单元测试数据的分析
- 格式:docx
- 大小:88.53 KB
- 文档页数:7
四年级下册数学单元测试-6。
数据的表示和分析一、单选题1.在一个圆形花坛内种了三种花(如图所示),统计图( )能准确地表示各种花的占地面积。
A. B. C.2.折线统计图表示( )。
A. 数量的多少和增减变化情况B. 数量的多少C. 部分量与总量的关系3.在“书香校园”活动中,我校同学平均每人捐了5本书。
()A. 全校每个同学一定都捐了5本。
B. 可能有人捐了10本书。
4.要反映一个病人的体温变化情况,用()比较合适。
A. 条形统计图B. 折线统计图C. 统计表D. 以上三种都可以二、判断题5.条形统计图可以直观的看出每个数据的多少。
()6.:折线统计图可以清楚地表示出各部分同总数之间的关系.()7.条形统计图不但能反映数量的多少,还能反映数量的变化情况。
()8.医生通常用扇形统计图记录病人的体温变化情况。
()三、填空题9.常见的统计图有________和________。
10.甲、乙的平均数是86,甲、乙、丙的平均数是77,那么丙数是________.11.下面是3个同学1分钟跳绳情况的统计图。
请根据统计图,完成下面的问题.(1)1格代表________次。
(2)________跳的是最快,________跳的是最慢。
你想对他们说________四、解答题12.阳光少儿书店第二季度图书销售统计表。
(1)请把上表填写完整。
(2)________月份出售的书最多。
(3)第二季度平均每月出售科技书________本。
(4)这家书店准备为七月份进书,你有什么建议?13.(1)从统计图中可以得到哪些信息?(2)学校要添置一些新书,你有什么建议?说说理由.14.这是乐园水果店一个星期苹果的销售量。
时间星期一星期二星期三星期四星期五星期六星期日销售量(千克)100 120 130 150 160 180 210(1)根据统计表画出折线统计图。
(2)说一说乐园水果店这一周的销量变化趋势?(3)这一周平均每天销售水果多少千克?五、应用题15.6个人加工一批零件,前3个人平均每人加工20个,后3个人共加工66个,平均每个人加工多少个零件?参考答案一、单选题1.【答案】C【解析】【解答】根据分析可知,统计图C能准确地表示各种花的占地面积.故答案为:C.【分析】观察扇形统计图可知,花坛中一共种了三种花,玫瑰和菊花的占地面积相等,百合的占地面积是玫瑰或菊花占地面积的2倍,据此选择合适的条形统计图即可.2.【答案】A【解析】【解答】解:折线统计图表示数量的多少和增减变化情况。
专题13 第20章《数据的分析》单元练习卷一.选择题(共10小题,共30分)1.(3分)国际数学奥林匹克竞赛旨在激发全球青年人的数学才能,中国代表队近六届竞赛的金牌数(单位:枚)分别为6,6,4,5,4,4,关于这组数据,下列说法正确的是()A.方差是0.5B.众数是6 C.中位数是4.5D.平均数是4.82.(3分)下列为某班级研究性学习小组学员出勤次数如表所示,则小组学员出勤次数的众数和中位数分别是()出勤次数45678学员人数26543A.5,6B.5,5C.6,5D.8,63.(3分)已知一组数据的方差为,则()A.这组数据有10个B.这组数据的平均数是5C.方差是一个非负数D.每个数据加3,方差的值增加34.(3分)思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为()(单位:分)A.8.2B.8.3C.8.7D.8.95.(3分)温州银泰商场某店一天中卖出某种品牌的休闲鞋16双,它们的尺码与销售量如表所示:鞋的尺码/cm2525.52626.527销售量/双23443则这16双鞋的尺码组成的数据中,中位数()A.25.5B.26C.26.5D.276.(3分)一组数据5,8,8,10,1■中,最后一个两位数的个位数字被墨迹覆盖,则这组数据不受影响的统计量是()A.平均数B.中位数C.众数D.极差7.(3分)一位卖“运动鞋”的经销商到一所学校对200名学生的鞋号进行了抽样调查,经销商最感兴趣的是这组鞋号的()A.众数B.平均数C.中位数D.方差8.(3分)某班一合作学习小组有6人,初三上期数学期末考试成绩数据分别为114、86、95、77、110、93,则这组数据的中位数是()A.86B.95C.77D.949.(3分)为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为()A.8,8,8B.7,8,7.8C.8,8,8.7D.8,8,8.410.(3分)某校举行“喜迎中国共产党建党100周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是()A.众数是5B.中位数是90C.平均数是93D.方差是0二.填空题(共6小题,共30分)11.(5分)已知一组数据﹣1,﹣3,5,7,这组数据的极差是.12.(5分)在对某样本进行方差计算时,计算的公式是:,该样本的样本容量是.13.(5分)如图是甲、乙两人5次投篮成绩统计图(每人每次投球10个),则s甲2s乙2(填“>”,“=”或“<”).14.(5分)小丽计算数据方差时,使用公式S2=,则公式中=.15.(5分)我市某电视台招募主持人,甲侯选人的综合专业索质、普通话、才艺展示成绩如表所示.测试项目综合专业索质普通话才艺展示测试成绩908692根据实际需求,该电视台规定综合专业素质、普通话和才艺展示三项测试得分按5:3:2 的比例确定最终成绩,则甲候选人的最终成绩为分.16.(5分)现有1,2,3,…,9九个数字,甲、乙两位同学轮流从中选出一个数字,从左至右依次填入下面所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最小的数字,乙会选择填入后使表中现有数据中位数最大的数字.如图,若表中第一个数字是6,甲先填,(1)请你在表中空白处填出一种符合要求的填数结果;(2)满足条件的填法有种.6三.解答题(共7小题,共50分)17.(6分)学校组织“中国传统文化”知识竞赛,每班都有20名同学参加,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分(90分及以上属于优秀),学校将七年一班和二班的成绩整理如下:(1)填写以下表格;班级平均数众数中位数优秀率七年一班分90分分七年二班92分分90分80%(2)结合以上统计量,你认为哪个班级的竞赛成绩更加优秀?请简述理由.18.(8分)为了解决杨树花絮污染环境的难题,某公司引进优秀专利品种,建立新树种实验基地,研究组在甲、乙两个实验基地同时播下新树种,同时随机各抽取20株树苗,记录下每株树苗的长度(单位:cm),进行整理、描述和分析(用x表示树苗长度,数据分成5组:A.20≤x<30;B.30≤x<40;C.40≤x <50;D.50≤x<60;E.x≥60,50cm及以上为优等),下面给出了部分信息:【数据收集】甲实验基地抽取的20株树苗的长度:28,29,32,34,38,40,42,45,46,51,51,52,54,55,55,55,55,57,60,61.乙实验基地抽取的20株树苗中,A、B、E三个等级的数据个数相同,C组的所有数据是:42,43,46,49,49.【数据整理】甲实验基地抽取的树苗长度统计表x频数频率A20.1B a0.15C40.2D90.45E20.1【数据分析】基地平均数众数中位数E组所占百分比甲47b5110%乙4756c m%根据以上信息,解答下列问题:(1)填空:a=,b=,c=,m=;(2)根据上述数据分析,你认为甲、乙两基地哪个基地的树苗好?请说明理由(写出一条理由即可);(3)请估计2000棵乙基地的树苗为优等的树苗有多少棵?19.(8分)争创全国文明城市,从我做起.某中学开设了文明礼仪校本课程,为了解学生的学习情况,学校组织七八年级学生进行文明礼仪知识测试,两个年级均有300名学生,从七八年级各随机抽取了10名学生的测试成绩,满分100分,整理分析如下:七年级:99 98 98 98 95 93 91 90 89 79八年级:99 99 99 91 96 90 93 87 91 85整理分析上面的数据,得到如下表格:平均数中位数众数方差统计量年级七年级9394a33.7八年级93b9923.4根据以上信息,解答下列问题.(1)填空:a=,b=;(2)根据统计结果,年级的成绩更整齐;(3)七年级甲同学和八年级乙同学成绩均为93分,根据上面统计情况估计同学的成绩在本年级的排名更靠前;(4)如果在收集七年级数据的过程中将抽取的“89”误写成了“79”,七年级数据的平均数、中位数、众数中发生变化的是;(5)若成绩不低于95分的可以获奖,估计两个年级获奖的共有人.20.(8分)中国共产主义青年团是中国共产党用来团结教育青年一代的群众组织,也是党联系青年的桥梁和纽带,2022年是共青团成立100周年,某校为了解学生对共青团的认识,组织七、八年资全体团员学生进行了“团史知识竞赛”,为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:【收集数据】从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级学生的分数如下:75,90,55,60,85,85,95,100,80,85,80,85,90,75,65,60,80,95,70,75,【整理、过述数据】按如下表分数段整理、描述这两组样本数据:分数(分)x<6060≤x<7070≤x<8080≤x<9090≤x≤100七年级(人)23654八年级(人)1m475【分析数据】两组样本数据的平均数、中位数、众数如表所示:年级平均数中位数众数七年级77.57585八年级79.25b c根据以上提供的信息,回答下列问题:(1)填空:m=,b=,c=;(2)该校八年级学生有560人,假设全部参加此次竞赛,请估计八年级成绩超过平均数79.25分的人数;(3)在这次竞赛中,七八年级参加人数相同,七年级学生小明与八年级学生小亮的成绩都是75分,于是小明说:“我在年级的名次有可能高于小亮在年级里的名次”,你同意小明的说法吗?并说明理由.21.(10分)某学校从九年级学生中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表成绩/分78910人数/人1955(1)m=,甲组成绩的众数乙组成绩的众数(填“>”“<”或“=”);(2)求甲组的平均成绩;(3)这40个学生成绩的中位数是;(4)计算出甲组成绩的方差为0.81,乙组成绩的方差为0.75,则成绩更加稳定的是组(填“甲”或“乙”).22.(10分)为了解某校八年级男生在体能测试中引体向上项目的情况,随机抽查了部分男生引体向上项目的测试成绩,绘制如图统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的男生人数为,图①中m的值为;本次调查获取的样本数据的平均数为,中位数为.(2)若规定引体向上6次及以上为该项目良好,根据样本数据,估计该校320名男生中该项目良好的人数.(3)根据良好人数,为了中招体育测试能有更多人得到高分,请你给该校男生提出一些相关建议(最少两条).23.(10分)为了解学生每天的睡眠情况,某初中学校从全校2400名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:7,9,9,8,10.5,8,10,9.5,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,8,9,7,9.5,8.5,9,7,9,9,8.5,7.5,8.5,9,8,7.5,9.5,10,9,8,9,9.5,8.5.记者:胡浩教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确了中小学生必要睡眠时间,小学生每天睡眠时间应达到10h,初中生应达到9h,高中生应达到8h.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组人数(频数)一7≤t<87二8≤t<9a三9≤t<1018四10≤t<11b请根据以上信息,解答下列问题:(1)a=,b=,m=,n=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组;(填组别)(3)如果按照要求,学生平均每天的睡眼时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数;(4)请对该校学生“睡眠时间”的情况作出合理的评价.。
五年级下册数学单元测试-8。
数据的表示和分析一、单选题1.下列有关平均数的说法正确的是()A. 平均数是偶数B. 平均数是奇数C. 平均数是整数D. 平均数是反映一组数据平均水平的一个量2.下图中,表示一个人“平时”与“运动中”的心跳对比情况最合理的是()。
A. B.C. D.3.六(1)班5位同学参加1分钟拍球比赛,他们所拍的个数各不相同,平均成绩是85个。
如果其中拍得最少的是80个,那么他们中拍得最多的人的成绩不超过( )个。
A. 90B. 95C. 99D. 1054.甲、乙、丙三数的平均数是87,甲、乙两数的和为126,丙数为( )。
A. 135B. 39C. 87二、判断题5.条形统计图可以分为单式和复式条形统计图。
