精选2013中考题6304
- 格式:docx
- 大小:13.77 KB
- 文档页数:3
2013年中考试题及答案2013年的中考是一场具有重要意义的考试,对于参加考试的学生和其家长来说都是关乎未来的重要一年。
本文将提供2013年中考的试题及答案作为参考,帮助学生们更好地了解考试形式和备考重点,以取得优异的成绩。
第一部分:语文1. 阅读理解(1)阅读下面一篇短文,回答问题。
春假期间,我和我的家人来到了一座名叫“仙境山庄”的度假村,准备度过愉快的假期。
然而,我却在这里遇到了一次意外。
第二天早晨,我和妹妹决定去山上远足。
我们穿过繁茂的树林,一路欣赏着美丽的风景。
就在我们以为一切都很安全的时候,突然间,一只巨大的野狼从树丛中窜了出来,向我们扑来!我们被吓得魂不附体,身体无法动弹。
就在关键时刻,一只身穿迷彩服的人从树林中跳出,手持屠刀制止了野狼的攻击。
原来,他是仙境山庄的保安,正在巡逻时无意间发现了我们遇险的情况。
他告诉我们,在这片山区里野狼并不罕见,山庄的工作人员每天都会巡查以确保游客的安全。
我们深深地感激他的救命之恩。
问题:1)文章的主要内容是什么?答案:文章讲述了作者和妹妹在“仙境山庄”的度假期间遇到的一次意外,以及保安的及时出现救了他们的情况。
2)为什么作者和妹妹被吓得动弹不得?答案:因为一只巨大的野狼突然扑向了他们。
3)文章的结尾表达了什么?答案:文章表达了作者们对保安的感激之情。
第二部分:数学1. 计算题(1)已知正整数a、b满足a + b = 12,且a - b = 4,求a和b的值。
答案:a = 8,b = 4。
(2)已知等边三角形ABC的边长为x,若AB = x + 2,BC = 2x - 1,求x的值。
答案:x = 3。
第三部分:英语1. 完形填空阅读下面短文,从A、B、C、D四个选项中选出可以填入空白处的最佳选项。
My family and I travelled to Australia for our summer vacation. One day, we visited Sydney Zoo. It was a __1__ experience. We saw many kinds of animals there.We spent the whole morning __2__ the zoo. I took lots of photos. My favorite animals were the kangaroos. They looked so __3__ when they moved. I also saw some koalas sleeping on the trees. They looked very__4__.In the afternoon, we watched a dolphin show. The dolphins __5__ incredible jumps in the water. It was __6__ exciting performance. I couldn't stop clapping.At the end of the day, we visited the gift shop. I __7__ a small kangaroo doll as a souvenir. It was so cute. My little sister bought a beautiful koala keychain.We had a fantastic time at Sydney Zoo. It was the __8__ experience of our trip to Australia. We will always __9__ this amazing day.1)A. boring B. thrilling C. ordinary D. average答案:B. thrilling2)A. wandering B. exploring C. escaping D. visiting答案:B. exploring3)A. slippery B. clumsy C. graceful D. aggressive答案:C. graceful4)A. active B. tired C. fast D. lazy答案:D. lazy5)A. performed B. prepared C. showed D. repeated答案:C. showed6)A. an B. the C. a D. some答案:A. an7)A. adopted B. received C. bought D. won答案:C. bought8)A. worst B. best C. longest D. shortest答案:B. best9)A. remember B. forget C. regret D. cherish答案:A. remember以上为2013年中考试题及答案的一部分示例。
2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。
2013年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2.5B. 3.14C. √2D. 0.333...答案:C2. 一个等腰三角形的两边长分别为3和5,那么它的周长是多少?A. 11B. 13C. 14D. 16答案:C3. 函数y=2x+3与y=-x+1的交点坐标是?A. (1, 5)B. (2, 4)C. (3, 5)D. (4, 3)答案:A4. 下列哪个选项是二次函数的图像?A. 一条直线B. 一个圆C. 一条抛物线D. 一个椭圆答案:C5. 一个数的平方根是4,那么这个数是多少?A. 16B. -16C. 8D. -8答案:A6. 一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A7. 下列哪个选项是不等式2x-3>5的解?A. x>4B. x<4C. x>1D. x<1答案:A8. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是多少?A. 24立方单位B. 36立方单位C. 48立方单位D. 52立方单位答案:B9. 一个三角形的内角和是多少?A. 90度B. 180度C. 360度D. 540度答案:B10. 一个数的倒数是1/2,那么这个数是多少?A. 2B. 1/2C. 1D. 0答案:A二、填空题(每题3分,共30分)11. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?答案:1712. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是多少?答案:513. 一个数的绝对值是5,那么这个数可以是?答案:±514. 一个正比例函数的图象经过点(2, 6),那么它的解析式是?答案:y=3x15. 一个数的立方根是2,那么这个数是多少?答案:816. 一个圆的周长是31.4厘米,那么它的半径是多少?答案:5厘米17. 一个二次函数的顶点是(1, -4),且开口向上,那么它的解析式可能是?答案:y=(x-1)^2-418. 一个数的平方是9,那么这个数可以是?答案:±319. 一个长方体的长、宽、高分别是3、4、5,那么它的表面积是多少?答案:94平方单位20. 一个数的倒数是-1/3,那么这个数是多少?答案:-3三、解答题(每题10分,共40分)21. 解方程:3x-5=8答案:x=322. 计算:(2x+3)(x-1) - (x+2)(x-2)答案:x^2+223. 证明:如果一个三角形的两边长分别是a和b,且a>b,那么它的第三边c满足b-c<a<b+c。
2013年中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填入题后的括号内。
)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 22. 如果\( a \)和\( b \)互为相反数,那么\( a + b \)的值是多少?A. 0B. 1C. -1D. 不确定3. 已知\( x \)和\( y \)满足\( x + y = 5 \),\( x - y = 1 \),求\( x \)的值。
A. 2B. 3C. 4D. 54. 一个直角三角形的两条直角边分别是3和4,斜边的长度是多少?A. 5B. 6C. 7D. 85. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 下列哪个不是二次根式?A. \( \sqrt{4} \)B. \( \sqrt{9x} \)C. \( \sqrt{x^2} \)D. \( \sqrt{16} \)7. 如果一个数的平方等于81,这个数是多少?A. 9B. -9C. ±9D. ±38. 一个数的立方等于-27,这个数是多少?A. -1B. -3C. 3D. 19. 一个分数的分子和分母都乘以相同的数,分数的值会如何变化?A. 变大B. 变小C. 不变D. 无法确定10. 下列哪个是完全平方数?A. 20B. 21C. 22D. 23二、填空题(本大题共5小题,每小题3分,共15分。
请将答案填在题中横线上。
)11. 一个数的绝对值是5,这个数可以是______。
12. 如果\( a \)和\( b \)互为倒数,那么\( ab \)的值等于______。
13. 一个长方体的长、宽、高分别是2、3和4,它的体积是______。
14. 一个数的平方根是4,这个数是______。
15. 如果\( x \)的立方等于27,那么\( x \)的值是______。
2013年中考数学试题及答案Ⅰ.选择题(本题共20小题,每小题2分,共40分)从下列各题所给的选项中选择一个正确答案。
1. 设a = log2 64 + log3 81, 则a = ()。
A. 9B. 10C. 15D. 182. 解方程: 4(5 – 3x) + 2(3x - 1) + 3(2x + 1) = 0, 其解x的值为()。
A. -1B. -2/5C. 1/7D. 3/83. 如图,矩形ABCD,边长AB = 2,E为BC的中点,三角形AFC,三角形DEC都为等腰直角三角形,且四边形ADEF为平行四边形,求阴影部分的面积。
(图略)A. 3B. 3/2C. 2D. 9/44. 欲装满一个半径为R,高为H的圆柱形容器,顶部有一个半径为r,高为h的圆锥形容器,将一个半径为r,高为h的圆柱形铅块放入圆柱形容器,正好将圆柱形容器装满。
则圆柱形铅块的体积为()。
A. 1/3 πr²hB. 1/2 πr²hC. 2/3πr²hD. 3/4 πr²h5. 如图,甲乙在以等速v1行驶的汽车内,在相距200m处通过一辆以等速v2行驶的汽车,甲乙往返相遇三次,当乙往甲反方向行驶10m 时,两车又正好相遇。
设v1 = 54km/h 则V2 =()。
(图略)A. 36km/hB. 45km/hC. 48km/hD. 60km/h...Ⅱ.填空题1. 两个源于同一直线上的交角所对应的弧相等,则这两个角是。
2. 孔子的鼻祖是在36年后复活的,如果复活之后是公元2004年,那么孔子的出生年是年。
3. 在一个D字形街区上,如果所走的距离为x,向南走的时间为y,向东走的时间为z,则由x,y, z组成的有序三元组(x, y, z)有几种?4. 把乘积为123的两个数用正小数表示时所得数的和的最小值是。
5. 出生被称作“自救”的。
答:昆虫,鸟类以及爬行动物。
...Ⅲ.解答题1. 甲、乙两人合抱一根杆,甲用左手按住杆的上端,乙用右手按住杆的下端,夹持的点在杆的中点上。
2014年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分)1、2的值等于 ( ) A 、2 B 、-2 C 、2 D 、22、函数31+-=x y 中,自变量x 的取值围是 ( )A 、1>xB 、1≥xC 、1≤xD 、1≠x3、方程0312=--xx 的解为 ( ) A 、2=x B 、2-=x C 、3=x D 、3-=x4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A 、4,15 B 、3,15 C 、4,16 D 、3,165、下列说法中正确的是 ( ) A 、两直线被第三条直线所截得的同位角相等 B 、两直线被第三条直线所截得的同旁角互补C 、两平行线被第三条直线所截得的同位角的平分线互相垂直D 、两平行线被第三条直线所截得的同旁角的平分线互相垂直20. 已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( )A 、30cm 2B 、30πcm 2C 、15cm 2D 、15πcm 27、如图,A 、B 、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( ) A 、35°B 、140°C 、70°D 、70°或140°8、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( ) A 、21 B 、41C 、81D 、1611、如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于( ) A 、3:4 B 、3:52 C 、13:62 D 、32:1310、已知点A (0,0),B (0,4),C (3,t +4),D (3,t ). 记N (t )为□ABCD 部(不含边界)整 点第7题图第8题图第9题图的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为 ( )A 、6,7B 、7,8C 、6,7,8D 、6,8,9二、填空题(本大题共8小题,每小题2分,共16分) 11、分解因式:2x 2-4x =。
