人教版数学九年级下册数学:27.2.1 相似三角形的判定 同步练习(附答案)
- 格式:docx
- 大小:220.22 KB
- 文档页数:15
27.2.1相似三角形的判定(1)1、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件, 使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的条件即可).2、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A AC AE AB AD = B FB EA CF CE =C BD AD BC DE = D CBCF AB EF =3、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A 1对B 2对C 3对D 4对4、如图,在大小为4×4的正方形网格中,是相似三角形的是( )① ② ③ ④A.①和②B.②和③C.①和③D.②和④.5、如图,在正方形网格上有6个斜三角形:①ΔABC ,②ΔBCD ,③ΔBDE ,④ΔBFG ,⑤ΔFGH ,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( )(A)②③④ (B)③④⑤ (C)④⑤⑥ (D)②③⑥6、在方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.如图,请你在4×4的方格纸中,画一个格点三角形A 1B 1C 1,使ΔA 1B 1C 1与格点三角形AB C 相似(相似比不为1).7、如图,ΔABC 与ΔADB 中,∠ABC=∠ADB=90°,AC=5cm ,AB=4cm ,如果图中的两个直角三角形相似,求AD 的长.8、一个钢筋三角架三边长分别为20cm ,50cm ,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,写出所有不同的截法?答案1、D E ∥BC2、C3、C4、C5、B6、略7、AD=516cm 8、两种截法(1)新截三角形的三边分别是10cm,25cm,30c m (2)新截三角形的三边分别是12cm,30cm,36cm。
第27章图形的相似 27.2 相似三角形 27.2.1 相似三角形的判定由三边和两边夹角判定三角形相似1. 有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,5,10,则甲、乙两个三角形( )A.不一定相似 B.一定不相似 C.一定相似 D.无法判断2.如图,4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )3. 如图,若A,B,C,P,Q,甲、乙、丙、丁都是方格纸的格点,为使△ABC∽△PQR,则点R应是甲、乙、丙、丁点中的( )A.甲 B.乙 C.丙 D.丁4. 如图,在正三角形ABC中,点D,E分别在AC,AB上,且,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD5. 如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .②和④相似 6. 如图,下列条件中,能使△ACD∽△ABC 的是( )A.AC CD =AB BCB.CD BC =ADACC .CD 2=AD·BD D .AC 2=AD·AB 7. 如图,在△ABC 与△ADE 中,∠BAC =∠D,要使△ABC 与△ADE 相似,还需满足下列条件中的( ).A.AC AD =AB AEB.AC AD =BC DEC.AC AD =AB DED.AC AD =BC AE 8. 如图所示,在正方形网格上有6个三角形:①△ABC ;②△BCD;③△BDE;④△BFG;⑤△FGH ;⑥△EFK.其中②~⑥中与①相似的是( )A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥9. 如图,AB·AE=AC·AD,则△ADE∽________,∠D=________.10. 如图,∠1=∠2,添加一个条件使得△ADE∽△ACB,这个条件是.11. 如图,已知∠DAB=∠CAE,请补充一个条件:_______,使△ABC∽△ADE.12.如图,∠A =∠DBC,AB =4,AC =6,BC =5,BD =7.5,则CD 的长等于________.13. 如图,已知AB AD =BC DE =ACAE,∠BAD =20°,求∠CAE 的大小.14. .如图,已知∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.15. 如图,D是△ABC的边BC上的一点,AB=2,BD=1,DC=3,求证:△DBA∽△ABC.16. 如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E,连接BD.求证:△ABC∽△BDC.17. 如图,在△ABC中,AC=8厘米,BC=16厘米,点P从点A出发,沿着AC 边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC相似?18. 一个钢筋三脚架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三脚架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案. 答案:1---8 CBCBB DCB 9. △ABC ∠B 10. = 11. AD AB =AE AC12. 25413. 解:∵AB AD =BC DE =ACAE ,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,又∠DAC 是公共角,∴∠CAE =∠BAD =20°14. .证明∵AB=20.4,AC=48,AE=17,AD=40, ∴=1.2,=1.2,∴.又∠BAC=∠EAD,∴△ABC ∽△AED.15. 解: ∵AB =2,BD =1,DC =3,∴BC =BD +DC =4,∴AB BC =BD AB =12,又∵∠B =∠B ,∴△DBA ∽△ABC16. 证明:∵DE 是AB 的垂直平分线,∴AD =BD.∵∠BAC =40°, ∴∠ABD =40°,∵∠ABC =80°,∴∠DBC =40°,∴∠DBC =∠BAC , ∵∠C =∠C ,∴△ABC ∽△BDC17. 解:设经过x 秒后,△PQC 与△ABC 相似,则AP =x ,CQ =2x ,CP =8-x .①当△CPQ ∽△CAB 时,CP AC =CQ BC ,则8-x 8=2x16,解得x =4.②当△CPQ ∽△CBA 时,CP BC =CQ AC ,则8-x 16=2x 8,解得x =85.综上所述,当经过4秒或85秒时,△PQC 和△ABC 相似18. 解; 两种截法:①30厘米与60厘米的两根钢筋为对应边.把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似②30厘米与50厘米长的两根钢筋为对应边.把50厘米分截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两三角形相似。
27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。