()6.复式折线统计图只能表示出数据的增减变化情况。
()三、填空题7.下面是明明和亮亮200米赛跑情况的折线统计图。
(1)跑完200米,明明比亮亮多用________秒。
(2)亮亮到达终点时,明明离终点还有________米。
(3)前15秒,________跑得快些。
(4)亮亮跑完全程平均每秒跑________米。
8.画折线统计图下面是A、B两市去年上半年降水量情况统计图________月的降雨量两市相差最大。
9.甲、乙两数的平均数是98,甲数是95,乙数是________。
四、解答题10.下面是蓝天小学四(1)班和四(2)班同学参加课外活动小组的统计情况。
(1)根据上面的统计图将下表补充完整。
(2)四(1)班和四(2)班参加课外活动小组的分别有多少人?(3)参加篮球组的比参加摄影组的多多少人?(4)哪个班参加课外小组的人数多?多几人?11.淘淘通过上网查询了解到100克黄豆和100克花生中蛋白质、脂肪、碳水化合物的含量,并将它制成了复式统计图。
(如下图)12.小明参加歌咏比赛,7个评委的打分分别是98分、88分、90分、92分、83分、89分和91分,如果去掉一个最高分和一个最低分,小明的平均得分是多少?五、应用题13.光明小学为希望工程捐款。
一、选择题1.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或62.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁3.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变4.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数5.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是( ) A .75,70 B .70,70 C .80,80 D .75,80 6.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( ) A .8B .5C .6D .37.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( )A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n8.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( )A.数据个数、平均数B.方差、偏差C.众数、中位数D.数据个数、中位数9.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是910.若a、b、c这三个数的平均数为2,方差为S2,则a+2,b+2,c+2的平均数和方差分别是()A.2,S2B.4,S2C.2,S2+2 D.4,S2+411.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是9312.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l2二、填空题13.某中学篮球队12名队员的年龄情况如下:年龄(单位:1415161718岁)人数14322则这个队队员年龄的众数和中位数分别是_____岁、_____岁.14.一组数据4、5、a、6、8的平均数5x=,则方差2s=________.15.若一组数据1,2,a,3,5的平均数是3,则这组数据的标准差是______.16.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是_____.17.某组数据的方差计算公式为S2=18[(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.18.一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是___________.19.某校对开展贫困地区学生捐书活动,某班40名学生捐助数量(本)绘制了折线统计图,在这40名学生捐助数量中,中位数是_____,众数是_____.20.现有甲、乙两个合唱队队员的平均身高均为170cm,方差分别是2S甲,2S乙,且22S S甲乙,则两个队的队员的身高较整齐的是______.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图.(1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?23.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是度;(2)这40个样本数据的众数是_______;中位数是_______.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数.24.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.25.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.26.学校开展的“书香校园”活动受到同学们的广泛关注,为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表:借阅图书的次0次1次2次3次4次及以上数人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=;(2)该调查统计数据的中位数是,众数是;(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书4次及以上的人数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5, ∴x=1或6, 故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.2.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.3.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.4.B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.5.A解析:A【分析】根据中位数和众数的定义解答即可.【详解】共40个数据中第20和第21个数分别是70、80,∴这组数据的中位数是75,这组数据中出现次数最多的是70,所以众数是70,故选:A.【点睛】此题考查了中位数和众数的定义,一组数据最中间的一个数或两个数的平均数是这组数据的中位数,出现次数最多的数是这组数据的众数,正确掌握定义是解题的关键.6.A解析:A【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是1[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.5故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.C解析:C【分析】根据平均数、极差和方差的变化规律即可得出答案.【详解】∵数据a、b、c、d、e、f、g的平均数是m,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3;∵数据a、b、c、d、e、f、g的极数是k,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;故选C.【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.8.A解析:A 【分析】根据方差的计算公式可直接得出结果. 【详解】()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦∴5是数据的个数,7是平均数, 故选:A 【点睛】本题考查方差的定义.熟记方差公式是解题的关键. 9.D解析:D 【解析】 【分析】根据中位数,众数、极差、标准差的定义即可判断. 【详解】解:七个整点时数据为:22,22,23,26,28,30,31 所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+= ;极差是31-22=9,标准差是:故D 正确, 故选:D 【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据10.B解析:B 【分析】方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变,平均数增加2. 【详解】由题意知,原来的平均数为2,每个数据都加上2,则平均数变为4;原来的方差221=(2)(2)(2)3S a b c ⎡⎤---⎣⎦22++ 现在的方差:222222111=(24)(24)(24)=(2)(2)(2)33S a b c a b c S ⎡⎤⎡⎤+-+-+-=---=⎣⎦⎣⎦22++++ 方差不变. 故选:B. 【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.11.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.12.A解析:A 【解析】 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16. 故选:A . 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.二、填空题13.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.4【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s2=(4解析:4【分析】首先根据其平均数为5求得a的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.【分析】根据题意可得×(1+3+2+5+a)=3解这个方程就可以求出a的值;根据标准差的计算公式即可求出样本标准差【详解】根据题意由平均数的定义得×(1+3+2+5+a)=3解得a=4所以方差为:S解析:2 【分析】 根据题意可得15×(1+3+2+5+a)=3,解这个方程就可以求出a 的值;根据标准差的计算公式即可求出样本标准差.【详解】 根据题意 由平均数的定义得15×(1+3+2+5+a)=3, 解得,a=4.所以方差为:S 2=()()()()()2222213-1+3-3+3-2+3-5+3-4=5⎡⎤⨯⎣⎦2, 故标准差为:2故答案为:2.【点睛】此题考查平均数的概念,解题关键在于掌握计算公式.16.4【解析】【分析】平均数的计算方法是求出所有数据的和然后除以数据的总个数先求数据x1x2x3x4x5的和然后再用平均数的定义求新数据的平均数【详解】一组数据x1x2x3x4x5的平均数是2有15(x解析:4【解析】【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数.【详解】一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有(x 1+x 2+x 3+x 4+x 5)=2,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4.故答案是:4.【点睛】考查的是样本平均数的求法及运用,解题关键是记熟公式:. 17.82【分析】样本方差S2=(x1-)2+(x2-)2+…+(xn-)2其中n 是这个样本的容量是样本的平均数利用此公式直接求解【详解】由于S2=(x1-2)2+(x2-2)2+…+(x8-2)2所以该解析:8 2【分析】样本方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解.【详解】 由于S 2=18[(x 1-2)2+(x 2-2)2+…+(x 8-2)2], 所以该组数据的样本容量是8,该组数据的平均数是2.故答案为8,2.【点睛】此题考查方差的有关计算,解答此题的关键是熟练记住公式:S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]中各个字母所代表的含义.18.68【分析】本题可用求平均数的公式解出x 的值在运用方差的公式解出方差【详解】解:依题意得:5+8+x +10+4=2x×5所以x =32x =6方差s2==68【点睛】本题考查了算术平均数方差的计算方法熟解析:6.8【分析】本题可用求平均数的公式解出x 的值,在运用方差的公式解出方差.