2013年中考数学试题及答案在2013年的中考数学试题中,我们看到了对基础知识和应用能力的全面考察。
以下是试题及答案的详细内容:一、选择题(每题3分,共30分)1. 以下哪个数是无理数?A. 2.0B. πC. 0.33333D. √4答案:B2. 一个等腰三角形的底边长为6厘米,高为4厘米,那么它的周长是多少?A. 16厘米B. 18厘米C. 20厘米D. 22厘米答案:C3. 以下哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 4x + 3 = 0C. x^2 - 4x + 2 = 0D. x^2 - 4x + 1 = 0答案:A4. 一个数列的前三项是2,4,8,那么第四项是多少?A. 16B. 32C. 64D. 128答案:A5. 一个圆的半径是5厘米,那么它的面积是多少?A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米答案:B6. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 任意五边形D. 任意六边形答案:D7. 一个函数f(x) = 2x + 3,那么f(-1)的值是多少?A. -2B. -1C. 1D. 2答案:A8. 以下哪个选项是正确的不等式?A. 2x > x + 1B. 3x ≤ 2x + 1C. 4x < 3x + 1D. 5x ≥ 4x + 1答案:D9. 一个长方体的长、宽、高分别是3厘米、4厘米、5厘米,那么它的体积是多少?A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米答案:A10. 以下哪个选项是正确的比例关系?A. 2:3 = 4:6B. 3:4 = 6:8C. 4:5 = 8:10D. 5:6 = 10:12答案:C二、填空题(每题3分,共15分)11. 如果一个数的平方是25,那么这个数是____。
答案:±512. 一个数的绝对值是5,那么这个数是____。
2013中考全国100份真题分类汇编100份真题分类汇编:三角形、多边形内角和;外角和下载100份真题分类汇编:三角形全等下载100份真题分类汇编:三角形相似下载100份真题分类汇编:三角形形成的条件下载100份真题分类汇编:实数运算下载100份真题分类汇编:四边形(矩形)下载100份真题分类汇编:四边形(正方形)下载100份真题分类汇编:四边形综合下载100份真题分类汇编:统计下载100份真题分类汇编:统计与概率综合下载100份真题分类汇编:投影与三视图下载100份真题分类汇编:位似图像下载100份真题分类汇编:无理数下载100份真题分类汇编:一次函数下载100份真题分类汇编:一次函数应用题下载100份真题分类汇编:一元二次方程下载100份真题分类汇编:一元一次不等式(组).下载100份真题分类汇编:一元一次方程与应用下载100份真题分类汇编:有理数的概念下载100份真题分类汇编:与圆有关的计算下载100份真题分类汇编:圆的垂径定理下载100份真题分类汇编:圆的综合题下载100份真题分类汇编:圆心角、弧、弦的关系下载100份真题分类汇编:反比例函数应用题下载100份真题分类汇编:作图题下载100份真题分类汇编:轴对称下载100份真题分类汇编:中心对称图形、轴对称图形下载100份真题分类汇编:中位线下载100份真题分类汇编:直线和圆的位置关系,圆的切线下载100份真题分类汇编正多边形下载100份真题分类汇编:整式、代数式下载100份真题分类汇编:圆周角下载100份真题分类汇编:圆与圆的位置关系下载100份真题分类汇编:几何综合下载100份真题分类汇编:几何体下载100份真题分类汇编:函数自变量取值范围下载100份真题分类汇编:函数图像下载100份真题分类汇编:勾股定理下载100份真题分类汇编:格点问题下载100份真题分类汇编:概率下载100份真题分类汇编:分式方程下载100份真题分类汇编:分式下载100份真题分类汇编:分解因式下载2013中考全国100份真题分类汇编100份真题分类汇编:三角形、多边形内角和;外角和100份真题分类汇编:三角形全等100份真题分类汇编:三角形相似100份真题分类汇编:三角形形成的条件100份真题分类汇编:实数运算100份真题分类汇编:四边形(矩形)100份真题分类汇编:四边形(正方形)100份真题分类汇编:四边形综合100份真题分类汇编:统计100份真题分类汇编:统计与概率综合100份真题分类汇编:投影与三视图100份真题分类汇编:位似图像100份真题分类汇编:无理数100份真题分类汇编:一次函数100份真题分类汇编:一次函数应用题100份真题分类汇编:一元二次方程100份真题分类汇编:一元一次不等式(组).100份真题分类汇编:一元一次方程与应用100份真题分类汇编:有理数的概念100份真题分类汇编:与圆有关的计算100份真题分类汇编:圆的垂径定理100份真题分类汇编:圆的综合题100份真题分类汇编:圆心角、弧、弦的关系100份真题分类汇编:反比例函数应用题100份真题分类汇编:作图题100份真题分类汇编:轴对称100份真题分类汇编:中心对称图形、轴对称图形100份真题分类汇编:中位线100份真题分类汇编:直线和圆的位置关系,圆的切线100份真题分类汇编正多边形100份真题分类汇编:整式、代数式100份真题分类汇编:圆周角100份真题分类汇编:圆与圆的位置关系100份真题分类汇编:几何综合100份真题分类汇编:几何体100份真题分类汇编:函数自变量取值范围100份真题分类汇编:函数图像100份真题分类汇编:勾股定理100份真题分类汇编:格点问题100份真题分类汇编:概率100份真题分类汇编:分式方程100份真题分类汇编:分式100份真题分类汇编:分解因式100份真题分类汇编:角平分线100份真题分类汇编:解直角三角形(仰角俯角坡度问题)100份真题分类汇编:科学计数法100份真题分类汇编:列方程解应用题(分式方程)100份真题分类汇编:列方程解应用题(一元二次方程)100份真题分类汇编:列方程解应用题(一元一次方程不等式)100份真题分类汇编:命题100份真题分类汇编:平面直角坐标系100份真题分类汇编:平行四边形100份真题分类汇编:平行线中考数学试卷分类汇编二次函数——选择填空题中考数学试卷分类汇编代数几何综合中考数学试卷分类汇编等腰三角形.