九年级数学下册《第二十七章相似三角形》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图DE∥BC,AD:DB=2:3,EC=6,则AE的长是()A.3 B.4 C.6 D.102.如图,下列不能判定△ABD与△ACB相似的是()A.BDBC =ABACB.ADAB=ABACC.∠ABD=∠ACB D.∠ADB=∠ABC3.如图,已知△ABC,点D是BC边中点,且∠ADC=∠BAC若BC=6,则AC=( )A.3 B.4 C.4√2D.3√24.如图,AB∥CD,AD,BC相交于点O.若AB=1,CD=2,BO∶CO=( )A.1∶2 B.1∶4 C.2∶1 D.4∶15.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m6.如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为( )A.6cm B.12cm C.18cm D.24cm7.如图,△ABC内接于⊙O,若AB=√10,AC=3√5,BC=7,则⊙O的半径是()A.5√22B.2√105C.2√55D.3√1028.如图,路灯距地面8m,身高 1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长 3.5m B.变长 2.5m C.变短 3.5m D.变短 2.5m 二、填空题9.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,若AB=3,BC=5,则DFEF的值为.10.如图,利用标杆DE测量楼高,点A,D,B在同一直线上DE⊥AC,BC⊥AC垂足分别为E,C.若测得AE=1m,DE=1.5m,CE=5m则楼高BC=m.BC=2,D在AC上,且∠APD=∠B,则11.如图,在等腰△ABC中AB=AC=9,BP=13CD=.12.如图,小明为了测量高楼MN的高度,在离点N18米的点A处放了一个平面镜,小明沿NA方向后退1.5米到点C ,此时从镜子中恰好看到楼顶的点M,已知小明的眼睛(点B)到地面的高度BC 是1.6米,则高楼MN的高度是.13.如图,BC是⊙O的切线,D是切点.连接BO并延长,交⊙O于点E、A,过A作AC⊥BC,垂足为C.若BD=8,BE=4,则AC=.三、解答题14.已知如图,Rt △ABC 中,∠C =90°,CD 是斜边上的高,求证:CD 2=AD •BD.15.如图,已知 △ABC ∽△ADE ,求证: △ABD ∽△ACE .16.如图,CD 是⊙O 的弦,AB 是直径,CD ⊥AB ,垂足为P ,求证:PC 2=PA ·PB17.如图,D ,E ,F 是△ABC 边上的点ED ∥BC,∠ABC =∠EDF .(1)求证:∠A =∠CDF ;(2)若D 是AC 的中点.直接写出S △CDFS △ABC 的值.18.如图,AB 是半圆O 的直径,C 是AB⌢的中点,过点C 作弦BD 的垂线,垂足为E.(1)求证:CE =DE ;(2)若AD=DE=1,求AB的长.参考答案1.B2.A3.D4.A5.A6.C7.A8.C9.8510.911.8912.19.2米13.9.614.证明:∵CD是斜边AB上的高. ∴∠ADC=∠CDB=90°又∵在Rt△ABC中∠ACB=90°∴∠ACD+∠BCD=90°∴∠A+∠ACD=90°∴∠A=∠BCD∴△ACD∽△CBD∴ADCD =CDBD∴CD2=AD•BD.15.证明:∵△ABC∽△ADE∴ABAD =ACAE∠BAC=∠DAE∴ABAC =ADAE∠BAC−∠DAC=∠DAE−∠DAC∴∠BAD=∠CAE∴△ABD∽△ACE .16.证明:连接AC,BD∵∠A=∠D,∠C=∠B∴△APC∽△DPB.∴CPBP =APDP∴CP•DP=AP•BP.∵AB是直径,CD⊥AB∴CP=PD.∴PC2=PA•PB.17.(1)证明:∵ED∥BC∴∠AED=∠ABC∵∠ABC=∠EDF∴∠AED=∠EDF∴DF∥AB∴∠A=∠CDF(2)解:∵DF∥AB,且D为AC中点∴∠A=∠CDF,∠CFD=∠B∴△CDF∽△CAB∴CDAC =CFCB=DFAB∵D为AC中点∴S△CDFS△CAB =(CDAC)2=(12)2=1418.(1)证明:连接OD、DC、OC,OC交BD于点F,如图所示∵CE⊥BD,C是AB⌢的中点∴∠CEF=90°,∠COB=90°∵∠4=∠5∴∠3=∠2;由题意知OD=OB=OC∴∠1=∠2,∠ODC=∠OCD ∴∠1=∠3∴∠EDC=∠ECD∴CE=DE.(2)解:由(1)知CE=DE∵AD=DE=1∴AD=DE=CE=1过点O作OG∥AD,如图所示∴△OGB∼△ADB∴BOBA =OGAD=BGBD=12解得OG=12∵AB是圆的直径∴AD⊥BD∴OG⊥BD∵CE⊥BD∴OG ∥CE∴△OGF ∼△CEF∴GF EF =OG CE =121=12设FG =x ,EF =2x 则BG =GD =3x +1 由(1)知∠ECF =∠OBG ,且∠CEF =∠BGO =90° ∴△CEF ∽△BGO∴BG CE =OG EF ,即3x+11=122x解得x =16或x =−12(舍去)∴BD =2(3x +1)=3在Rt △ADB 中根据勾股定理: AB =√AD 2+BD 2=√12+32=√10.。
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。
27.2 相似三角形专题一相似形中的开放题1.如图,在正方形网2.格中,点A、B、C、D都是格点,点E是线段AC上任意一点.如果AD=1,那么当AE= 时,以点A、D、E为顶点的三角形与△ABC相似.1.已知:如图,△ABC中,点D、E分别在边AB、AC上.连接DE并延长交BC 的延长线于点F,连接DC、BE,∠BDE+∠BCE=180°.(1)写出图中三对相似三角形(注意:不得添加字母和线);(2)请你在所找出的相似三角形中选取一对,说明它们相似的理由.专题二相似形中的实际应用题3.如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x.专题三相似形中的探究规律题4.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图在Rt△ABC中,∠C=90°,AC=30 cm,AB=50 cm,依次裁下宽为1 cm的矩形纸条a1、a2、a2…若使裁得的矩形纸条的长都不小于5 cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是( )A.24 B.25 C.26 D.275.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.(1)如图①,四边形DEFG为△ABC的内接正方形,求正方形的边长;(2)如图②,正方形DKHG,EKHF组成的矩形内接于△ABC,求正方形的边长;(3)如图③,三个正方形组成的矩形内接于△ABC,求正方形的边长;(4)如图④,n个正方形组成的矩形内接于△ABC,求正方形的边长.专题四相似形中的阅读理解题6.某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去,例如,可以定义:圆心角相等且半径和弧长对应成比例的两个扇形叫相似扇形;相似扇形有性质:弧长比等于半径比,面积比等于半径比的平方…,请你协助他们探索下列问题:(1)写出判定扇形相似的一种方法:若,则两个扇形相似;(2)有两个圆心角相同的扇形,其中一个半径为a,弧长为m,另一个半径为2a,则它的弧长为;(3)如图1,是—完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同,面积是它的一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.图1 图2专题五相似形中的操作题7.宽与长的比是215的矩形叫黄金矩形,心理测试表明:黄金矩形令人赏心悦目,它给我们以协调、匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):第一步:作一个正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;第四步:过E作EF⊥AD,交AD的延长线于F.请你根据以上作法,证明矩形DCEF为黄金矩形.8.如图①,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图②,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2;(2)操作:如图③,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG= DB,请给予证明.专题六 相似形中的综合题 9.正方形ABCD 的边长为4,M 、N 分别是BC 、CD 上的两个动点,且始终保持AM ⊥MN .当BM = 时,四边形ABCN 的面积最大.10.