【详解】解:依题意得:5+8+x +10+4=2x×5,所以x =3,2x =6,方差s 2=15()()()()()222225-6+8-6+3-6+10-6+4-6⎡⎤⎣⎦=6.8, 【点睛】 本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键. 19.2323【解析】【分析】根据中位数和众数的定义求解即可【详解】解:由折线统计图可知阅读20本的有4人21本的有8人23本的有20人24本的有8人共40人∴其中位数是第2021个数据的平均数即=23众解析:23 23【解析】【分析】根据中位数和众数的定义求解即可.【详解】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即23232+=23,众数为23, 故答案为23、23.【点睛】本题考查了折线统计图及中位数、众数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算.20.甲【解析】【分析】根据方差小的身高稳定判断即可【详解】现有甲乙两个合唱队队员的平均身高均为170cm 方差分别是且则两个队的队员的身高较整齐的是甲故答案为:甲【点睛】此题考查了方差方差是用来衡量一组数 解析:甲【解析】【分析】根据方差小的身高稳定判断即可.【详解】现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是甲,故答案为:甲【点睛】此题考查了方差,方差是用来衡量一组数据波动大小的量.三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m 的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果. 【详解】解:(1)样本容量是:10÷20%=50.70≤a <80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=3640⨯︒︒; (3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元), 答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.23.(1)36;(2)9; 8;(3)估计该校理化实验操作得满分的学生人数是56人.【分析】(1)用360°乘以①所占的百分比,计算即可得解;(2)众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数分别解答; (3)用九年级总人数乘以满分的人数所占的份数计算即可得解.【详解】(1)360°×(1-15%-27.5%-30%-17.5%)=360°×10%=36°;故答案为:36;(2)∵9出现了12次,次数最多,∴众数是9;∵将40个数字按从小到大排列,中间的两个数都是8,∴中位数是8882+=, 故答案为:9,8; (3)32017.5%56⨯=(人),估计该校理化实验操作得满分的学生人数是56人.【点睛】本题考查条形统计图、扇形统计图、众数与中位数的意义、用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.25.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义. 26.(1)17,20a b ==;(2)中位数是2次,众数是2次;(3)120人【分析】(1)根据借阅1次的人数及百分比求出样本总人数,减去其他的人数即可得到a ,用借阅3次的人数除以总人数乘以100%即可得到3次的百分比,由此得到b ;(2)根据中位数及众数的定义解答;(3)根据样本中4次及以上的百分比乘以2000解答.【详解】(1)调查的总人数是1326%50÷=(人),∴a=50-7-13-10-3=17,10%100%20%50b =⨯=, 故答案为:17,20; (2)50个数据中中间两个数据都是2次,故中位数是2次,数据出现次数最多的是2次,故众数是2次,故答案为:2次,2次;(3)3100%200050⨯⨯=120(人), ∴该校学生在一周内借阅图书4次及以上的人数是120人.【点睛】此题考查统计数据的计算,正确掌握样本总数的计算方法,中位数的定义,众数的定义,利用样本的百分比求总体的方法是解题的关键.。
数据的分析单元测试卷一、选择题:1.如果3,2,x,5的平均数是4,那么x等于()(A)2 (B)4 (C)6 (D)82.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是()(A) 40,40 (B) 40,60 (C)50,45 (D)45,40 3.一个样本数据按从小到大的顺序的排顺列为13、14、19、x、23、27、28、31,其中位数为22,则x等于()(A)21 (B)22 (C)20 (D)234.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了25人某月的销售如下表:公司营销人员该月销售的中位数是()(A)400件(B)350件(C)300件(D)360件5.某服装销售在进行市场占有率的调查时,他最应该关注的是()(A)服装型号的平均数(B)服装型号的众数(C)服装型号的在中位数(D)最小的服装型号6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统从射击成绩的平均数评价甲、乙两人的射击水平,则()(A)甲比乙高(B)甲、乙一样(C)乙比甲高(D)不能确定7.5个整数从小到的排列,其中位数是4,如果这组数据的唯一众数是6,则这5个整数最大的和可能是()(A)21 (B)22 (C)23 (D)248.为了让人们感受丢弃塑料袋对环境造成的影响程度,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据上面提供的数据估计本周全班同学家中总共丢弃塑料袋的数量约为()(A)900个(B)1080个(C)1260个(D)1800个9.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()(A)4 (B)8 (C)12 (D)2010.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的( )(A)平均数 (B)加权平均数 (C)中位数 (D)众数二、填空题:11.一个小组共有6名学生,在一次“引体向上”的测试中,他们分别做了8,10,8,7,6,9个,这6个学生平均每人做了个.12.一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________.13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别为5,7,3,6,6,4,则这组数据的中位数为件.14.下表是食品营养成分表的一部分(每100克食品可食部分营养成分的含量).在表中提供的碳水化合物的克数所组成的数据中,中位数是,平均数。
一、选择题1.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.平均数是54 D.方差是292.八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7 B.6 C.5 D.43.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁4.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③5.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②6.若a、b、c这三个数的平均数为2,方差为S2,则a+2,b+2,c+2的平均数和方差分别是()A.2,S2B.4,S2C.2,S2+2 D.4,S2+47.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 8.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,389.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( ) A .平均数B .众数C .中位数D .方差10.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( ) A .89,90B .90,90C .88,95D .90,9511.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .812.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表: 锻炼时间(时) 3 4 5 6 7 人数(人)6131452这40名居民一周体育锻炼时间的众数和中位数是( ) A .14,5B .14,6C .5,5D .5,6第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____. 15.一组数据2,3,4,x ,6的平均数是4,则x 是_______.16.若一组数据4,a ,7,8,3的平均是5,则这组数据的方差是_______. 17.某次数学竞赛共有15道题,下表是对于做对n (n=0,1,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了______人. n 0 1 23… 12 13 14 15做对 n 道题的人数7 8 10 21 … 15 63118.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.19.已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.20.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)12345人数25896则这30名同学每天使用的零花钱的中位数是_____元.三、解答题21.为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示(1)根据图示填写下表班级平均数(分)中位数(分)众数(分)九(1)8585九(2)80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.22.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少?(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?23.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?24.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中); (2) 试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.25.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 26.某中学七、八年级各选10名同学参加“创全国文明城市”知识竞赛,计分10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或9分以上为优秀,这次竞赛后,七、八年级两支代表队成绩分布的条形统计图和成绩分析表如下,其中七年级代表队得6分、10分选手人数分别为a ,b .队列 平均分 中位数 方差 合格率 优秀率七年级 6.7m3.41 90% n八年级7.1 7.5 1.6980%10%(1)根据图表中的数据,求a ,b 的值. (2)直接写出表中的m = ,n = .(3)你是八年级学生,请你给出两条支持八年级队成绩好的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否. 【详解】这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60, 则众数为:60,中位数为:55, 平均数为:405050505555606060606010++++++++++=54,方差为:22221(4054)3(5054)2(5554)4(6054)10⎡⎤-+⨯-+⨯-+⨯-⎣⎦=39. 故选D .2.C解析:C 【分析】根据平均数的计算公式列出算式,再进行计算即可得出x 的值.【详解】解:∵5,7,6,x,7的平均数是6,∴15(5+7+6+x+7)=6,解得:x=5;故选:C.【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.3.B解析:B【分析】本题首先可通过四位同学的平均分比较,择高选取;继而根据方差的比较,择低选取求解本题.【详解】通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学.故选:B.