PID控制原理 (2)
- 格式:ppt
- 大小:1.56 MB
- 文档页数:23
pid的控制原理PID(Proportional Integral Derivative)控制器,是一种广泛应用于自动化控制及调节的控制器。
它采用由比例、积分和微分三部分组成的控制算法来调节控制系统中的输出,从而实现控制系统的稳定、精度和追踪能力。
一、PID控制器的基本结构PID控制器通常由输入信号、比例控制、积分控制、微分控制、输出信号以及误差信号等六个部分组成。
输入信号:PID控制器的输入信号通常是指来自被控对象的反馈信号,它用于告诉控制器当前实际的状态。
比例控制:比例控制是PID控制的基础,它根据误差信号来产生一个与误差成正比的输出信号。
这个输出信号通常用一个比例系数Kp 乘以误差信号,即比例制动器的输出值为:P=Kp*e(t)。
积分控制:积分控制的作用是消除系统存在的静态误差,也就是会积累误差的部分。
积分控制将误差信号在一段时间内积分,得到系统的偏差,乘以积分系数Ki,即为积分控制器的输出信号:I=Ki*∫e(t)dt。
微分控制:微分控制的作用是对控制系统进行稳定化,消除控制过程中的过冲现象或者震荡。
微分控制会根据误差信号的变化率来计算输出量,并通过微分系数Kd来控制输出信号的大小,即:D=Kd*(de(t)/dt)。
输出信号:输出信号是PID控制器对被控对象的控制信号,它是由比例、积分和微分控制的输出信号组合而成的,通常为PID输出信号= P + I +D。
误差信号:误差信号是指实际值与目标值之间的差异,也就是在控制过程中需要被调节的量。
二、PID控制器的调节过程PID控制器的调节过程通常可以分为两个阶段:初始化和调节。
1. 初始化:初始化是指在控制器工作之前需要对控制器的参数进行设置。
通常需要根据被控对象的性质和控制要求来确定Kp、Ki和Kd的值,使控制器能够快速而准确地对被控对象进行控制。
2. 调节:调节是控制器真正开始工作的过程,它通常包括以下几个步骤:(1)设定目标值和初始值:目标值是指期望被控对象达到的值,而初始值通常是指被控对象的初始状态。
PID控制详解概述当今的自动控制技术都是基于反馈的概念。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。
PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。
PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。
其输入e (t)与输出u (t)的关系为u(t)=kp(e((t)+1/TI∫e(t)dt+TD*de(t)/dt) 式中积分的上下限分别是0和t因此它的传递函数为:G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s)其中kp为比例系数;TI为积分时间常数;TD为微分时间常数基本用途它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti和Td)即可。
在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。
首先,PID应用范围广。
虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。
其次,PID参数较易整定。
也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。
如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。
第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。
在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。
由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。
PID参数自整定就是为了处理PID参数整定这个问题而产生的。
现在,自动整定或自身整定的PID 控制器已是商业单回路控制器和分散控制系统的一个标准。
PID控制的原理和特点PID控制是一种广泛应用于工业自动控制系统中的控制算法,它能够根据系统的实时反馈信息和设定值进行调整,以实现系统的稳定性和精确性控制。
PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成,其原理和特点如下。
1.原理:-比例控制(P):比例控制是根据误差信号的大小,调整控制量的变化速度。
比例控制参数的增大会增加控制量的调整速度,但可能导致过冲和振荡。
-积分控制(I):积分控制通过累积误差信号,调整控制量的累积变化。
积分控制能够消除稳态误差,但会增加系统的响应时间。
-微分控制(D):微分控制通过测量误差信号的变化率,调整控制量的变化速度。
微分控制可以快速响应系统变化,并减小过冲和振荡,但对噪声信号敏感。
2.特点:-稳定性:PID控制器能够稳定系统的控制量,使其不受外界干扰和变化的影响。
通过比例、积分和微分控制的协调作用,可以使系统快速响应并抑制过冲和振荡。
-精确性:PID控制器能够实现精确的控制,使系统的实际值与设定值之间的差异最小化。
通过实时调整比例、积分和微分参数,PID控制器能够实现精确的控制效果。
-适应性:PID控制器可以适应不同的被控对象和工作环境。
通过调整比例、积分和微分参数,PID控制器能够适应不同的工艺需求和系统特性。
-简单性:PID控制器的实现较为简单,只需要调整三个控制参数。
同时,PID控制器具有较好的工程实践经验,为工程师提供了便利。
-但是,PID控制器对被控对象的具体性质和系统参数较为敏感,需要经验和调试来优化参数的选择。
对于一些具有非线性和时变特性的系统,PID控制器的效果可能不理想。
3.优化方法:为了更好地适应不同的控制需求和系统特性,人们对PID控制器进行了多种优化方法的研究。
其中一些常见的优化方法包括:自整定(Autotuning)方法、模型预测控制(MPC)方法和自适应控制方法。