中考数学试卷分类汇编等边三角形中考数学试卷分类汇编反比例函数.中考数学试卷分类汇编操作与探究中考数学试卷分类汇编材料阅读题、定义新.中考数学试卷分类汇编代数综合中考数学试卷分类汇编列方程解应用题(方程组)中考数学试卷分类汇编四边形(菱形).中考数学试卷分类汇编锐角三角函数.中考数学试卷分类汇编解直角三角形(方位角问题).中考数学试卷分类汇编解直角三角形(三角函数应用)中考数学试卷分类汇编角的计算.中考数学试卷分类汇编平移、旋转、翻折中考数学试卷分类汇编幂运算中考数学试卷分类汇编梯形.中考数学试卷分类汇编数轴中考数学试卷分类汇编规律探索题.。
江西省2013年中等学校招生考试数学试卷解析(江西于都三中 蔡家禄)说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。
2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是( ).A .1B .-1C .±1D .0【答案】 B .【考点解剖】 本题考查了实数的运算性质,要知道什么是倒数.【解题思路】 根据倒数的定义,求一个数的倒数,就是用1除以这个数,所以-1的倒数为1(1)1÷-=-,选B.【解答过程】 ∵1(1)1÷-=-,∴选B .【方法规律】 根据定义直接计算.【关键词】 实数 倒数2.下列计算正确的是( ).A .a 3+a 2=a 5B .(3a -b )2=9a 2-b 2C .a 6b ÷a 2=a 3bD .(-ab 3)2=a 2b 6 【答案】 D .【考点解剖】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.【解题思路】 根据法则直接计算.【解答过程】 A.3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B.是完全平方公式的应用,结果应含有三项,这里结果只有两项,一看便知是错的,正确为222(3)96a b a ab b -=-+;C.两个单项式相除,系数与系数相除,相同的字母相除(同底数幂相除,底数不变,指数相减),正确的结果为624a b a a b ÷=;D.考查幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变,指数相乘),正确,选D.【方法规律】 熟记法则,依法操作.【关键词】 单项式 多项式 幂的运算3.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是( ).A .164和163B .105和163C .105和164D .163和164 【答案】 A .【考点解剖】 本题考查的是统计初步中的基本概念——中位数、众数,要知道什么是中位数、众数.【解题思路】 根据中位数、众数的定义直接计算.【解答过程】 根据中位数的定义——将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数;众数是指一组数据中出现次数最多的那个数,所以342、163、165、45、227、163的中位数是163和165的平均数164,众数为163,选A.【方法规律】 熟知基本概念,直接计算.【关键词】 统计初步 中位数 众数4.如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ).A .0B .1C .2D .5【答案】 C .【考点解剖】 本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】 反比例函数图象既是轴对称图形又是中心对称图形,只有当A 、B 、O 三点共线时,才会有线段AB 的长度最小OA OB AB +=,(当直线AB 的表达式中的比例系数不为1时,也有同样的结论).【解答过程】 把原点(0,0)代入2y x a =+-中,得2a =.选C..【方法规律】 要求a 的值,必须知道x 、y 的值(即一点的坐标)由图形的对称性可直观判断出直线AB 过原点(0,0)时,线段AB 才最小,把原点的坐标代入解析式中即可求出a 的值.【关键词】 反比例函数 一次函数 双曲线 线段最小5.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是( ).【答案】 C .【考点解剖】 本题考查的投影与视图中的画已知物体的三视图,要正确掌握画三视图的有关法则.【解题思路】 可用排除法,B 、D 两选项有迷惑性,B 是主视图,D 不是什么视图,A 少了上面的一部分,正确答案为C.【解答过程】 略.【方法规律】 先要搞准观看的方向,三视图是正投影与平行投影的产物,反映物体的轮廓线,看得到的画成实线,遮挡部分画成虚线.【关键词】 三视图 坐凳6.若二次涵数y =ax +bx +c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是( ).A .a >0B .b 2-4ac ≥0C .x 1<x 0<x 2D .a (x 0-x 1)( x 0-x 2)<0【答案】 D .【考点解剖】 本题考查的是二次函数的性质,要求对二次函数的性质有比较深刻地理解,并能熟练地画函数草图作出分析.【解题思路】 抛物线与x 轴有不同的两个交点,则240b ac ->,与B 矛盾,可排除B 选项;剩下A 、C 、D 不能直接作出正误判断,我们分a >0,a <0两种情况画出两个草图来分析(见下图).由图可知a 的符号不能确定(可正可负,即抛物线的开口可向上,也右向下),所以012,,x x x 的大小就无法确定;在图1中,a >0且有102x x x <<,则0102()()a x x x x --的值为负;在图2中,a <0且有102x x x <<,则0102()()a x x x x --的值也为负.