【点睛】本题考查平均数以及方差,平均数表示其平均能力的高低;方差表示数据波动的大小,即稳定性高低,数值越小,稳定性越强,考查对应知识点时严格按照定义解题即可.4.C解析:C【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.5.C解析:C 【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论. 【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确. 故选:C 【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.B解析:B 【分析】方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变,平均数增加2. 【详解】由题意知,原来的平均数为2,每个数据都加上2,则平均数变为4;原来的方差221=(2)(2)(2)3S a b c ⎡⎤---⎣⎦22++ 现在的方差:222222111=(24)(24)(24)=(2)(2)(2)33S a b c a b c S ⎡⎤⎡⎤+-+-+-=---=⎣⎦⎣⎦22++++ 方差不变. 故选:B. 【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.7.B解析:B【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m,故选B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.8.B解析:B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.D解析:D【分析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为3+4+4+5=44,原数据的3,4,4,5的中位数为4+4=24,原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;新数据3,4,4,4,5的平均数为3+4+4+4+5=45,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;∴添加一个数据4,方差发生变化,故选D.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.10.B解析:B【解析】【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可.【详解】把这组数据从小到大排列:84,89,90,90,90,91,96,最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90;故选B.【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.11.B解析:B【解析】【分析】众数是出现次数最多的数,据此求解即可.【详解】∵数据4出现了2次,最多,∴众数为4,故选:B.【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.12.C解析:C【解析】【分析】众数是一组数据中出现次数最多的数据,中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数. 【详解】由统计表可知:体育锻炼时间最多的是5小时,故众数是5小时;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时. 故选C . 【点睛】本题考查了确定一组数据的众数和中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个解析:2 【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变. 【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变. 故答案为:2. 【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变.14.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2 【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差. 【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m ,则2222()()()23a mb mc m S -+-+-==,则数据a +3,b +3,c +3的平均数是m+3,∴方差为:2222(33)(33)(33)3a mb mc m S +--++--++--=222()()()23a mb mc m -+-+-==,故答案为:2. 【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.15.5【分析】根据用平均数的定义列出算式再进行计算即可得出答案【详解】解:∵数据234x6的平均数是4∴(2+3+4+x+6)÷5=4解得:x=5;故答案为:5【点睛】本题考查了平均数的概念平均数是指在解析:5 【分析】根据用平均数的定义列出算式,再进行计算即可得出答案. 【详解】解:∵数据2,3,4,x ,6的平均数是4, ∴(2+3+4+x+6)÷5=4, 解得:x=5; 故答案为:5. 【点睛】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.16.【分析】根据平均数求出a 再根据方差的公式计算得到答案【详解】∵数据4783的平均是5∴∴这组数据的方差是=故答案为:【点睛】此题考查根据平均数求某一数据方差的计算公式熟记方差的计算公式是解题的关键 解析:225【分析】根据平均数求出a ,再根据方差的公式计算得到答案. 【详解】∵数据4,a ,7,8,3的平均是5, ∴5547833a =⨯----=, ∴这组数据的方差是22221(45)2(35)(75)(85)5⎡⎤-+⨯-+-+-⎣⎦=225, 故答案为:225.【点睛】此题考查根据平均数求某一数据,方差的计算公式,熟记方差的计算公式是解题的关键. 17.200【解析】【分析】设统计的总人数为x答对11道题的人数为a根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人解析:200【解析】【分析】设统计的总人数为x,答对11道题的人数为a,根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人数乘以其平均分加上做对10个以上题的人答对的总题数等于所有被统计的人答对的总题数.做对10个题和10个以下的人数乘以其平均分加上做对11,12,13,14道题的人答对的总题数等于所有被统计的人答对的总题数列方程求解即可.【详解】设统计的总人数为x,答对11道题的人数为a.∵做对4个题和4个以上的人数为(x-7-8-10-21)=(x-46)人,∴所有学生做的总题数为:(x-46)×6+0×7+1×8+2×10+3×21=6x-185;又∵做对10个题和10个以下的人数为(x-a-15-6-3-1)=(x-a-25)人,∴所有学生做的总题数为:(x-a-25)×4+15×1+14×3+13×6+12×15+11a=4x+215+7a,∴6x-185=4x+215+7a,2x=400+7a,x=200+ 72 a,∵a为自然数,∴当a=0时x取最小值200.所以至少统计了200人.故答案为200【点睛】本题考查了加权平均数及方程的应用,有一定的难度.解题关键是根据答对的总题数不变列方程.18.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5.故答案为:5;5.【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数.19.9【解析】【分析】根据平均数的定义先求出x的值再根据中位数的定义即可得出答案【详解】根据平均数的定义可知(5+10+15+x+9)÷5=8解得:x=1把这组数据从小到大的顺序排列为1591015处于解析:9【解析】【分析】根据平均数的定义先求出x的值,再根据中位数的定义即可得出答案.【详解】根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为9.【点睛】考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.20.35【解析】分析:利用众数的定义可以确定众数在第三组由于张华随机调查了20名同学根据表格数据可以知道中位数是按从小到大排序第15个与第16个数的平均数详解:∵4出现了9次它的次数最多∴众数为4∵张华解析:3.5【解析】分析: 利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.详解: ∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故答案为:3.5.点睛: 本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.三、解答题21.(1)(3)九(1)班五名选手的成绩较稳定. 【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可; (2)在平均数相同的情况下,中位数高的成绩较好; (3)根据方差公式计算即可:()()()2222121x x x n n S x x x ⎡⎤=--++-⎢⎥⎣+⎦(可简单记忆为“等于差方的平均数”). 【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100, ∴九(1)的中位数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100, ∴九(2)的平均数为(70+75+80+100+100)÷5=85, 九(2)班的众数是100;(3)215S =一班[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,21=5S 二班[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∵22S S 一班二班,∴九(1)班五名选手的成绩较稳定.【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.22.(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户. 【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得; ②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得. 【详解】(1)①由已知数据知3棵的有12人、4棵的有8人, 补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是12233124854613.430⨯+⨯+⨯+⨯+⨯+⨯=(棵)中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵) 答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵.(2)估计该小区采用这种形式的家庭有300×730=70户, 答:估计该小区采用这种形式的家庭有70户. 【点睛】本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(1)a =10,b =8,c =8.6;(2)推荐丙班级为网上教学先进班级. 【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断. 【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10 ∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、8 8分出现次数最多, ∴乙班的众数是:8分; ∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a=10,b=8,c=8.6.(2)甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.24.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义.25.(1)50; 8;(2)C组;(3)320人。