如图,在锐角△ABC 中,AC 是最短边,以AC 的中点O 为圆心,21AC 长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连接AE 、AD 、DC .(1)求证:D 是 AE的中点; (2)求证:∠DAO =∠B +∠BAD ; (3)若21=∆∆OCD CEF S S ,且AC =4,求CF 的长.【知识要点】1.平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例. 2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等. 3.平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似. 4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似.5.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似. 6.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 7.相似三角形周长的比等于相似比.相似多边形周长的比等于相似比. 8.相似三角形对应高的比等于相似比.9.相似三角形面积的比等于相似比的平方. 相似多边形面积的比等于相似比的平方.【温馨提示】1.平行线分线段成比例时,一定找准对应线段.2.当已知两个三角形有一组对应角相等,利用夹这个角的两边对应成比例来判定它们相似时,比例式常有两种情况,考虑不全面是遗漏解的主要原因.3.数学猜想需要严密的推理论证说明其正确性,规律的发现与提出需要从特殊到一般的数学归纳思想,平时要养成观察、分析问题的习惯.【方法技巧】1.相似三角形对应角平分线的比等于相似比;相似三角形对应中线的比等于相似比.2.在平面几何中,求图形中等积式或等比式时,一般地首先通过观察找出图形中相似的三角形,再从理论上证明观察结论的正确性,最后运用相似形的性质来解决问题.参考答案 1.22或42 【解析】根据题意得AD =1,AB=3,AC=26, ∵∠A=∠A ,∴若△ADE∽△ABC 时,ACAEAB AD =,即2631AE =,解得AE =22. 若△ADE∽△ACB 时,AB AE AC AD =3AE=,解得AE=42. ∴当AE =22或42时,以点A 、D 、E 为顶点的三角形与△ABC 相似.2.解:(1)△ADE∽△ACB ,△CEF∽△DBF ,△EFB∽△CFD (不唯一).(2)由∠BDE+∠BCE =180°,可得∠ADE=∠BCE . ∵∠A=∠A,∴△ADE∽△ACB ; ∴AC AD =ABAE.∵ ∠A=∠A , ∴△AEB∽△ADC ;∵∠BDE+∠BC E =180°,∠BCE+∠ECF =180°, ∴∠ECF=∠BDF , 又∠F=∠F , ∴△CEF∽△DBF ;∴BF EF =DFCF,而∠F=∠F ,∴△EFB∽△CFD . 3.解:∵ OA :OC =OB :OD =n 且∠AOB=∠COD,∴△AOB∽△COD .∵ OA:OC =AB:CD =n ,又∵CD =b,∴AB=CD ·n =nb ,∴x =a -AB 2 =a -nb2. 4.C 【解析】设裁成的矩形纸条的总数为n ,且每条纸条的长度都不小于5cm,40(cm)BC ==.设矩形纸条的长边分别与AC 、AB 交于点M 、N ,因为△AMN ∽△ACB ,所以BC MN AC AM =.又因为AM=AC-1·n=30-n ,MN ≥5 cm ,所以4053030≥-n ,得n ≤26.25,所以n 最多取整数26.5.解:(1)在题图①中过点C 作CN ⊥AB 于点N ,交GF 于点M .因为∠C =90°,AC =4,BC =3,所以AB =5. 因为21×5CN=21×3×4,所以CN=512. 因为GF∥AB ,所以∠CGF=∠A,∠CFG=∠B ,所以△CGF∽△CAB ,所以ABGFCN CM =. 设正方形的边长为x ,则1251255xx -=,解得3760=x .所以正方形的边长为3760.(2)同(1),有12251255xx -=,解得4960=x .(3)同(1),有12351255x x -=,解得6160=x . (4)同(1),有1251255x nx -=,解得n x 122560+=. 6.解:(1)答案不唯一,如“圆心角相等” “半径和弧长对应成比例”(2)由相似扇形的性质知半径和弧长对应成比例,设另一个扇形的弧长为x ,则a a 2=xm,∴x =2m. (3)∵两个扇形相似,∴新做扇形的圆心角与原来扇形的圆心角相等,等于120°. 设新做扇形的半径为γ,则230γ⎛⎫ ⎪⎝⎭=21,γ=152,即新做扇形的半径为152㎝. 7.证明:在正方形ABCD 中,取AB=2a ,∵N 为BC 的中点,∴12NC BC a ==. 在Rt△DNC 中,2222(2)5.ND NC CD a a a =+=+= ∵NE=ND ,∴(51)CE NE CN a =-=-. ∴2152)15(-=-=a a CD CE ,故矩形DCEF 为黄金矩形. 8.解:(1)证明:∵将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开,∴∠B =∠D .∵将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,∴BF =DF .∵∠HFG =∠B ,∴∠GFD =∠BHF ,∴△BFH∽△DGF ,∴BF BHDG DF=, ∴BH•GD =BF 2.(2)证明:∵AG∥CE ,∴∠FAG∥∠C .∵∠CFE=∠CEF ,∴∠AGF=∠CFE ,∴AF=AG . ∵∠BAD=∠C ,∴∠BAF=∠DAG ,△ABF≌△ADG ,∴FB=DG ,∴FD+DG=DB , 9.210.解:(1)证明:∵AC 是⊙O 的直径,∴AE ⊥BC. ∵OD ∥BC ,∴AE ⊥OD ,∴D 是 ⌒AE的中点. (2)方法一:证明:如图,延长OD 交AB 于G ,则OG ∥BC .∴∠AGD=∠B .∵OA=OD ,∴∠DAO=∠ADO . ∵∠ADO=∠BAD+∠AGD ,∴∠DAO=∠B +∠BAD. 方法二:证明:如图,延长AD 交BC 于H ,则∠ADO=∠AHC .∵∠AHC=∠B +∠BAD ,∴∠ADO =∠B +∠BAD . ∵OA=OD ,∴∠DAO=∠B +∠BAD . (3) ∵AO=OC ,∴12OCD ACD S S ∆∆=.∵12CEF OCD S S ∆∆=,∴14CEF ACD S S ∆∆=.∵∠ACD=∠FCE ,∠ADC=∠FEC =90°,∴△ACD∽△FCE .∴2CEF ACD S CF S AC ∆∆⎛⎫= ⎪⎝⎭,即2144CF ⎛⎫= ⎪⎝⎭,∴CF =2.。
人教版初中数学九年级第二十七章-相似-及习题-含答案第二十七章相似本章小结小结1 本章概述本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,通过大量的实践活动来探索三角形相似的条件,并应用相似三角形的性质及判定方法来研究和解决实际问题.在研究相似三角形的基础上学习位似图形,知道位似变换是特殊的相似变换.小结2 本章学习重难点【本章重点】通过具体实例认识图形的相似,探索相似图形的性质,掌握相似多边形的对应角相等,对应边成比例,面积的比等于相似比的平方.了解两个三角形相似的概念,探索两个三角形相似的条件.【本章难点】通过具体实例观察和认识生活中物体的相似,利用图形的相似解决一些实际问题.【学习本章应注意的问题】通过生活中的实例认识物体和图形的相似,探索并认识相似图形的特征,掌握相似多边形的对应角相等,对应边成比例以及面积的比与相似比的关系,能利用相似三角形的性质解决一些简单的实际问题,了解图形的位似,能利用位似将一个图形放大或缩小,会建立坐标系描述点的位置,并能表示出点的坐标.小结3 中考透视图形的相似在中考中主要考查:(1)了解比例的基本性质,了解线段的比及成比例线段.(2)认识相似图形,了解相似多边形的对应角相等,对应边成比例,面积比等于相似比的平方.(3)了解两个三角形相似的概念,掌握两个三角形相似的条件,能利用图形的相似解决一些实际问题.