所以正确选项为D.【解答过程】 略.【方法规律】 先排除错误的,剩下的再画图分析(数形结合)【关键词】 二次函数 结论正误判断二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式x 2-4= .【答案】 (x +2)(x -2).【考点解剖】 本题的考点是因式分解,因式分解一般就考提取公因式法和公式法(完全平方公式和平方差公式),而十字相乘法、分组分解等方法通常是不会考的.【解题思路】 直接套用公式即.【解答过程】 24(2)(2)x x x -=+-. 【方法规律】 先观察式子的特点,正确选用恰当的分解方法.【关键词】 平方差公式 因式分解8.如图△ABC 中,∠A =90°点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .【答案】65°.【考点解剖】 本题考查了平行线的性质、邻补角、直角三角形两锐角互余等知识,题目较为简单,但有些考生很简单的计算都会出错,如犯18015535︒-︒=︒之类的错误.【解题思路】 由1155∠=︒,可求得25BCD CDE ∠=∠=︒,最后求65B ∠=︒.【解答过程】 ∵∠ADE =155°, ∴∠EDC =25°.又∵DE ∥BC ,∴∠C =∠EDC =25°,在△ABC 中,∠A =90°,∴∠B+∠C=90°,∴∠B=65°.【方法规律】 一般求角的大小要搞清楚所求角与已知角之间的等量关系,本题涉及三角形内角和定理、两直线平行,内错角相等,等量代换等知识和方法.【关键词】 邻补角 内错角 互余 互补9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .【答案】⎩⎨⎧+==+12,34y x y x . 【考点解剖】 本题考查的是列二元一次方程组解应用题(不要求求出方程组的解),准确找出数量之间的相等关系并能用代数式表示.【解题思路】 这里有两个等量关系:井冈山人数+瑞金人数=34,井冈山人数=瑞金人数×2+1.所以所列方程组为34,2 1.x y x y +=⎧⎨=+⎩. 【解答过程】 略.【方法规律】 抓住关键词,找出等量关系【关键词】 列二元一次方程组10.如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为 .【答案】 26.【考点解剖】 本题考查了阴影部分面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,若分别计算再相加,则耗时耗力,仔细观察不难发现阴影部分的面积其实就是原矩形面积的一半(即),这种“整体思想”事半功倍,所以平时要加强数学思想、方法的学习与积累.【解题思路】 △BCN 与△ADM 全等,面积也相等,口DFMN 与口BEMN 的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半.【解答过程】 162⨯⨯=. 【方法规律】 仔细观察图形特点,搞清部分与整体的关系,把不规则的图形转化为规则的来计算.【关键词】 矩形的面积 二次根式的运算 整体思想11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).【答案】 (n +1)2 .【考点解剖】 本题考查学生的观察概括能力,发现规律,列代数式.【解题思路】 找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示.【解答过程】 略.【方法规律】 由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.【关键词】 找规律 连续奇数的和12.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 【答案】 x 2-5x +6=0.【考点解剖】 本题是道结论开放的题(答案不唯一),已知直角三角形的面积为3(直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况(即保证方程的根为整数),如直角边长分别为2、3的直角三角形的面积就是3,以2、3为根的一元二次方程为2560x x -+=;也可以以1、6为直角边长,得方程为2760x x -+=.(求作一元二次方程,属“一元二次方程根与系数的关系”知识范畴,这种题型在以前相对考得较少,有点偏了.)【解题思路】 先确定两条符合条件的边长,再以它为根求作一元二次方程.【解答过程】 略.【方法规律】 求作方程可以用根与系数的关系,也可由因式分解法解一元二次方程.【关键词】 直角三角形 根 求作方程13.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【答案】 25°.【考点解剖】本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】已知两个平行四边形的周长相等,且有公共边CD,则有AD=DE,即△ADE 为等腰三角形,顶角∠ADE=∠BCF=60°+70°=130°,∴∠DAE=25°.【解答过程】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE, ∠ADE=∠BCF=60°+70°=130°.∴∠DAE=11(180)5025 22ADE︒-∠=⨯︒=︒.【方法规律】先要明确∠DAE的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠BAD=130°转化为∠BCD=130°,∠F=110°转化为∠DCF=70°,从而求得∠ADE=∠BCF=130°.【关键词】平行四边形等腰三角形周长求角度14.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.【答案】2,3,4.【考点解剖】本题主要考查学生阅读理解能力、作图能力、联想力与思维的严谨性、周密性,所涉及知识点有等腰三角形、圆的有关知识,分类讨论思想,不等式组的整数解,在运动变化中抓住不变量的探究能力.【解题思路】由∠AOB=120°,AO=BO=2画出一个顶角为120°、腰长为2的等腰三角形,由60︒与120︒互补,60︒是120︒的一半,点C是动点想到构造圆来解决此题.【解答过程】【方法规律】构造恰当的图形是解决此类问题的关键.