平面ABC ,平面PBC ,平面P AC 的交线.(2)∵NE //AC ,MF //AC ,∴NE //MF . ∴直线NE 与MF 共面,NE ,EF ,MF 分别是平面MNEF 与平面ABC ,平面PBC ,平面P AC 的交线.∵NE //AC ,NE ⊂平面MNEF ,∴AC //平面MNEF .∴平面MNEF 为所求的平面; 17.(1)方法一:取PB 的中点G ,连接MG ,CG ,如图, 证明 DM //CG 即可;(过程略)方法二:证明 面DAM//面CBG ;(过程略)18.(1)证明:在直四棱柱1111ABCD A BC D -中,连结1C D ,1DC DD = , ∴四边形11DCC D 是正方形.11DC D C ∴⊥. 又AD DC ⊥,11AD DD DC DD D =⊥,⊥,AD∴⊥平面11DCC D , 1D C ⊂平面11DCCD ,1AD DC ∴⊥. 1AD DC ⊂ ,平面1ADC ,且AD DC D =⊥,1D C ∴⊥平面1ADC ,又1AC ⊂平面1ADC , 1DC AC ∴1⊥.(2)连结1AD ,连结AE ,设11AD A D M = ,BD AE N = ,连结MN , 平面1AD E 平面1A BD MN =,C BCD A1A1D1C1BM E要使1D E ∥平面1A BD , 须使1MN D E ∥,又M 是1AD 的中点.N ∴是AE 的中点. 又易知ABN EDN △≌△, AB DE ∴=. 即E 是DC 的中点.综上所述,当E 是DC 的中点时,可使1D E ∥平面1A BD .19.(1)证明:1AA ABCD ⊥平面,AF 是1A F 在面ABCD 上的射影又∵AC BD ⊥,∴1A F BD ⊥ 取BC 中点G ,连结1,FG B G ,∵111111,A B BCC B FG BCC B ⊥⊥平面平面, ∴,B G 为1A F 在面11BCC B 上的射影, 又∵正方形11BCC B 中,,E G 分别为1,CC BC 的中点, ∴1BE B G ⊥, ∴1A F BE ⊥又∵EB BD B = , ∴1A F BED ⊥平面.(220.(文科)解:(1)法一:△ABC ,△ACD 都是等边三角形,AE=CE ,取AC 中点O ,连接BO ,DO ,EO ,则 BO ⊥AC ,DO ⊥AC ,EO ⊥AC ……………2分,,,,EO BO O AC OBF EF BO F AC EF AC BO O EF ABC=∴⊥⊥⊥=∴⊥ 平面作于点则平面ACD ABC ⊥ 平面平面,,,//DO ABC BO ACD DO EF∴⊥⊥∴平面平面∴ODEF 是平面四边形 ………………4分////,//DE ABC OE OF DE OB∴ 平面即OE ∴⊥平面ACD ………………6分法二:△ABC ,△ACD 都是等边三角形,AE=CE ,取AC 中点O ,连接BO ,DO ,EO ,则 BO ⊥AC ,DO ⊥AC ,EO ⊥AC ……………2分AC EDO ∴⊥平面,AC ⊥平面OBE1A 1B ABCFD EC1D,,,OB OD OE ∴共面即OB ,OD ,OE ⊂平面OBED又//DE 平面ABC ,∴DE//BO ………………4分ABC ACD BO ACD⊥∴⊥ 平面平面平面∴DE ⊥平面ACD ………………6分(2)由EF//DO ,DE//OF ,知DE=OF ,EF=DO ,又AB=BE=2,△ABC ,△ACD 都是等边三角形,EF ⊥BO1,1EF DO BO BF DE CF ∴====== ………………8分DE ⊥ 平面ACD ,11131)333BAC E DAC V S DE ∆∴-=⋅==三棱锥的体积;又三棱锥E —ABC 的体积211133AEC V S EF ∆=⋅== ………………12分∴多面体ABCDE 的体积为1263V V V =+=………………13分 20.(理科)解:(1)由题意知, ,ABC ACD ∆∆都是边长为2的等边三角形, 取AC 中点O ,连接BO ,DO ,则,BO AC DO AC ⊥⊥平面ACD ⊥平面ABCDO ∴⊥平面ABC ,作EF ⊥平面ABC ,那么EF//DO ,根据题意,点F 落在BO 上,60EBF ∴∠=︒,易求得EF DO == 所以四边形DEFO 是平行四边形,DE//OF ;DE ⊄ 平面ABC ,OF ⊂平面ABC , //DE ∴平面ABC …………4分(2)作FG ⊥BC ,垂足为G ,连接FG ;EF ⊥ 平面ABC ,根据三垂线定理可知,EG ⊥BCEGF ∴∠就是二面角E —BC —A 的平面角1sin 2FG BF FBG -⋅∠-2EF EG =∴==cos 13FG EGF EG ∠==即二面角E —BC —A …………8分 (3) 平面ACD ⊥平面ABC ,OB ⊥AC OB ∴⊥平面ACD ;又//DE OBDE ∴⊥平面DAC ,∴三棱锥E —DAC 的体积1111)33BAC V S DE ∆=⋅=⋅-=又三棱锥E —ABC 的体积211133ABC V S EF ∆=⋅==∴多面体DE —ABC 的体积为V=V 1-V 213分21.(14分)(1)证明:∵P A ⊥平面ABC ,BC ⊂平面ABC .∴P A ⊥BC ,又AB 为斜边,∴BC ⊥AC ,P A ∩AC =A ,∴BC ⊥平面P AC .(2)证明:∵BC ⊥平面P AC ,AN ⊂平面P AC ∴BC ⊥AN ,又AN ⊥PC ,且BC ∩PC =C ,∴AN ⊥面PBC ,又PB ⊂平面PBC .∴AN ⊥PB ,又∵PB ⊥AM ,AM ∩AN =A ,∴PB ⊥平面AMN .(3)解:在Rt △P AB 中,P A =AB =4,∴PB =42,∵PM ⊥AB ,∴AM =21PB =22,∴PM =BM =22 又∵PB ⊥面AMN ,MN ⊂平面AMN .∴PB ⊥MN , ∵MN=PM ·tan θ=22tan θ,∵AN ⊥平面PBC ,MN ⊂平面PBC .∴AN ⊥MN∵AN =θθ22222tan 88tan 8)22(-=-=-MN AM1122AMN S AN MN θ∆=⋅=⋅= ∴当tan 2θ=21,即tan θ=22时,AMN S 有最大值为2, ∴当tan θ=22时,AMN S 面积最大,最大值为2.。