(4)了解图形的位似,能利用位似将一个图形放大或缩小.相似是平面几何中重要的内容,在近几年的中考中题量有所增加,分值有所增大,且题型新颖,如阅读题、开放题、探究题等.由于相似图形应用广泛,且与三角形、平行四边形联系紧密,估计在今后中考的填空题、选择题中将会注重相似三角形的判定与性质等基础知识的考查,并在解答题中加大知识的横向与纵向联系.具体考查的知识点有相似三角形的判定、相似三角形的性质、相似三角形的实际应用、图形的放大与缩小等.知识网络结构图专题总结及应用一、知识性专题专题1 比例线段【专题解读】解决有关比例线段的问题时,常常利用三角形相似来求解.例1 如图27-96所示,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,AE=8,OC=12,∠EDC=∠BAO.(1)求证CD CE AC CB=;(2)计算CD·CB的值,并指出CB的取值范围.分析利用△CDE∽△CAB,可证明CD CE AC CB=.证明:(1)∵∠EDC=∠BAO,∠C=∠C,∴△CDE∽△CAB,∴CD CE AC CB=.解:(2)∵AE=8,OC=12,∴AC=12+4=16,CE=12-4=8.又∵CD CE AC CB=,∴CD·CB=AC·CE=16×8=128.连接OB,在△OBC中,OB=12AE=4,OC=12,∴8<BC<16.【解题策略】将证CD CEAC CB=转化为证明△CDE∽△CAB.专题2 乘积式或比例式的证明【专题解读】证明形如22a cb d=,33a cb d=或abcdef=1的式子,常将其转化为若干个比例式之积来解决.如要证22a cb d=,可设法证a cb x=,a xb d=,然后将两式相乘即可,这里寻找线段x便是证题的关键。
27.1 图形的相似一、基础训练1.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地的实际距离是()A.1250kmB.125kmC.12.5kmD.1.25km2.下列四个结论:①两个菱形相似;②两个矩形相似;③两个正方形相似;④两个等腰梯形相似.其中正确的结论的个数是()A.1个B.2个C.3个D.4个3.下列说法正确的是()A.相似三角形一定全等B.不相似的三角形不一定全等C.全等三角形不一定是相似三角形D.全等三角形一定是相似三角形4.已知△AB C∽△A1B1C1,顶点A、B、C的对应点分别是A1、B1、C1,∠A=55°,∠B=100°,则∠C1的度数是()A.55°B.100°C.25°D.不能确定5.要做甲、乙两种形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm、60cm、80cm,三角形框架乙的一边长为20cm,那么,符合条件的三角形框架乙共有()A.1种B.2种C.3种D.4种6.把△ABC的各边分别扩大为原来3倍,得到△A1B1C1,下列结论不能成立的是()A.△AB C∽△A1B1C1B.△AB C与△A1B1C1的各对应角相等C.△AB C与△A1B1C1的相似比为3:1D.△AB C与△A1B1C1的相似比为1:37.已知线段3、4、6与x成比例线段,则x=_________________.8.两个三角形相似,其中一个三角形两个内角分别是40°、60°,那么另一个三角1 / 31形的最大角为__________,最小角为______________.二、能力训练.9.如图△ABC与△DEF相似,求未知边x、y的长度10.如图,△ABC中,D、E分别在边AB、AC上,DE∥BC,线段的长度如图所示,求证:△ABC∽△ADE.2 / 313 / 3111.如图,若56DE BC AE AC AD AB ===,且△ABC 与△ADE 周长差为4,求△ABC 与△ADE 的周长.12.一个矩形截去一个边长与宽相等的正方形后,所得的矩形仍与原矩形相似,求原矩形与宽的比.27.2《相似三角形性质与判定》一、选择题1.已知△ABC 与△A 1B 1C 1相似,且相似比为3:2,则△ABC 与△A 1B 1C 1的面积比为( )A.1:1B.3:2C.6:2D.9:42.若△ABC ∽△DEF ,AB=2DE ,△ABC 面积为8,则△DEF 的面积为( )A.1B.2C.4D.83.如图,在△ABC 中,DE ∥AB ,且CD:BD=3:2,则CE:CA 的值为( )A.0.6B.2/3C.0.8D.1.54.一个三角形支架三条边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm,120cm的两根木条,要求以其中一根为一边,从另一根上截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种5.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2B.3C.6D.546.已知△ABC∽△DEF,S△ABC:S△DEF=1:9,若BC=1,则EF的长为()A.1B.2C.3D.97.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE=AD=2,则AB的长是()A.6B.5C.4D.28.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为A.40mB.60mC.120mD.180m4 / 3110.如图,是一种雨伞的轴截面图,伞骨AB=AC,支撑杆OE=OF=40 cm,当点O沿AD滑动( )时,雨伞开闭.若AB=3AE,AD=3AO,此时B,D两点间的距离为A.60 cmB.80 cmC.100 cmD.120 cm11.如图,D、E是AB的三等分点,DF∥EG∥BC,图中三部分的面积分别为S1,S2,S3,则S1:S2:S3=()A.1:2:3B.1:2:4C.1:3:5D.2:3:412.如图,在□ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是()A.5:8B.25:64C.1:4D.1:16二、填空题.13.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为是 .5 / 316 /3115.如图,在平行四边形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若CF=6,则AF 的长为_____.16.如图,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F.若AD=1,BD=2,BC=4,则EF=________.17.如图,在平行四边形ABCD 中,点E 在边DC 上,△DEF 的面积与△BAF 的面积之比为9:16,则DE :EC=_____.18.如图,AG ∥BC ,如果AF :FB=3:5,BC :CD=3:2,那么AE :EC=_____.三、解答题19.如图所示,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上,判断△ABC 和△DEF 是否相似,并说明理由.7 /3120.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A ,在近岸分别取点B 、D 、E 、C ,使点A 、B 、D 在一条直线上,且AD ⊥DE ,点A 、C 、E 也在一条直线上,且DE ∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB 为多少米?21.如图,一块直角三角板的直角顶点P 放在正方形ABCD 的BC 边上,并且使条直角边经过点D ,另一条直角边与AB 交于点Q.请写出一对相似三角形,并加以证明.(图中不添加字母和线段)22.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.23.如图,在△ABC中,AD、BE是中线,它们相交于点F,EG//BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求AG:DF的值.8 / 3124.