【关键词】圆整数值三、(本大题共2小题,每小题5分,共10分)15.解不等式组⎩⎨⎧>-+≥+,33)3(2,12x x x 并将解集在数轴上表示出来.【答案】解:由x +2≥1得x≥-1,由2x +6-3x 得x <3,∴不等式组的解集为-1≤x <3.解集在数轴上表示如下:【考点解剖】 本题考查不等式组的解法,以及解集在数轴上的表示方法.【解题思路】 分别把两个不等式解出来,再取它们解集的公共部分得到不等式组的解集,最后画出数轴表示出公共部分(不等式组的解集),注意空心点与实心点的区别.【解答过程】【方法规律】 要保证运算的准确度与速度,注意细节(不要搞错符号).【关键词】 不等式组 数轴16.如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无.刻度..的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点;(2)在图2中,画出△ABC 中AB 边上的高.【答案】 (1)如图1,点P 就是所求作的点;(2)如图2,CD 为AB 边上的高.【考点解剖】 本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题(1)是要作点,题(2)是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.【解题思路】 图1点C 在圆外,要画三角形的高,就是要过点B 作AC 的垂线,过点A 作BC 的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造90度角,显然由圆的直径就应联想到“直径所对的圆周角为90度”.设AC 与圆的交点为E , 连接BE ,就得到AC 边上的高BE ;同理设BC 与圆的交点为D , 连接AD ,就得到BC 边上的高AD ,则BE 与AD 的交点就是△ABC 的三条高的交点;题(2)是题(1)的拓展、升华,三角形的三条高相交于一点,受题(1)的启发,我们能够作出△ABC 的三条高的交点P ,再作射线PC 与AB 交于点D ,则CD 就是所求作的AB 边上的高.【解答过程】 略.【方法规律】 认真分析揣摩所给图形的信息,结合题目要求思考.【关键词】 创新作图 圆 三角形的高四、(本大题共2小题,每小题6分,共12分)17.先化简,再求值:12244222+-÷+-xx x x x x ,在0,1,2,三个数中选一个合适的,代入求值.【答案】解:原式=x x 2)2(2-·)2(2-x x x +1 =212x -+=2x . 当x =1时,原式=21. 【考点解剖】 本题考查的是分式的化简求值,涉及因式分解,约分等运算知识,要求考生具有比较娴熟的运算技能,化简后要从三个数中选一个数代入求值,又考查了考生的细心答题的态度,这个陷阱隐蔽但不刁钻,看到分式,必然要注意分式成立的条件.【解题思路】 先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到212x -+,可通分得22212222x x x --+=+=,也可将22x -化为12x -求解. 【解答过程】 略.【方法规律】 根据式子的特点选用恰当的解题顺序和解题方法.【关键词】 分式 化简求值18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( ).A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率. 【答案】(1)A .(2)依题意画树状图如下:从上图可知,所有等可能结果共有6种,其中第4、5种结果符合,∴P (A)=62=31. 【考点解剖】 本题为概率题,考查了对“随机事件”、“必然事件”两个概念的理解,画树形图或表格列举所有等可能结果的方法.【解题思路】 (1)是选择题,根据必然事件的定义可知选A ;(2)三个人抽取三件礼物,恰好每人一件,所有可能结果如上图所示为6种,其中只有第4、5种结果符合,∴P (A)=62=31;也可以用直接列举法:甲从三个礼物中抽到的礼物恰好不是自己的只有两种,要么是乙的要么是丙的,若甲抽到乙的,乙必须抽到丙的才符合题意;若甲抽到的是丙的,乙必须抽到甲的才符合题意,∴P (A) =31 . 【解答过程】 略.【方法规律】 要正确理解题意,画树形图列举所有可能结果,本质就是一种分类,首先要明确分类的对象,再要确定分类的标准和顺序,实现不重不漏. 【关键词】 必然事件 概率 抽取礼物五、(本大题共2小题,每小题8分,共16分) 19.如图,在平面直角坐标系中,反比例函数xky(x>0)的图象和矩形ABCD 的第一象限,AD 平行于x 轴,且AB =2,AD =4,点A 的坐标为(2,6) . (1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.【答案】(1)B (2,4),C (6,4),D (6,6).(2)如图,矩形ABCD 向下平移后得到矩形''''A B C D ,设平移距离为a ,则A ′(2,6-a ),C ′(6,4-a ) ∵点A ′,点C ′在y =xk的图象上, ∴2(6-a )=6(4-a ), 解得a =3, ∴点A ′(2,3), ∴反比例函数的解析式为y =6x. 【考点解剖】 本题以矩形为背景考查用待定系数法求反比例函数的解析式.【解题思路】 先根据矩形的对边平行且相等的性质得到B 、C 、D 三点的坐标,再从矩形的平移过程发现只有A 、C 两点能同时在双曲线上(这是种合情推理,不必证明),把A 、C 两点坐标代入y =xk中,得到关于a 、k 的方程组从而求得k 的值. 【解答过程】 略.【方法规律】 把线段的长转化为点的坐标,在求k 的值的时候,由于k 的值等于点的横坐标与纵坐标之积,所以直接可得方程2(6-a )=6(4-a ),求出a 后再由坐标求k ,实际上也可把A 、C 两点坐标代入y =xk中,得到关于a 、k 的方程组从而直接求得k 的值. 【关键词】 矩形 反比例函数 待定系数法20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml 的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A .全部喝完;B .喝剩约31;C .喝剩约一半;D .开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫.升.? (3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶.?(可使用科学计算器) 【答案】(1)根据所给扇形统计图可知,喝剩约31的人数是总人数的50%, ∴25÷50%=50,参加这次会议的总人数为50人, ∵505×360°=36°, ∴D 所在扇形圆心角的度数为36°,补全条形统计图如下;(2)根据条形统计图可得平均每人浪费矿泉水量约为:(25×31×500+10×500×21+5×500)÷50=327500÷50≈183毫升;(3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.【考点解剖】 本题考查的是统计初步知识,条形统计图与扇形统计图信息互补,文字量大,要求考生具有比较强的阅读理解能力.本题所设置的问题比较新颖,并不是象传统考试直接叫你求平均数、中位数、众数或方差,而是换一种说法,但考查的本质仍然为求加权平均数、以样本特性估计总体特性.显然这对考生的能力要求是非常高的.【解题思路】 (1)由扇形统计图可看出B 类占了整个圆的一半即50%(遗憾的是扇形中没有用具体的数字(百分比)表示出来,这是一种很不严谨的命题失误),从条形统计图又知B 类共25人,这样已知部分数的百分比就可以求出总人数,而D 类有5人,已知部分数和总数可以求出D 类所占总数百分比,再由百分比确定所占圆的圆心角的度数;已知总人数和A 、B 、D 类的人数可求出C 类的人数为10人,将条形统计图中补完整;(2)用总的浪费量除以总人数50就得到平均每人的浪费量;(3)每年开60次会,每次会议将有40至60人参加,这样折中取平均数算一年将有3000人参加会议,用3000乘以(2)中的结果(平均每人的浪费量),得到一年总的浪费量,再转换成瓶数即可. 【解答过程】 略.【方法规律】 能从实际问题中抽出数学问题,从题中抽出关键词即要弄清已知什么,要求什么(不要被其它无关信息干扰). 【关键词】 矿泉水 统计初步六、(本大题共2小题,每小题9分,共18分)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB ,如图2所示,量得连杆OA 长为10cm ,雨刮杆AB 长为48cm ,∠OAB =120°.若启动一次刮雨器,雨刮杆AB 正好扫到水平线CD 的位置,如图3所示.(1)求雨刮杆AB 旋转的最大角度及O 、B 两点之间的距离;(结果精确到0.01) (2)求雨刮杆AB 扫过的最大面积.(结果保留π的整数倍) (参考数据:sin60°=23,cos60°=21,tan60°=3,721≈26.851,可使用科学计算器)【答案】解:(1)雨刮杆AB 旋转的最大角度为180° .连接OB ,过O 点作AB 的垂线交BA 的延长线于EH ,∵∠OAB =120°, ∴∠OAE =60° 在Rt △OAE 中, ∵∠OAE =60°,OA =10, ∴sin ∠OAE =OA OE =10OE , ∴OE =53, ∴AE =5.∴EB =AE +AB =53, 在Rt △OEB 中, ∵OE =53,EB =53,∴OB =22BE OE =2884=2721≈53.70;(2)∵雨刮杆AB 旋转180°得到CD ,即△OCD 与△OAB 关于点O 中心对称, ∴△BAO ≌△OCD ,∴S △BAO =S △OCD , ∴雨刮杆AB 扫过的最大面积S =21π(OB 2-OA 2) =1392π.【考点解剖】 本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难).【解题思路】将实际问题转化为数学问题,(1)AB旋转的最大角度为180°;在△OAB 中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠OAB=120°想到作AB边上的高,得到一个含60°角的Rt△OAE和一个非特殊角的Rt△OEB.在Rt△OAE中,已知∠OAE=60°,斜边OA=10,可求出OE、AE的长,进而求得Rt△OEB中EB的长,再由勾股定理求出斜边OB的长;(2)雨刮杆AB扫过的最大面积就是一个半圆环的面积(以OB、OA为半径的半圆面积之差).【解答过程】略.【方法规律】将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.【关键词】刮雨器三角函数解直角三角形中心对称扇形的面积22.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明P A是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.【答案】(1)证明:依题意可知,A(0,2)∵A(0,2),P(4,2),∴AP∥x轴.∴∠OAP=90°,且点A在⊙O上,∴P A是⊙O的切线;(2)解法一:连接OP,OB,作PE⊥x轴于点E,BD⊥x轴于点D,∵PB切⊙O于点B,∴∠OBP =90°,即∠OBP =∠PEC , 又∵OB =PE =2,∠OCB =∠PEC . ∴△OBC ≌△PEC . ∴OC=PC .(或证Rt △OAP ≌△OBP ,再得到OC=PC 也可) 设OC=PC =x ,则有OE =AP =4,CE=OE -OC =4-x , 在Rt △PCE 中,∵PC 2=CE 2+PE 2, ∴x 2=(4-x )2+22,解得x =25,…………………… 4分 ∴BC=CE =4-25=23, ∵21OB ·BC =21OC ·BD ,即21×2×23=21×25×BD ,∴BD =56. ∴OD =22BD OB -=25364-=58, 由点B 在第四象限可知B (58,56-);解法二:连接OP ,OB ,作PE ⊥x 轴于点E ,BD ⊥y 轴于点D , ∵PB 切⊙O 于点B∴∠OBP =90°即∠OBP =∠PEC . 又∵OB=PE =2,∠OCB =∠PEC , ∴△OBC ≌△PEC .∴OC=PC (或证Rt △OAP ≌△OBP ,再得到OC=PC 也可)设OC=PC =x ,则有OE=AP =4,CE=OE -OC =4-x , 在Rt △PCE 中,∵PC 2=CE 2+PE 2, ∴x 2=(4-x )2+22,解得x =25,……………………………… 4分 ∴BC =CE =4-25=23, ∵BD ∥x 轴, ∴∠COB =∠OBD , 又∵∠OBC =∠BDO=90°, ∴△OBC ∽△BDO , ∴BD OB =OD CB =BOOC, 即BD 2=BD 23=225. ∴BD =58,OD =56.