-自整定方法:通过对被控对象进行特定的激励信号输入,然后根据输出信号对PID参数进行在线调整,以自动找到最佳参数配置,提高系统控制性能。
PID 控制概述1.PID 控制的原理和特点:在工程实践中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。
PID 控制器问世至今已有近70年历史,它以结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其他技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最合适用PID 控制技术。
PID 控制,实际中也有PI 和PD 控制。
PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
二、控制算法2.1 控制器公式连续时间PID 控制系统如下图所示。
图中D(s)为控制器。
在PID 控制系统中,D(s)完成PID 控制规律,称为PID 控制器。
PID 控制器是一种线性控制器,用输出量y(t)和给定量r(t)之间的误差时间函数e(t)=r(t)-y(t)的比例、积分、微分的线性组合,构成控制量u(t),称为比例(Proportional)、积分(Integrating)、微分(Differentiation)控制,简称PID 控制。
实际应用中,可以根据受控对象的特性和控制的性能要求,灵活地采用不同的控制组合,构成:比例(P )控制器: )()(t e K t u P = (3-1)比例+积分(PI )控制器: ])(1)([)(0⎰+=tId e T t e K t u ττ (3-2) 比例+积分+微分(PID )控制器:])()(1)([)(0dtt de T d e T t e K t u D t I P ++=⎰ττ (3-3) 式中,K p ——比例放大系数;T I ——积分时间;T D ——微分时间2.2 位置式PID 控制算法:在电子数字计算机直接数字控制系统中,PID 控制器是通过计算机PID 控制算法程序实现的。
pid控制的工作原理
PID控制是一种经典的控制方法,它通过对系统的反馈信息进行处理,输出控制信号,从而实现对系统的自动调节。
其工作原理如下:
1. 比例控制:PID控制器首先根据当前的误差值(设定值与实际值之差)乘以比例系数Kp,得到比例控制量。
比例控制作用于增大或减小系统的输出,使得系统趋向于设定值。
2. 积分控制:PID控制器还引入了积分项,它根据误差累积值乘以积分系数Ki,得到积分控制量。
积分控制主要作用于消除系统的静差,通过积分作用使系统更快地达到设定值。
3. 微分控制:PID控制器最后引入了微分项,它根据误差变化率乘以微分系数Kd,得到微分控制量。
微分控制主要作用于抑制系统的震荡,并提高系统的响应速度。
PID控制器的输出信号等于以上三个控制量之和,即PID输出= 比例控制量 + 积分控制量 + 微分控制量。
通过调节比例系数Kp、积分系数Ki和微分系数Kd的数值,可以改变PID控制器的性能,以适应不同的系统需求。
PID控制器的原理是通过不断地调整控制量,使系统的反馈信号与设定值之间的误差最小化,从而达到对系统的精确控制。
它能够快速、准确地稳定系统的输出,并且具有简单、易于实现的特点,因此广泛应用于工业控制、汽车控制、机器人控制等领域。
PID控制算法(PID控制原理与程序流程)⼀、PID控制原理与程序流程(⼀)过程控制的基本概念过程控制――对⽣产过程的某⼀或某些物理参数进⾏的⾃动控制。
1、模拟控制系统图5-1-1 基本模拟反馈控制回路被控量的值由传感器或变送器来检测,这个值与给定值进⾏⽐较,得到偏差,模拟调节器依⼀定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执⾏器作⽤于过程。
控制规律⽤对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。
2、微机过程控制系统图5-1-2 微机过程控制系统基本框图以微型计算机作为控制器。
控制规律的实现,是通过软件来完成的。
改变控制规律,只要改变相应的程序即可。
3、数字控制系统DDC图5-1-3 DDC系统构成框图DDC(Direct Digital Congtrol)系统是计算机⽤于过程控制的最典型的⼀种系统。
微型计算机通过过程输⼊通道对⼀个或多个物理量进⾏检测,并根据确定的控制规律(算法)进⾏计算,通过输出通道直接去控制执⾏机构,使各被控量达到预定的要求。
由于计算机的决策直接作⽤于过程,故称为直接数字控制。
DDC系统也是计算机在⼯业应⽤中最普遍的⼀种形式。
(⼆)模拟PID调节器1、模拟PID控制系统组成图5-1-4 模拟PID控制系统原理框图2、模拟PID调节器的微分⽅程和传输函数PID调节器是⼀种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的⽐例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进⾏控制。
a、PID调节器的微分⽅程式中b、PID调节器的传输函数a、⽐例环节:即时成⽐例地反应控制系统的偏差信号e(t),偏差⼀旦产⽣,调节器⽴即产⽣控制作⽤以减⼩偏差。
b、积分环节:主要⽤于消除静差,提⾼系统的⽆差度。
积分作⽤的强弱取决于积分时间常数TI,TI越⼤,积分作⽤越弱,反之则越强。
c、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太⼤之前,在系统中引⼊⼀个有效的早期修正信号,从⽽加快系统的动作速度,减⼩调节时间。
PID控制原理:看完这三个故事,你就明白了一、PID的故事小明接到这样一个任务:有一个水缸点漏水(而且漏水的速度还不一定固定不变),要求水面高度维持在某个位置,一旦发现水面高度低于要求位置,就要往水缸里加水。
小明接到任务后就一直守在水缸旁边,时间长就觉得无聊,就跑到房里看小说了,每30分钟来检查一次水面高度。