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD 分别交于点G、F.DF=2CF,AB=6,求DG的长.25.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.9 / 31参考答案1.答案为:D2.答案为:B3.答案为:A4.答案为:B5.答案为:C6.答案为:C7.答案为:A8.答案为:B9.答案为:C.10.答案为:D11.答案为:C12.答案为:D13.答案为:1:4.14.答案为:1:4.15.答案为:316.答案为:2/3.17.答案为:3:118.答案为:3:2;10 / 3119.△ABC和△DEF相似,理由如下:20.解析根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE ,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.21.△BPQ∽△CDP,证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∵∠QPD=90°,∴∠QPB+∠BQP=90°,∠QPB+∠DPC=90°,∴∠DPC=∠PQB,∴△BPQ∽△CDP.22.解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如图,即为所作图形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP =∠ABC,11 / 31∴∠BAP=∠CPD=∠ABC,即∠CPD =∠ABC,∴PD∥AB.23.解:24.解:在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP ∴△PGE∽△AGD∴而PE=AD=6,∴GE=GD=故DG 的长为.25.解:(1)证明:∵ED2=EA•EC,12 / 31∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.27.3位似1.下列说法中,正确的个数是( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A′B′C′D′E′位似,则其中△ABC与△A′B′C′也是位似的,且位似比相等.A.1B.2C.3D.42.位似图形的中心可能在两个图形__________,也可能在两个图形__________,还可能在两个图形的__________.3.指出下列各组位似图形的位似中点.13 / 3114 / 314.如图,△ACB 与△DFE 是位似图形,则)()()(ABBP AP ==.4题图 互动训练知识点一:位似图形的概念及性质 1.下列说法错误的是( ) A. 相似图形不一定是位似图形 B. 位似图形一定是相似图形 C. 同一底版的两张照片是位似图形D. 放幻灯时,底片上的图形和银幕上的图形是位似图形2.两个位似多边形一对对应顶点到位似中心的距离比为1∶2,且它们面积和为80,则较小的多边形的面积是( )A.16B.32C.48D.643.按如下方法,将△ABC 的三边缩小为原来的21,如图,任取一点O ,连结AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF . 则下列说法中正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形 ③△ABC 与△DEF 的周长比为2∶1 ④△ABC 与△DEF 的面积比为4∶1 A.1 B.2 C.3 D.415 /313题图 4题图4.如图,五边形ABCDE 与五边形A′B′C′D′E′位似,对应边CD =2,C′D′=3. 若位似中心P 点到点A 的距离为6,则P 到A′的距离为________________.5.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,△ADE 和△ABC 是位似图形,DE =1,BC =3,AB =6,求AD 的长.5题图知识点二:利用位似图形进行作图6.画出图中位似图形的位似中心..7.利用位似的方法把下图缩小一倍,要求所作的图形在原图内部8.如图,已知O是四边形ABCD的边AB上的任意一点,且EH∥AD,HG∥DC,GF∥BC.试说明四边形EFGH与四边形ABCD是否位似,并说明你的理由.16 / 3131 8题图9. 如图,在△ABC中,BC=1,AC=2,∠C=90°.9题图(1)在方格纸①中,画△A′B′C′,使△A′B′C′∽△ABC,且相似比为2∶1;(2)若将(1)中△A′B′C′称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点O为对称中心,并且以直线l为对称轴的图案.17 /知识点三:位似图形的应用10.一般室外放映的电影胶片上,每一个图片的规格为3.5 cm×3.5 cm,放映的银幕的规格是2 m×2 m,若影机的光源距胶片20 cm时,问银幕应拉在离镜头多远的地方,放映的图像刚好布满整个银幕?11.如图,已知矩形ABCD与矩形EFGH是位似图形,OB∶OF=3∶5,求矩形.ABCD与矩形EFGH的面积比12.在直角坐标系中,有一个Rt△AOB,且两直角边长分别为OA=4,OB=3,如图.(1)请直接写出A、B两点的坐标.(2)将△AOB作下列运动,画出相应的图形,指出3个顶点的坐标发生的变化(不必写计算过程).①关于原点对称;18 / 3119 / 31②将△AOB 以O 点为位似中心,缩小1倍.12题图课时达标1.如图,BC ∥ED ,下列说法不正确的是( )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .B 与D 、C 与E 是对应位似点 D .AE ︰AD 是相似比1题图 2题图2.如图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是( ) A. 61 cm B .31 cm C. 21cm D.1 cm3.在图中,①中的两个图形是位似图形,③中的两个图形也是位似图形,②中的两个图形不是位似图形.(1)分别指出图①③各自的位似中心.(2)在图①中任取一对对应点,度量这两个点到位似中心的距离.它们的比与位似比有什么关系?在图③中再试一试,还有类似的规律吗?4.如图,已知△ABC与△A′B′C′是位似图形,则AB∥A′B′,BC∥B′C′吗?说明理.由5.如图中的图案是由A字图案(虚线图案)经过变换后得到的,试问该变换是位似变换吗?为什么?20 / 3131 5题图6.如图,△ABC和△A′B′C′为位似图形,写出六个顶点的坐标,并指出△ABC和△A′B′C′的位似比.6题图7.已知图,作出一个新图形,使新图形与原图形的位似比为2∶1.7题图21 /8.如图,在水平桌面上的两个“E”,当点P1、P2、O在一条直线上时,在点O 处用①号“E”测得的视力与用②号“E”测得的视力相同.(1)图中b1,b2,l1,l2满足怎样的关系式?(2)若b1=3.2 cm,b2=2 cm,①号“E”的测试距离l1=8 m,要使测得的视力相同,?则②号“E”的测试距离l2应为多少9.印刷一张矩形的张贴广告如图所示,它的印刷面积为32 dm2,上下空白各1 dm,两边空白各0.5 dm,设印刷部分从上到下的长为x dm,四周空白处的面积为S dm2.(1)求S与x的关系式;(2)当要求空白处的面积为18 dm2时,求用来印刷这张广告的纸张的长和宽各是多少?.(3)内外两个图形是位似图形吗?如果是,请说明理由22 / 31拓展探究1.如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将△ABC变换成△PQR的是( )A.①②B.①③C.②③D.①②③1题图2题图2.如图,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.3.正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8,如图所示,23 / 3124 /313题图解答下列问题:(1)⊙A 的半径为__________;(2)请在图中将⊙A 先向上平移6个单位,再向左平移8个单位得到⊙D ,观察你所画的图形知⊙D 的圆心D 点的坐标是__________;⊙D 与x 轴的位置关系是__________;⊙D 与y 轴的位置关系是__________;⊙D 与⊙A 的位置关系是__________.