一、选择题1.小明在计算一组数据的方差时,列出的公式如下222221(7)(8)(8)(8)s x x x x n⎡=-+-+-+-+⎣2(9)x ⎤-⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5B .数据平均数是8C .数据众数是8D .数据方差是152.对于两组数据A ,B ,如果20.5A S =,22.1B S =,10B x =,10A x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不一样D .数据A 的波动小一些3.环保小组抽样调查了某社区10户家庭1周内使用环保方便袋的数量,结果为(单位:只):6,5,7,8,7,5,8,10,5,9.试估计该社区500户家庭1周内使用环保方便袋约为( ) A .2500只B .3000只C .3500只D .4000只4.随着体育中考的临近,我校随机地调查了50名学生,了解他们一周在校的体育锻炼时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是( )A .平均数是9B .众数是9C .中位数是9D .方差是95.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是506.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2=0.54S 甲,20.62S =乙,20.56S =丙,2=0.45S 丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁7.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖). 组员 甲 乙 丙 丁 戊方差 平均成绩 得分79 80 ■ 81 81■80那么被盖住的两个数依次是( ) A .79,0.8B .79,1C .80,0.8D .80,18.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( ) A .平均数B .中位数C .众数D .以上都不对9.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 510.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为2=0.51S 甲,2=0.41S 乙,2=0.62S 丙,2=0.45S 丁,则四人中成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁11.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树( ) A .7棵B .9棵C .10棵D .12棵12.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x 甲,x 乙,射击成绩的方差依次记为s 甲2,s 乙2,则下列关系中完全正确的是( )A .x 甲=x 乙,s 甲2>s 乙2B .x 甲=x 乙,s 甲2<s 乙2C .x 甲>x 乙,s 甲2>s 乙2D .x 甲<x 乙,s 甲2<s 乙2二、填空题13.一组数据3,2,7,a ,7的平均数是5,则这组数据的方差是_________. 14.某校八年级(1)班第一小组5名学生的身高(单位:cm ):158,162,159,165,162.则这5名同学身高的众数是_____.15.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量(g )如右表,若甲、乙两个样本数据的方差分别为2S 甲、2S 乙 ,则2S 甲___________2S 乙 (填“>”、“=”、“<”)16.某种数据方差的计算公式是()()()22221214448a S x x x ⎡⎤=--⋯+-+⎣+⎦,则该组数据的总和为_________________.17.已知一组数据:3,3,4,6,6,8.则这组数据的方差是_________.18.小明在“生活劳动技能大赛之今天我当厨”项目比赛中,六位评委给他的分数如下表:这组分数的中位数是__________,众数是___________.19.某校拟招聘一名数学教师,现有甲、乙、丙三名教师人围,三名教师的笔试、面试成绩如下表所示:综合成绩按照笔试成绩占60%,面试成绩占40%进行计算,学校录取综合成绩得分最高者,则被录取的教师是__________.20.已知一组数据,,8,9,10x y 的平均数为9,方差为2,则xy 的值为__________.三、解答题21.某学校倡导全校1200名学生进行经典诗词背诵活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之后,随机抽取部分学生调查“一周诗词背诵数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词背诵数量”,绘制成统计表:一周诗词背诵数量3首4首5首6首7首8首人数101015☆2520(1)求本次调查抽取的学生人数,并补全上面的条形统计图;(2)活动启动之初学生“一周诗词背诵数量”的中位数是__________首;(3)估计大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了多少人?22.国庆长假期间,兴趣小组随机采访了10位到高邮的游客使用“街兔”共享电动车的次数,得到了这10位游客1天内使用“街兔”共享电动车的次数,统计如下:使用次数02346人数11431共享电动车的次数的中位数是次,众数是次,平均数是次;(2)若小明同学把统计表中的数据“6”错看成了“5”,则用“街兔”共享电动车的次数的中位数、众数、和平均数这三个统计量中不受影响的是;(填“中位数”、“众数”或“平均数”)(3)若国庆长假期间,每天约有1200位游客到高邮,试估计这些游客7天国庆长假期间使用“街兔”共享电动车的总次数.23.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图(横轴的数据为组中值),请结合直方图提供的信息,回答下列问题:(1)该班共有__________名同学参加这次测验;(2)这次测验成绩的中位数落在__________分数段内;(3)若该校一共有600名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?24.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A859595B95859525.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:甲(件)3122203124乙(件)2331322121(2)若出次品的波动性比较小的机床为性能较好的机床,试判断哪台机床的性能更好,并说明理由.26.某校为了解学生的身体素质情况,对全校学生进行体能测试,现从七、八两个年级各随机抽取10名学生的成绩(满分为100分)进行调查分析,过程如下:(1)收集数据七年级:90,85.80,95,80,90,80,85,95,100八年级:90,85,90,80,95,100,90,85,95,100(2)整理数据分数80859095100七年级人数32221(1)直接写出表格中的值:a =_________,b =_________,c =_________,d =__________,e =_________.(2)该校七、八年级各有学生800人,本次竞赛成绒不低于90分的为“优秀”,估计这两个年级共有多少名学生达到“优秀”?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题目中的方差公式,众数的定义以及平均数的求法即可进行判断; 【详解】根据方差的公式可知样本容量为5,故A 正确;样本的平均数为:78889=85++++ ,故B 正确;样本的众数为8,故C 正确;样本的方差为:()()()()()22222212788888898558=s ⎡⎤=-+-+-+-+-⎣⎦,故D 错误; 故选:D . 【点睛】本题考查了方差、样本容量、平均数、众数,解答本题的关键是明确题意,会求一组数据的方差、样本容量、平均数以及众数.2.D解析:D 【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵S A 2=0.5<S B 2=2.1,10A B x x == ∴数据A 组的波动小一些. 故选:D . 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.C解析:C 【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答. 【详解】解:110(6+5+7+8+7+5+8+10+5+9)×500=3500(只), 故选:C . 【点睛】本题考查的是通过样本去估计总体,求出样本平均数,再用样本平均数求总体是解题关键.4.D解析:D 【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解. 【详解】解:A 、平均数是:27128209161050⨯+⨯+⨯+⨯=9,故命题正确;B 、众数是9,命题正确;C 、中位数是9,命题正确;D 、方差是:150[2(7-9)2+12(8-9)2+20(9-9)2+16(10-9)2]=0.72,故命题错误; 故选:D . 【点睛】本题考查了加权平均数公式、方差公式以及众数、中位数的定义,理解方差的计算公式是关键.5.B解析:B 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.D解析:D【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵S甲2=0.54,S乙2=0.62,S丙2=0.56,S丁2=0.45∴S丁2<S甲2<S丙2<S乙2,∴成绩最稳定的是丁.故选:D.【点睛】本题考查方差,正确理解方差的意义是解题关键.7.A解析:A【分析】先根据算术平均数的定义列式求出丙的成绩,再利用方差的定义计算可得.【详解】解:丙的成绩为5×80﹣(79+80+81+81)=79,所以这五名学生成绩的方差为15×[2×(79﹣80)2+(80﹣80)2+2×(81﹣80)2]=0.8,故选:A.【点睛】本题考查了方差,解题的关键是掌握算术平均数和方差的定义.8.B解析:B【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.9.B解析:B【解析】分析:根据数据a1,a2,a3的平均数为4可知13(a1+a2+a3)=4,据此可得出13(a1+2+a2+2+a3+2)的值;再由方差为3可得出数据a1+2,a2+2,a3+2的方差.详解:∵数据a1,a2,a3的平均数为4,∴13(a1+a2+a3)=4,∴1 3(a1+2+a2+2+a3+2)=13(a1+a2+a3)+2=4+2=6,∴数据a1+2,a2+2,a3+2的平均数是6;∵数据a1,a2,a3的方差为3,∴13[(a1-4)2+(a2-4)2+(a3-4)2]=3,∴a1+2,a2+2,a3+2的方差为:13[(a1+2-6)2+(a2+2-6)2+(a3+2-6)2]=13[(a1-4)2+(a2-4)2+(a3-4)2]=3.故选B.点睛:此题主要考查了方差和平均数,熟记方差的定义是解答此题的关键.10.B解析:B【分析】比较四个人的方差,然后根据方差的意义可判断谁的成绩最稳定.【详解】解:∵S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,∴S丙2>S甲2>S丁2>S乙2,∴四人中乙的成绩最稳定.故选:B.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.D解析:D 【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案. 【详解】5109129812⨯----=(棵) 故选:D. 【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.12.A解析:A 【分析】分别计算平均数和方差后比较即可得到答案. 【详解】 解:(1)10=1x 甲(8×4+9×2+10×4)=9; x 乙=110(8×3+9×4+10×3)=9; s 甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8; s 乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7; ∴=x x 甲乙,s 甲2>s 乙2, 故选:A . 【点睛】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题13.【分析】先根据平均数的公式求出的值再根据方差的公式即可得【详解】由题意得:解得则这组数据的方差是故答案为:【点睛】本题考查了平均数与方差熟记公式是解题关键 解析:4.4【分析】先根据平均数的公式求出a 的值,再根据方差的公式即可得.【详解】 由题意得:327755a ++++=, 解得6a =, 则这组数据的方差是()()()()()2222213525756575 4.45⎡⎤⨯-+-+-+-+-=⎣⎦, 故答案为:4.4.