水漏得太快,每次小明来检查时,水都快漏完了,离要求的高度相差很远,小明改为每3分钟来检查一次,结果每次来水都没怎么漏,不需要加水,来得太频繁做的是无用功。
几次试验后,确定每10分钟来检查一次。
这个检查时间就称为采样周期。
开始小明用瓢加水,水龙头离水缸有十几米的距离,经常要跑好几趟才加够水,于是小明又改为用桶加,一加就是一桶,跑的次数少了,加水的速度也快了,但好几次将缸给加溢出了,不小心弄湿了几次鞋,小明又动脑筋,我不用瓢也不用桶,老子用盆,几次下来,发现刚刚好,不用跑太多次,也不会让水溢出。
这个加水工具的大小就称为比例系数。
小明又发现水虽然不会加过量溢出了,有时会高过要求位置比较多,还是有打湿鞋的危险。
他又想了个办法,在水缸上装一个漏斗,每次加水不直接倒进水缸,而是倒进漏斗让它慢慢加。
这样溢出的问题解决了,但加水的速度又慢了,有时还赶不上漏水的速度。
于是他试着变换不同大小口径的漏斗来控制加水的速度,最后终于找到了满意的漏斗。
漏斗的时间就称为积分时间。
小明终于喘了一口,但任务的要求突然严了,水位控制的及时性要求大大提高,一旦水位过低,必须立即将水加到要求位置,而且不能高出太多,否则不给工钱。
小明又为难了!于是他又开努脑筋,终于让它想到一个办法,常放一盆备用水在旁边,一发现水位低了,不经过漏斗就是一盆水下去,这样及时性是保证了,但水位有时会高多了。
他又在要求水面位置上面一点将水凿一孔,再接一根管子到下面的备用桶里这样多出的水会从上面的孔里漏出来。
这个水漏出的快慢就称为微分时间。
看到几个问采样周期的帖子,临时想了这么个故事。
PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。
它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。
PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。
下面将详细介绍PID控制的原理和参数整定方法。
一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。
当偏差较大时,调节量增大;当偏差较小时,调节量减小。
此项控制可以使系统快速响应,并减小系统稳态误差。
2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。
积分控制的作用主要是消除系统的稳态误差。
当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。
3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。
当偏差的变化率较大时,微分量会增大,以提前调整控制量。
微分控制可以减小系统的超调和振荡。
综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。
二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。
它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。
2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。
在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。
根据振荡周期和振荡增益的比值来确定P、I和D的参数值。
3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。
通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。
4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。
该方法可以通过在线自整定或离线自整定来实现。
PID控制原理和特点工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一.当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便.即当我们不完全了解一个系统和被控对象﹐或不能有效测量手段来获系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制.PID控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。
1、比例控制(P):比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数e(t) = SP – y(t)-u(t) = e(t)*PSP——设定值e(t)——误差值y(t)——反馈值u(t)——输出值P——比例系数滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。
也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。
如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制2、比例积分控制(PI):积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。
其公式有很多种,但大多差别不大,标准公式如下:u(t) = Kp*e(t) + Ki∑e(t) +u0u(t)—-输出Kp--比例放大系数Ki——积分放大系数e(t)——误差u0——控制量基准值(基础偏差)大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki 后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的PI两个结合使用的情况下,我们的调整方式如下:1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,我们还可以在些P值的基础上再加大一点。