(3)画出以点E(-8,0)为位似中心,将⊙D 缩小为原来的21的⊙F.27.3位似(第1课时)答案自主预习1. C. 解析:位似图形是相似图形,但相似图形不一定是位似图形,因而①对,②错.若两个位似图形全等,则其对应线段的比为1,因而位似中心到任意一对对应25 / 31点的距离之比等于1,即位似中心在两个图形之间,因而③对.相似多边形中的对应三角形相似,因而△ABC ∽△A′B′C′.又因为过这两个相似三角形对应点的直线都经过位似中心,所以△ABC 与△A′B′C′也是位似的,且位似比为B A AB '',即为原多边形的位似比.因而④对.答案:C2. 之间,同侧,内部. 解析:根据位似图形的意义.3. (1) P 点;(2) P 点. 解析:由位似图形意义.4. DP 、EP 、DE . 解析:对应点到位似中心的距离的比等于相似比. 互动训练1. C. 解析:位似是相似的特例,选项A 、B 都正确;选项C 不能确定两张照片的位置,它们不一定位似;选项D 是正确的.答案:C2. A. 解析:位似形必定相似,具备相似形的性质,其相似比等于一对对应顶点到位似中心的距离比. 相似比为1∶2,则面积比为1∶4,由面积和为80,得到它们的面积分别为16,64.答案:A3. D. 解析:此题缩小图形的根据是位似图形的性质.这样作出的图形与原图形位似,位似比为OB OE =21,即△ABC ∽△DEF,且相似比为12=OE OB .因而周长为2∶1,面积比为4∶1. 答案:D4. 9. 解析:由位似中心到两图形对应点的比等于相似比可求得答案.5.解:∵△ADE 与△ABC 是位似图形,∴△ADE ∽△ABC .所以BCDE AB AD =. ∵DE =1, BC =3, AB =6, ∴316=AD . ∴AD =2,即AD 的长为2. 6.如图所示26 /317. 解:(1)在五边形ABCDE 内部任取一点O .(2)以点O 为端点作射线OA 、OB 、OC 、OD 、OE .(3)分别在射线OA 、OB 、OC 、OD 、OE 上取点A′、B′、C′、D′,使OA ∶OA′=OB ∶OB′=OC ∶OC′=OD ∶OD′=OE ∶OE′=2.(4)连接A′B′、B′C′、C′D′、D′E′、E′A′.得到所要画的多边形A′B′C′D′E′(如图).7题图8. 解:四边形EFGH ∽四边形ABCD .理由:∵EH ∥AD ,∴△OEH ∽△OAD .∴∠1=∠A ,∠2=∠3,OD OH AD EH OA OE ==. 同理∠4=∠5,∠6=∠7,OCOG DC HG OD OH ==,27 / 31∠8=∠9,∠10=∠B,OB OF BC FG OC OG ==. ∴∠2+∠4=∠3+∠5,即∠EHG =∠ADC .∴∠6十∠8=∠7+∠9,即∠HGF =∠DCB .∴k ADEH OB OF OA OE ===. ∴OE =k·OA ,OF =k·OB .∴k OB OA OB OA k OB OA OF OE =++=++)(,即k ABEF =. ∴∠1=∠A ,∠EHG =∠ADC ,∠HGF =∠DCB ,∠10=∠B ,BCFG DC HG AD EH AB EF ===. ∴四边形EFGH ∽四边形ABCD .∵两个四边形各对应顶点的连线交于同一点O ,不经过点O 的其它三边平行,∴四边形EFGH 与四边形ABCD 是位似形.9. 如图,9题图10. 解:位似比为k=74005.3200=,设出银幕应拉在离镜头x m 的地方,则由位似图形的性质得740020=x,所以x=780m,故银幕应拉在离镜头780m的地方.11. 解:由位似可得,两个矩形相似,∴S矩形ABCD∶S矩形EFGH=(OB∶OF)2.∴S矩形ABCD∶S矩形EFGH=9∶2512. 解:(1) A (4, 0), B(0,3).(2) ①A1(-4,0), B1(0,-3), O(0,0). 如图:②如图, A2(2,0), B2(0,23), O(0,0).课时达标1. D.2. D. 解析:易得△ABO∽△CDO, 所以212=CDAB. 所以CD=1(cm).答案:D 3. (1)①③的位似中心分别为O、P点.(2)经过测量计算可推测得到对应点到位似中心的距离等于相似比.4. 解:AB∥A′B′,BC∥B′C′.理由如下:因为△ABC和△A′B′C′是位似图形,所以△ABC∽△A′B′C′.所以OAAO'=ABBAOBBO''='. 所以△OA′B′∽△OAB.所以∠OA′B′=∠OAB.所以A′B′∥AB.同理可得BC∥B′C′.28 / 315. 解:不是位似变换,原因一是看形状不同,二是4∶8≠4∶4,所以对应边不成比例.所以不是位似变换.6.解:六个顶点坐标为A(-1,4),A′(-0.5,2),B(6,2),B′(3,1),C(2,1),C′(1,0.5),位似比为2∶1.7. 解法一:(1)取关键点A、B、C、D,在图外取点P,作射线AP、BP、CP、DP;(2)在它们上面分别取A′、B′、C′、D′,使得P A′=2P A,PB′=2PB,PC′=2PC,PD′=2PD.(3)顺次连结A′、B′、C′、D′,四边形A′B′C′D′即为所求.如图(1),(1) (2) (3)解法二:(1)如图(2),在原图上取关键点A、B、C、D,在图形外取一点P,作出射线P A、PB、PC、PD;(2)在这些射线上依次取点A′,B′,C′,D′,使P A′=2P A,PB′=2PB,PC′=2PC,PD′=2PD;(3)顺次连结A′,B′,C′,D′,则四边形A′B′C′D′即为所求作的新图形.解法三:(1)如图(3),在原图上取关键点A,B,C,D,在图内取一点P,作射线P A,PB,PC,PD;(2)在这些射线上依次取点A′,B′,C′,D′,使P A=AA′,PB=BB′,PC=CC′,PD=DD′;(3)顺次连结A′,B′,C′,D′,则四边形A′B′C′D′即为所求作的新图形.8. 解:(1)∵△OD2P2∽△OD1P1, ∴b1∶b2=l1∶l2.29 / 3130 / 31 (2)由b 1∶b 2=l 1∶l 2, 得l 2=5 m.9. 解:(1)根据题意,得S=2×x×0.5+2×x 32×1+4×1×0.5=x+x 64+2, 即S=x+x64+2. (2)根据题意,得x+x64+2=18,整理,得x 2-16x+64=0.所以(x-8)2=0. 所以x=8.所以x+2=10.所以这张广告纸的长为10(dm),宽为832+2×0.5=5(dm). (3)内外两矩形是位似图形,理由如下:因为内,外两矩形的长,宽的比都为2, 所以45=''=''=''=''A D DA D C CD C B BC B A AB . 因为矩形的各角都为90°,所以矩形ABCD ∽矩形A′B′C′D′.因为AC 和BD ,A′C′和B′D′都相交于O 点,所以矩形ABCD 与矩形A′B′C′D′是位似图形.拓展探究1. D. 解析:本题考查图形变换的各种特征. 答案:D2. (5,4).3. (1)5. (2)如图,(-5,6),相离,相切,外切.(3)连接DE ,取DE 的中点F ,以F 为圆心,2.5为半径作圆.解析:本题用到圆的性质和在坐标系中图形变换的坐标变化.(1)连接AC ,根据垂径定理,有勾股定理可以计算;(2)⊙A 的平移实质是圆心的平移,因此点D 的坐标为(-5,6),由点D 的坐标看,⊙D 与x 轴相离,与y 轴相切,与⊙A 外切;(3)圆都可以看作是位似图形,位似中心在两圆圆心的连线上.31 /31。