【点睛】本题考查了平均数与方差,熟记公式是解题关键.14.162cm 【分析】一组数据中出现次数最多的数据叫做众数结合所给的数据即可得出答案【详解】解:身高162的人数最多故该小组5名同学身高的众数是162cm 故答案为:162cm 【点睛】本题考查了众数的知识解析:162cm【分析】一组数据中出现次数最多的数据叫做众数,结合所给的数据即可得出答案.【详解】解:身高162的人数最多,故该小组5名同学身高的众数是162cm .故答案为:162cm .【点睛】本题考查了众数的知识,掌握众数的定义是解题的关键.15.【分析】分别计算甲乙的方差比较得出答案【详解】解:∵∴∵∴<故答案为:<【点睛】本题考查平均数方差的计算方法明确方差是反映数据离散程度的统计量解析:<【分析】分别计算甲、乙的方差,比较得出答案.【详解】解:∵7071472716x +⨯+==甲,7037127342566x ⨯+⨯+==乙, ∴22211(7071)(7271)63S ⎡⎤=-+-=⎣⎦甲, 222214254254254170371273666636S ⎡⎤⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙, ∵411363>,∴2S 甲<2S 乙,故答案为:<.【点睛】本题考查平均数、方差的计算方法,明确方差是反映数据离散程度的统计量. 16.32【分析】根据方差公式可知这组数据的样本容量和平均数即可求出这组数据的总和【详解】∵数据方差的计算公式是∴样本容量为8平均数为4∴该组数据的总和为8×4=32故答案为:32【点睛】本题考查方差及平解析:32【分析】根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.【详解】∵数据方差的计算公式是()()()22221214448a S x x x ⎡⎤=--⋯+-+⎣+⎦, ∴样本容量为8,平均数为4,∴该组数据的总和为8×4=32,故答案为:32【点睛】 本题考查方差及平均数的意义,一般地,设n 个数据,x 1、x 2、…x n 的平均数为x ,则方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],平均数是指在一组数据中所有数据之和再除以数据的个数. 17.【分析】先求出这组数据的平均数再根据方差公式即可求出方差【详解】平均数为:方差为:故答案为:【点睛】本题考查了平均数和方差的计算公式 解析:103【分析】先求出这组数据的平均数,再根据方差公式即可求出方差.【详解】 平均数为:1(334668)56⨯+++++= 方差为:2222222110(35)(35)(45)(65)(65)(85)63S ⎡⎤=⨯-+-+-+-+-+-=⎣⎦ 故答案为:103【点睛】本题考查了平均数和方差的计算公式. 18.90【分析】把所给出的数据按从小到大的顺序排列处于中间的数是中位数根据众数的意义知道在此组数据中出现次数最多的数就是该组数据的众数【详解】把此数据按从小到大的顺序排列为:808090909095;中解析:90【分析】把所给出的数据按从小到大的顺序排列,处于中间的数是中位数,根据众数的意义知道,在此组数据中出现次数最多的数就是该组数据的众数.【详解】把此数据按从小到大的顺序排列为:80,80,90,90,90,95;中间的数是:90,90,所以这组数据的中位数是90,因为在此组数据中出现次数最多的数是90,所以,该组数据的众数是90,故答案为:90,90.【点睛】此题主要考查了中位数与众数的意义及计算方法.19.乙【分析】根据题意先算出甲乙丙三人的加权平均数再进行比较即可得出答案【详解】甲的综合成绩为80×60+76×40=784(分)乙的综合成绩为82×60+74×40=788(分)丙的综合成绩为78×6解析:乙【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【详解】甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∵78<78.4<78.8,∴被录取的教师为乙,故答案为:乙【点睛】本题考查了加权平均数的计算公式,注意计算平均数时按60%和40%进行计算.20.【分析】根据平均数和方差的计算公式得到关于xy的等式再经过一定的变形可以得到解答【详解】解:由题意所以又由题意所以所以故答案为77【点睛】本题考查平均数和方差的综合应用灵活运用平均数和方差的计算公式解析:77【分析】根据平均数和方差的计算公式得到关于x 、y 的等式,再经过一定的变形可以得到解答.【详解】 解:由题意,891095x y ++++=,所以 2745x y ++=,18x y += 又由题意,()()()()()2222299899910925x y -+-+-+-+-=,()2218154x y x y +-+=-所以,221818154x y +-⨯=-, 22170x y +=所以,()()2222181707722x y x y xy +-+-===. 故答案为77.【点睛】本题考查平均数和方差的综合应用,灵活运用平均数和方差的计算公式是解题关键.三、解答题21.(1)45,图见解析;(2)4.5首;(3)450人【分析】(1)根据5首的人数和在扇形统计图中所对圆心角的度数,可以求得本次抽取的学生人数,然后可以计算出4首的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以得到中位数;(3)根据统计图中的数据,可以计算出大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数.【详解】解:(1)20÷60360=120人, 背诵4首的学生有:120×135360=45(人), 补全的条形统计图如图所示;(2)活动启动之初学生“一周诗词背诵数量”的中位数是(4+5)÷2=4.5(3)☆=120-10-10-15-25-20=40人,1200×(402520161311120120++++-)=450(人)所以,大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了450人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)3,3,3.2;(2)中位数,众数;(3)26880次【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是3+3=32(次),出现使用次数最多的是3次,故众数为3次,平均数为01+21+34+43+61=3.210⨯⨯⨯⨯⨯(次),故答案为:3、3、3.2;(2)把数据“6”看成了“5”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为1200×3.2×7=26880次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.23.(1)40;(2)70.5~80.5;(3)285人【分析】(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.【详解】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是600×14540+=285(人). 【点睛】 本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.24.选手B【分析】利用加权平均数的定义计算出A 、B 选手的综合成绩,从而得出答案.【详解】解:A 选手的综合成绩为85595495190541⨯+⨯+⨯=++(分), B 选手的综合成绩为95585495191541⨯+⨯+⨯=++(分), ∴选手B 的成绩更优秀.【点睛】 本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.25.(1)2x =甲,2x =乙;(2)乙机床的性能比甲机床的性能好,理由见解析.【分析】(1)根据算术平均数的定义列式计算可得;(2)先根据方差的定义列式计算求出甲、乙的方差,再利用方差的意义作出判断.【详解】解:(1)3122203124=210x +++++++++=甲, 2331322121210x +++++++++==乙; (2)21100041104 1.210s +++++++++==甲, 201111001010.610S +++++++++==乙, ∵S 乙2<S 甲2,∴乙机床的性能比甲机床的性能好.【点睛】 本题主要考查方差和算术平均数,解题的关键是掌握方差和算术平均数的定义及方差的意义.26.(1)2,91,87.5,80,46;(2)960【分析】(1)用总人数10减去其他得分的人数即可得到a 的值;根据平均数、中位数、众数、方差的定义依次计算可得答案;(2)用每个年级的总人数乘以成绩“优秀”的比例,两者相加即可得到答案.【详解】解:(1)a=10-1-2-3-2=2;80185290395210029110b ⨯+⨯+⨯+⨯+⨯==; 859087.52c +==; d=80;222223(8088)(8588)(9088)1(9588)(100822248)610e ⨯---⎡⎤=+⨯--+⨯+⨯+=⎣⎦; 故答案为:2,91,87.5,80,46;(2)2213228008009601010++++⨯+⨯=(人), 答:这两个年级共有960名学生达到“优秀”.【点睛】 此题考查统计知识,正确掌握平均数、中位数、众数、方差的定义及计算方法,求总体中部分的人数,利用部分的比例求总体中该部分的人数,正确计算是解题的关键.。
人教版数学《数据的分析》单元测试A 卷一、单选题1.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93, 94,95, 96, 96, 97.这组数据的众数和中位数分别是( ). A .95,95B .96,96C .95,96D .96,952.某校要从甲、乙、丙、丁四名学生中选出一名学生参加数学竞赛,对这四名学生进行了10次数学测试,经过数据分析4人的平均成绩均为95分,215s =甲,217.2s =乙,28.5s =丙,221.7s =丁.则应该选择( )A .甲B .乙C .丙D .丁3.一组数据1,3,2-,3,4的纵数是( ) A .1B .2-C .12D .34.一组数据1,2,3,5,4,3中的中位数和众数分别是( ) A .3,3B .5,3C .4,3D .5,105.下表是今年3月12日植树节我县6个乡镇最高气温近似值(℃)的统计结果:则这几个乡镇该日最高气温近似值的众数和中位数分别是( ) A .6,8B .8,7C .8,8D .8,66.某中学随机抽取了该校50名学生,他们的年龄如表所示:这50名学生年龄的众数和中位数分别是( ). A .13岁、14岁B .14岁,14岁C .14岁,13岁D .14岁,15岁7.某篮球队12名队员的年龄统计如图所示,则该队队员年龄的众数和中位数分别是( )A.16,15 B.15,15.5 C.15,17 D.15,168.中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为x=甲82分,x乙=82分,2s=甲245分2,2s=乙190分2.那么成绩较为整齐的是 ( )A.甲班B.乙班C.两班一样整齐D.无法确定9.某地连续10天的最高气温统计如下表:则这组数据的中位数和平均数分别为()A.24.5,24.6 B.25,26 C.26,25 D.24,2610.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数 B.中位数 C.众数 D.方差二、填空题11.在本赛季CBA比赛中,某运动员最后六场的得分情况如下:17,15,21,28,12,19,则这组数据的极差为_______.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n个数据的平均数等于______.13.明明成绩为78分.全班共30人,其他同学的成绩为1个100分,4个90分, 22个80分,以及1个2分和1个10分.明明计算出全班的平均分为77分,他认为自己这次成绩在班上处于“中上水平”.产生错觉的原因是_________易受极端数值的影响.14.一组数据为1,2,3,4,5,6,则这组数据的中位数是______.15.有一组互不相等的数据(每个数都是整数):2,4,6,a ,8,它们的中位数是6,则整数a 是_____.16.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是22220.65,0.55,0.50,0.45S S S S ====甲乙丁丙,则这5次测试成绩最稳定的是_________同学.17.现要从甲、乙两个队员中挑选出一名队员参加射击比赛,两人各进行20次的射击测试,得到的平均数=x x 甲乙,方差22s s <甲乙,若要选拔出成绩比较稳定的队员参赛,则应选择 .18.