27.2.1 相似三角形的判定(3)一、基础练习1.已知线段AC 、BD 交于O ,如图1,OC :OB=1:2,OA=6cm ,•OD=•3cm ,•AB=•7cm ,则CD=____.OBACDBA C DGF BACE D M G F(1) (2) (3)2.如图2,△ABC 中,∠C=90°,四边形DEFG 是正方形,点G 、F 分别在AC 、BC 上,DE 在AB 上,则图中相似的三角形共有_______对,它们分别是____________.3.如图3,△ABC 中,DE ∥BC ,GF ∥AC ,则图中与△ABC 相似的三角形为_________.4.•如图4,•∠1=•∠2=•∠3,•则图中相似三角形共有______•对,•它们分别是_________.BAC 31ED 2BA CE DP(4) (5) (6) 5.如图5,有下列条件:①∠B=∠C ;②∠ADB=∠AEC ;③AD AE AC AB =;④AD AE AB AC =;⑤PE BPPD PC=,•其中一个条件就能使△BPE ∽△CPD 的条件有_______个,它们分别是_________.(填序号就可以)6.如图6,在△ABC 中,AB=24,AC=18,D 是AC 上一的点,AD=12,在AB 上取一点E ,使A 、D 、E 三点组成的三角形与△ABC 相似,则AE 的长为________. 7.如图7,在Rt △ABC 的直角边AC 上有一点P (P 不同于A 、C ),过P 作直线截△ABC ,使截得的三角形与△ABC 相似,满足条件的直线共有_______条,这些直线与△ABC•的边的位置关系分别是______________.B AC ED F(7) (8) (9)8.如图8,在YABCD 中,AB=10,AD=6,E 是AD 的中点,在AB 上取一点F ,使△CBF ∽△CDE ,则BF 的长为__________.9.如图9,弦AB 和CD 相交于⊙O 内一点P ,AP=4cm ,BP=3cm ,CP=5cm ,则DP=______cm .10.如图,在正方形网格上,请你画两个三角形,使它们不全等且分别与图中的△ABC 相似,其相似比不为1,三角形的顶点都在正方形的顶点上,并注明相应的字母.BAC二、整合练习1.如图,已知△ABC 的高CD 、BE 相交于点F ,求证:CF ·FD=BF ·FE .BAC E DF2.如图,D 是△ABC 的边BC 上的一点,且BD ABDC AC,BE ⊥AD 于E ,CF ⊥AD 于F ,求证:AB ·DF=AC ·DE . BA CE DF3.如图,已知正方形ABCD 中,P 是BC 边上的点,BP=3PC ,Q 是CD 的中点. 求证:(1)△ADQ ∽△QCP ;(2)AQ ⊥QP ;(3)AQ=2AQ ;(4)AQ 平分∠DAP .BA CQD P答案:一、基础练习1.3.5cm 2.6 △ABC 与△GFC △ABC 与△AGD △ABC 与△FBE • •△AGD•与△GFC △AGD 与△FBE △GFC 与△FBE 3.△ADE △GBF △GDM4.4 △ADE 与△ABC △ACD 与△ABC △ACD 与△ADE △DEC 与△CDB 5.4 ①②④⑤6.16或9(△AED ∽△ABC 或△ADE ∽△ABC )7.3 一条与AB 平行,一条与BC 平行,一条与BC 垂直 8.1.8 9.125(连结AC 、BD ,证明△APC ∽△DPB ) 10.如图B 2C 1A 2C 2B 1A 1B A C二、整合练习1.因为BE ⊥AC ,CD ⊥AB ,∠CEF=∠BDF=90°,∠CFE=∠BFD ,△CFE ∽△BFD (两角对应相等,两三角形相似),CF FEBF FD=,即CF ·FD=BF ·FE . 2.因为BE ⊥AD ,CF ⊥AD ,可证△BDE ∽△CDF ,得BD DE DC DF =,又BD ABDC AC=, 所以AB DE AC DF=,即AB .DF=AC .DE . 3.(1)∠D=∠C=90°,AD DQQC PC==2. (2)证∠AQD+∠PQC=90° (3)由(1)得AQ ADPQ QC==2 (4)•证△ADQ ∽△AQP。
27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.如图所示,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE ACC.AD AE =AC AB =DE BC D.AD AB =AE EC =DE BC2.两个三角形相似,且相似比k =1,则这两个三角形 .3.如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为( )A .1B .2C .3D .44.如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ,直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知AB AC =13,则EFDE= .5.如图,在▱ABCD 中,EF ∥AB 交AD 于点E ,交BD 于点F ,DE ∶EA =3∶4,EF =3,则CD 的长为( )A .4B .7C .3D .126.如图,点E ,F 分别在△ABC 的边AB ,AC 上,且EF ∥BC ,点M 在边BC 上,AM 与EF 交于点D ,则图中相似三角形共有( )A .4对B .3对C .2对D .1对7.在△ABC 中,AB =6,AC =9,点P 是直线AB 上一点,且AP =2,过点P 作BC 边的平行线,交直线AC 于点M ,则MC 的长为 .8.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB 于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE=AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF9.如图,AG∶GD=4∶1,BD∶DC=2∶3,则AE∶EC的值是()A.3∶2B.4∶3C.6∶5D.8∶510.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上,若线段AB=4 cm,则线段BC=cm.11.如图,在△ABC中,点D,E分别为AB,AC的中点,连接DE,线段BE,CD相交于点O,若OD=2,则OC=.12.如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F,若CD=5,BC=8,AE=2,则AF=.13.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择作MN的平行线BC,并测得AM=900米, AB=30米,BC=45米,求直线隧道MN的长.14.如图,延长正方形ABCD的一边CB至点E,ED与AB相交于点F,过点F作FG∥BE 交AE于点G,求证:GF=FB.15.如图,AD∥EG∥BC,EG分别交AB,DB,AC于点E,F,G,已知AD=6,BC=10,AE=3,AB=5,求EG,FG的长.第2课时 相似三角形的判定定理1,21.将一个三角形的各边长都缩小12后,得到的三角形与原三角形( )A .一定相似B .一定不相似C .不一定相似D .无法确定2.若△ABC 各边分别为AB =10 cm ,BC =8 cm ,AC =6 cm ,△DEF 的两边为DE =5 cm ,EF =4 cm ,则当DF = cm 时,△ABC ∽△DEF. 3.试判断图中的两个三角形是否相似,并说明理由.4.网格图中每个方格都是边长为1的正方形.若A ,B ,C ,D ,E ,F 都是格点,试说明△ABC ∽△DEF.5.能判定△ABC ∽△A ′B ′C ′的条件是( )A.AB A ′B ′=ACA ′C ′B.AB AC =A ′B ′A ′C ′且∠A =∠A ′ C.AB BC =A ′B ′A ′C ′且∠B =∠C ′ D.AB A ′B ′=ACA ′C ′且∠B =∠B ′6.如图,已知△ABC,则下列4个三角形中,与△ABC相似的是()7.如图,AB与CD相交于点O,OA=3,OB=5,OD=6,当OC=时,△AOC∽△BOD.8.如图,点C,D在线段AB上,∠A=∠B,AE=3,AD=2,BC=3,BF=4.5,DE=5,求CF的长.9.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=时,以A,D,E为顶点的三角形与△ABC相似.10.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P 1B.P2C.P3D.P411.如图,在△ABC中,点P在AB上,下列四个条件:①AP∶AC=AC∶AB;②AC2=AP·AB;③AB·CP=AP·CB.