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是S 甲2,S 乙2,且S 甲2<S乙2,则两个队的队员的身高较整齐的是_____.19.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如下面的条形图所示.这15名同学进球数的众数是________.20.我市组织万人跳绳大赛,某社区对13-16岁年龄组的参赛人数统计如下表:则这年龄段参赛选手年龄的众数是______岁,中位数是_______岁.三、解答题21.某次歌唱比赛,三名选手的成绩如下表所示.(1)若根据三项测试的平均成绩,确定名次,则谁是第一名?(2)若组委会决定将歌唱表演、才艺表演、音乐知识三项测试得分按4︰3︰1的比例确定名次,此时谁是第一名?22.如果一组数据3,2,2,4,x的平均数为3.(1)求x的值;(2)求这组数据的众数.23.停课不停学,疫情期间,八(1)班30位同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30人15天的打卡次数如下:(1)直接写出打卡次数的众数和中位数;(2)求所有同学打卡次数的平均数;(3)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励,请你根据(1)、(2)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由.24.甲、乙两个学习小组各4名学生的数学测验成绩(单位:分)如下:甲组:86,82,87,85;乙组:85,81,85,89.分别计算这两组数据的方差,并说明哪个学习小组学生的成绩比较整齐.25.一次演讲比赛中,7位评委现场给一位选手打分,评分情况如下表:(1)如果以平均分为标准,则最后得分为______;(2)如果去掉一个最高分和一个最低分,以余下得分的平均分为标准,则最后得分为______; (3)如果以中位数为标准,则得分为______; (4)如果以众数为标准,则得分为______.26.长沙市环保部门随机选取甲、乙两个区进行空气质量监测.过程如下,请补充完整. (1)(收集数据)从2018年3月初开始,连续一年对两区的空气质量进行监测,将每个月所有天数的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:甲区:110 100 95 60 90 85 80 50 50 50 45 55 乙区:100 105 90 80 90 85 90 60 90 45 60 40 整理、描述数据 按如下表整理、描述这两区空气污染指数的数据:(说明:空气污染指数50≤时,空气质量为优;50<空气污染指数100≤时,空气质量为良;100<空气污染指数150≤时,空气质量为轻微污染.)(2)(分析数据)两区的空气污染指数的平均数,中位数,众数如下表所示(表中数据均保留一位小数):(3)(得出结论)a.估计在接下来的200天甲区空气质量为优的天数为_________天(结果保留整数);b.可以推断出________(填甲、乙)区这一年中环境状况比较好,理由为________________.(至少从两个不同的角度说明推断的合理性)27.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?28.某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 6236 15 51 45 40 42 40 32 43 3634 53 38 40 39 32 45 40 50 4540 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.(2)填空:在这个问题中,总体是_____,样本是_____.由统计结果分析的,这组数据的平均数是38.35(分),众数是_____,中位数是______.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?参考答案1.D2.C3.D4.A5.C6.C7.D8.B9.A10.D11.1612.mx ny m n++.13.平均数14.3.515.716.丁17.甲.18.甲19.9.20.14 1521.(1)A是第一名;(2)B是第一名.22.(1)4x=;(2)2和4.23.(1)众数:8次,中位数:8.5次;(2)10次;(3)可以选择中位数,即超过9次(含9次)的获得奖励,见解析24.甲学习小组学生的成绩比较整齐.25.(1)9.3分;(2)9.4分;(3)9.5分;(4)9.6分26.(1)2,9,1;(2)70,90;(3)a.67;b.甲;甲区的平均数低于乙区,中位数低于乙区,故甲区的环境状况比较好27.选择乙.28.(1)补全频率分布表和频率分布直方图,见解析;(2)总体是全校400名学生参加课外锻炼的时间,样本是40名学生一周内平均每天参加课外锻炼的时间;众数是40,中位数是40;(3)用平均数、中位数、或众数描述该校400名学生参加课外锻炼时间的总体情况都比较合适.。
人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。
第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.22.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个 B.2个C.3个D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.210.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是__________年.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是__________;众数是__________.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是__________.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为__________.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为__________,样本容量为__________.16.已知x 1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~1.05正正14 0.281.05~1.55正正正15 0.301.55~2.05正7 __________2.05~2.554 0.082.55~3.05正 5 0.103.05~3.553 __________3.55~4.05 __________0.04合计50 1.00第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.2【考点】算术平均数.【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【解答】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.【点评】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.2.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗【考点】标准差.【专题】图表型.【分析】根据标准差和平均数的意义进行选择.【解答】解:由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D.【点评】本题考查了平均数和标准差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.标准差即方差的算术平方根.3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数【考点】方差.【分析】根据方差的意义可以选出合适的选项.【解答】解:根据方差的概念知,方差反映了一组数据的波动大小.故选B.【点评】本题考查方差的定义与意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.【点评】本题考查的是众数和中位数.注意掌握中位数和众数的定义是关键.5.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个 B.2个C.3个D.4个【考点】众数;加权平均数;中位数.【分析】先把数据按大小排列,然后根据定义分别求出众数、中位数和平均数,最后逐一判断.【解答】解:从小到大排列此数据为:2,2,3,3,3,3,3,3,6,6,10.数据3出现了6次,最多,为众数;第6位是3,3是中位数;平均数为(2+2+3+3+3+3+3+3+6+6+10)÷11=4.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.(1)(2)正确.故选:B.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙【考点】加权平均数.【专题】图表型.【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【解答】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选C.【点评】本题考查了加权平均数的计算方法.8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定【考点】方差.【专题】应用题.【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【解答】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选B.【点评】本题考查方差的意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.2【考点】算术平均数.【专题】计算题;压轴题.【分析】根据5位同学数学成绩的平均分为M,求得5位同学的总分;再把M当成另一个同学的分数,与原来的5个分数一起,求得总分,再求这6个分数的平均值即为N;这样即可求得M与N的比值.【解答】解:∵5位同学数学成绩的平均分为M,∴5位同学的总分为5M,把M当成另一个同学的分数,与原来的5个分数一起,总分就为5M+M.这6个分数的平均值=(5M+M)=M=N,∴M:N=1.故选B.【点评】本题考查了样本平均数的求法.所有数据的和除以这些数据的个数叫这些数据的平均数.10.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【考点】统计量的选择.【分析】根据平均数、众数、中位数的概念分析各个选项.【解答】解:A、在一组数据的平均数、众数、中位数有可能相同如全部相等的数据,正确;B、中位数是将数据按从大到小,或从小到大顺序排列,最中间的那个数或两个数的平均数,所以只有一个,故错误;C、众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的,符合意义,正确;D、根据众数的概念即数据出现次数最多的数据,可能有多个,正确;故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义,了解各个统计量的意义是解答本题的关键.二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是2005年.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越起伏的表示数据越不稳定,相反,折线越平稳的表示数据越稳定;从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【解答】解:从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【点评】本题考查的是折线统计图的综合运用.从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是7;众数是8.【考点】中位数;众数.【分析】根据中位数和众数的定义解答.【解答】解:数据按从小到大排列:3,5,7,8,8,所以中位数是7;数据8出现2次,次数最多,所以众数是8.故填7;8.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是2.【考点】方差;算术平均数.【专题】压轴题.【分析】先由平均数计算出a的值,再计算方差.一般地设n个数据,x1,x2,…x n的平均数为,=(x 1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=4×5﹣2﹣3﹣5﹣6=4,s2=[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故填2.