其中能满足△APC和△ACB相似的条件有()A.1个 B.2个C.3个D.0个12.如图,已知∠DAB=∠CAE,请补充一个条件:,使△ABC∽△ADE.13.如图,AB∥DE,AC∥DF,BC∥EF,求证:△DEF∽△ABC.14.如图,在△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB·CE.求证:△ADB∽△EAC.15.如图,正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:△ADQ ∽△QCP.16.如图,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是.第3课时相似三角形的判定定理31.下列各组图形中有可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形2.已知△ABC中,∠A=40°,∠B=75°,下图各三角形中与△ABC相似的是.3.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形.(用相似符号连接) 4.如图,点B,D,C,F在一条直线上,且AB∥EF,AC∥DE,求证:△ABC∽△EFD.5.如图,∠1=∠2,∠C =∠D.求证:△ABC ∽△AED.6.在△ABC 和△A ′B ′C ′中,∠C =∠C ′=90°,AC =12,AB =15,A ′C ′=8,则当A ′B ′= 时,△ABC ∽△A ′B ′C ′.7.一个直角三角形的一条直角边长和斜边长分别为8 cm 和15 cm ,另一个直角三角形的一条直角边长和斜边长分别是6 cm 和454 cm ,这两个直角三角形 (填“是”或“不是”)相似三角形.8.一个直角三角形的两边长分别为3和6,另一个直角三角形的两边长分别为2和4,那么这两个直角三角形 (填“一定”“不一定”或“一定不”)相似.9.如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,且∠DCE =∠B.那么下列判断中,错误的是( )A .△ADE ∽△ABCB .△ADE ∽△ACDC .△DEC ∽△CDBD .△ADE ∽△DCB10.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .811.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.12.如图,已知∠ACB=∠ABD=90°,AB=6,AC=2,求AD的长为多少时,图中两直角三角形相似?13.如图,在▱ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.求证:△ABF∽△BEC.14.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?15.如图,在△ABC中,AD,BF分别是BC,AC边上的高,过点D作AB的垂线交AB于点E,交BF于点G,交AC的延长线于点H,求证:DE2=EG·EH.参考答案:27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.A2. 全等.3.B4. 2.5.B6.B7. 6或12.8.D9.D10.12.11.4.12.169.13.解:∵BC ∥MN ,∴△ABC ∽△AMN.∴AB AM =BC MN ,即30900=45MN .∴MN =1 350.答: 直线隧道MN 的长为1 350米.14.证明:∵GF ∥AD ,∴GF AD =EFED .又FB ∥DC ,∴FB DC =EFED .又AD =DC ,∴GF AD =FBAD .∴GF =FB.15.解:∵在△ABC 中,EG ∥BC ,∴△AEG ∽△ABC ,∴EG BC =AEAB .∵BC =10,AE =3,AB =5,∴EG 10=35,∴EG =6. ∵在△BAD 中,EF ∥AD ,∴△BEF ∽△BAD ,∴EF AD =BE AB. ∵AD =6,AE =3,AB =5,∴EF 6=5-35.∴EF =125. ∴FG =EG -EF =185.第2课时 相似三角形的判定定理1,21.A2.3.3.解:相似.理由如下:在Rt △ABC 中,BC =AB 2-AC 2=32-2.42=1.8,在Rt △DEF 中,DF =DE 2-EF 2=62-3.62=4.8,∴AB DE =BC EF =AC DF =12. ∴△ABC ∽△DEF.4.证明:∵AC =2,BC =12+32=10,AB =4,DF =22+22=22,EF =22+62=210,ED =8,∴AC DF =BC EF =AB DE =12. ∴△ABC ∽△DEF.5.B6.C7. 1858.解:∵AE BF =34.5=23,AD BC =23,∴AE BF =AD BC.又∵∠A =∠B ,∴△AED ∽△BFC.∴AD BC =DE CF .∴23=5CF. ∴CF =152. 9. 125或53. 10.C11.B12. AD AB =AE AC 13.证明:∵AB ∥DE ,∴△ODE ∽△OAB.∴DE AB =OE OB. ∵BC ∥EF ,∴△OEF ∽△OBC.∴EF BC =OE OB =OF OC. ∵AC ∥DF ,∴△ODF ∽△OAC.∴DF AC =OF OC. ∴DE AB =EF BC =DF AC. ∴△DEF ∽△ABC.14.证明:∵AB =AC ,∴∠ABC =∠ACB.∴∠ABD =∠ACE.∵AB 2=DB ·CE ,∴AB CE =DB AB . 又AB =AC ,∴AB CE =DB AC. ∴△ADB ∽△EAC.15.证明:设正方形的边长为4a ,则AD =CD =BC =4a.∵Q 是CD 的中点,BP =3PC ,∴DQ =CQ =2a ,PC =a.∴DQ PC =AD CQ =21. 又∵∠D =∠C =90°,∴△ADQ ∽△QCP.16.3__s 或4.8__s .第3课时 相似三角形的判定定理31.A2. △EFD ,△HGK .3. 答案不唯一,如△BDE ∽△CDF ,△ABF ∽△ACE 等.4.证明:∵AB ∥EF ,AC ∥DE ,∴∠B =∠F ,∠ACB =∠EDF.∴△ABC ∽△EFD.5.证明:∵∠1=∠2,∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠EAD.又∵∠C =∠D ,∴△ABC ∽△AED.6.10.7.是.8.不一定.9.D10.B11.6017. 12.解:①若△ABC ∽△ADB ,则AB AD =AC AB.∴AD =3; ②若△ABC ∽△DAB ,则AB AD =BC AB.∴AD =3 2.综上所述,当AD =3或32时,两直角三角形相似.13.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AD =BC.∴∠D +∠C =180°,∠ABF =∠BEC.又∵∠AFB +∠AFE =180°,且∠AFE =∠D , ∴∠C =∠AFB.又∵∠ABF =∠BEC ,∴△ABF ∽△BEC.14.解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD.∴△APQ ∽△CDQ.(2)当DP ⊥AC 时,∠QCD +∠QDC =90°.∵∠ADQ +∠QDC =90°,∴∠DCA =∠ADP. 又∵∠ADC =∠DAP =90°,∴△ADC ∽△PAD.∴AD PA =DC AD .∴10PA =2010,解得PA =5. ∴t =5.15.证明:∵AD ,BF 分别是BC ,AC 边上的高, ∴∠ADB =∠BED =90°.∴∠EBD +∠EDB =∠EDB +∠ADE.∴∠EBD =∠EDA.∴△AED ∽△DEB.∴AE DE =DE BE,即DE 2=AE ·BE. 又∵∠HFG =90°,∠BGE =∠HGF ,∴∠EBG =∠H.∵∠BEG =∠HEA =90°,∴△BEG ∽△HEA.∴EG AE =BE EH,即EG ·EH =AE ·BE. ∴DE 2=EG ·EH.。