【点评】本题考查方差的定义与意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为65.75.【考点】加权平均数.【专题】计算题.【分析】运用加权平均数的计算公式求解.【解答】解:这位候选人的招聘得分=(88+72×4+50×3)÷8=65.75(分).故答案为:65.75.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.此题难度不大.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为2,样本容量为4.【考点】方差.【分析】先根据方差公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]中所以字母所代表的意义,n是样本容量,是样本中的平均数进行解答即可.【解答】解:∵在公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]中,平均数是,样本容量是n,∴在S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2]中,这个样本的平均数为2,样本容量为4;故答案为:2,4.【点评】此题考查了方差,解题的关键是根据方差的定义以及公式中各个字母所表示的意义进行解答.16.已知x 1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为20,方差为12.【考点】方差;算术平均数.【分析】设2x1,2x2,2x3的平均数为,把数据代入平均数计算公式计算即可,再利用方差公式即可计算出新数据的方差.【解答】解:∵=10,∴=10,设2x1,2x2,2x3的方差为,则==2×10=20;∵S2=[(x1﹣10)2+(x2﹣10)2+(x3﹣10)],∴S′2='[(2x1﹣)2+(2x2﹣)+(2x3﹣],=[4(x1﹣10)2+4(x2﹣10)2+4(x2﹣10)],=4×3=12.故答案为:20;12.【点评】本题考查了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.【解答】解:(1)平均数:=260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.【点评】在做本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).【考点】方差;算术平均数;中位数;极差.【专题】应用题.【分析】(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;(2)根据方差的性质得出即可;(3)根据方差的稳定性得出即可.【解答】解:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,甲的中位数、方差和极差分别为,15cm;;16﹣14=2(cm),乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),,19﹣10=9(cm)平均数:(15+16+16+14+14+15)=15(cm);∴(11+15+18+17+10+19)=15(cm).∴相同点:两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差和极差均不相同.(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数),使得方差为0.【点评】本题考查了样本中的平均数,方差,极差,中位数在生活中的意义和应用.19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率正正14 0.280.55~1.05正正正15 0.301.05~1.55正7 0.141.55~2.052.05~4 0.082.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00【考点】频数(率)分布表;中位数.【分析】(1)根据频率、频数及样本容量的关系求得表中相关数据即可;(2)根据总人数确定中位数的位置即可;(3)用相关频率乘以100%即可求得百分率.【解答】解:(1)分组频数累计频数频率0.55~正正14 0.281.05正正正15 0.301.05~1.55正7 0.141.55~2.052.05~4 0.082.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00(2)∵共50人,其中第25和第26人的平均数是中位数,∴中位数落在1.05﹣1.55小组内;(3)每周做家务的时间不超过1.5小时的学生所占的百分比为(0.28+0.30)×100%=58%.【点评】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息,难度不大.。
单元测试(五)数据的分析
(时间:45分钟总分:100分)
一、选择题(每小题3分,共24分)
1.在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是()
A.94,94 B.95,95 C.94,95 D.95,94
2.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,张老师得分的情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分,如果按照1∶2∶4∶1的权进行计算,那么张老师的综合评分为()
A.分B.分C.分D.分
3.(淄博中考)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、
中位数分别是()
A.8,6 B.8,5 C.52,53 D.52,52
4.已知x1、x2、x3的平均数是x,那么3x1+5,3x2+5,3x3+5的平均数是()
A.x B.3x C.3x+5 D.不能确定
5.在某城市,80%的家庭年收入不少于万元,下面一定不少于万元的是()
A.年收入的平均数B.年收入的中位数
C.年收入的众数D.年收入的平均数和众数
6.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是s2甲=36,s2乙=30,则两组成绩的稳定性()
A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定
C.甲、乙两组的成绩一样稳定D.无法确定
7.质检部门从A、B两厂生产的乒乓球中各抽取了10个,对这些乒乓球的直径进行了检测,并将有关数据绘制成如图,则所测两组数据的方差的关系是()
A.s2A<s2B B.s2A=s2B C.s2A>s2B D.不能确定
8.某数学兴趣小组的五位同学以各自的年龄为一组数据,计算出这组数据的方差是,则10年后该数学兴趣小组五位同学年龄的方差为()
A.B.1 C.2 D.
二、填空题(每小题4分,共24分)
9.在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,如图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款________元.
10.某中学举行一次演讲比赛,分段统计参赛学生的成绩如下表(分数为整数,满分为100分):
则这次比赛的平均成绩为________分.
11.一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是________.12.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的和为________.
13.样本98、99、100、101、102的平均数x=________,方差s2=________.
14.某市体委从甲、乙两名射击运动员中选拔1人参加全运会,每人各打5靶,打中的环数如下:甲:7,8,9,8,8乙:5,10,6,9,10
那么应选________去参加全运会,因为甲、乙两人的平均数相同,且________________.
三、解答题(共52分)
15.(8分)老师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,
期末考试占35%.小丽和小明的成绩如下表所示:
16.(10分)(南通中考)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们
在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:≤x<1,B:1≤x<,C:≤x<2,D:2≤x<,E:≤x<3,制作成两幅不完整的统计图(如图).
请根据图中提供的信息,解答下列问题:
(1)这次活动中学生做家务时间的中位数所在的组是________;
(2)补全频数分布直方图;
(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.
17.(10分)在某旅游景区上山的一条山路上,有一些断断续续的台阶,如图是其中的甲、乙两段台阶路高度的示意
图.(单位:cm)
(1)两段台阶路有哪些相同点与不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为了方便游客行走,需要重新整修上山的小路,对于这两条台阶路,在台阶路不变的情况下,请你提出合理的整修建议.
18.(12分)四川雅安发生地震后,某校学生会向全校1 900名学生发起了“心系雅安”捐款活动,为了解捐款情况,
学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为________,图1中m的值是________;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
19.(12分)(台州中考)为了估计鱼塘中成品鱼(个体质量在kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:
(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).
(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?
(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?
(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).
参考答案
1.D 2
14.甲甲、乙两人的平均数相同,且甲的方差较乙的方差小
15.小丽的成绩是80×10%+75×30%+71×25%+88×35%=(分),小明的成绩是76×10%+80×30%+70×25%+90×35%=(分),所以小明的学期总评成绩高.
16.(1)C (2)图略(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是≤x<2,小明这一周做家务2小时,所在的范围是2≤x<,所以小明的判断符合实际.
17.(1)因为x甲=15,x乙=15,所以,相同点是两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差均不相同.(2)甲路段走起来更舒服些,因为它的台阶高度的方差小.(3)使每个台阶高度均为15 cm,使得台阶路高度的方差为0.
18.(1)50 32 (2)∵x=1
50
×(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16元.
∵在这组样本数据中,10出现次数最多为16次,
∴这组数据的众数为:10元.
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,
∴这组数据的中位数为:15元.
(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,
∴由样本数据,估计该校1 900名学生中捐款金额为10元的学生人数比例为32%,有1 900×32%=608(名),
∴该校本次活动捐款金额为10元的学生约有608名.
19.(1)图略(2)其质量落在~ kg范围内的可能性最大.(3)质量落在~ kg范围内.
(4)水库中成品鱼的总质量估计:方法一:用去尾平均数估计:去尾平均数x=错误!≈(kg).50×50×=2 175(kg).水库中成品鱼的总质量约为2 175 kg.
方法二:平均数x=错误!=(kg).50×50×=2 260(kg).水库中成品鱼的总质量约为2 260 kg.
方法三:利用组中值计算平均数:x=错误!=(kg).50×50×=2 210(kg).水库中成品鱼的总质量约为2 210 kg. 方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×=2 500(kg).水库中成品鱼的总质量约为2 500 kg.。