由点B 在第四象限可知B (58,56-); (3)设直线AB 的解析式为y =kx +b ,由A (0,2),B (58,56-),可得⎪⎩⎪⎨⎧-=+=5658,2b k b ;解得⎩⎨⎧-==,2,2k b ∴直线AB 的解析式为y =-2x +2.【考点解剖】 本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等.【解题思路】(1) 点A 在圆上,要证PA 是圆的切线,只要证PA ⊥OA (∠OAP =90°)即可,由A 、P 两点纵坐标相等可得AP ∥x 轴,所以有∠OAP +∠AOC =180°得∠OAP =90°;(2) 要求点B 的坐标,根据坐标的意义,就是要求出点B 到x 轴、y 轴的距离,自然想到构造Rt △OBD ,由PB 又是⊙O 的切线,得Rt △OAP ≌△OBP ,从而得△OPC 为等腰三角形,在Rt △PCE 中, PE=OA =2, PC+CE=OE =4,列出关于CE 的方程可求出CE 、OC 的长,△OBC 的三边的长知道了,就可求出高BD ,再求OD 即可求得点B 的坐标;(3)已知点A 、点B 的坐标用待定系数法可求出直线AB 的解析式.【解答过程】 略.【方法规律】 从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.【关键词】 切线 点的坐标 待定系数法求解析式七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现:在等腰△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连接MD 和ME ,则下列结论正确的是 (填序号即可) ①AF =AG =21AB ;②MD=ME ;③整个图形是轴对称图形;④∠DAB =∠DMB . ●数学思考:在任意△ABC 中,分别以AB 和AC 为斜边,向△ABC 的外侧..作等腰直角三角形,如图2所示,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; ●类比探索:在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图3所示,M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状. 答: .【答案】 解:●操作发现:①②③④ ●数学思考:答:MD=ME ,MD ⊥ME ,1、MD=ME ;如图2,分别取AB ,AC 的中点F ,G ,连接DF ,MF ,MG ,EG , ∵M 是BC 的中点, ∴MF ∥AC ,MF =21AC . 又∵EG 是等腰Rt △AEC 斜边上的中线, ∴EG ⊥AC 且EG =21AC , ∴MF=EG . 同理可证DF=MG . ∵MF ∥AC ,∴∠MF A +∠BAC =180°. 同理可得∠MGA +∠BAC =180°, ∴∠MF A =∠MGA .又∵EG ⊥AC ,∴∠EGA =90°. 同理可得∠DF A =90°,∴∠MF A +∠DF A =∠MGA =∠EGA , 即∠DFM=∠MEG ,又MF=EG ,DF=MG , ∴△DFM ≌△MGE (SAS ), ∴MD=ME . 2、MD ⊥ME ; 证法一:∵MG ∥AB , ∴∠MF A +∠FMG =180°,又∵△DFM ≌△MGE ,∴∠MEG =∠MDF . ∴∠MF A +∠FMD +∠DME +∠MDF =180°, 其中∠MF A +∠FMD +∠MDF =90°, ∴∠DME =90°. 即MD ⊥ME ;证法二:如图2,MD 与AB 交于点H , ∵AB ∥MG , ∴∠DHA =∠DMG ,又∵∠DHA=∠FDM+∠DFH,即∠DHA=∠FDM+90°,∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形【考点解剖】本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.【解题思路】(1)由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=45°也正确;(2)直觉告诉我们MD和ME是垂直且相等的关系,一般由全等证线段相等,受图1△DFM≌△MGE的启发,应想到取中点构造全等来证MD=ME,证MD⊥ME就是要证∠DME=90°,由△DFM≌△MGE得∠EMG=∠MDF, △DFM中四个角相加为180°,∠FMG 可看成三个角的和,通过变形计算可得∠DME=90°.(3)只要结论,不要过程,在(2)的基础易知为等腰直角三解形.【解答过程】略.【方法规律】由特殊到一般,形变但本质不变(仍然全等)【关键词】课题学习全等开放探究24.已知抛物线抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得。
2013年红河州哈尼族彝族自治州初中学业水平考试数学试题一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分) 1.12-的倒数是(A )A .2-B .2C .12-D .12【答案】A2.右图是某个几何体的三视图,该几何体是(B ) A .正方体 B .圆柱 C .圆锥 D .球【答案】B3.下列运算正确的是(D )A .2a a a +=B .632a a a ÷= C .0( 3.14)0π-= D.=【答案】D4.不等式组3x x <⎧⎨⎩≥1的解集在数轴上表示为 (C )【答案】CABCD主视图俯视图左视图5.B)A.3-B.3C.9-C.9【答案】B6.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为(C)A.60°B.65°C.70°D.75°【答案】C7.在平面直角坐标系中,已知点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是(C)A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)【答案】C8.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分ABC∠,则下列结论错误的是(D)A.AD DC=B.AD DC= C.ADB ACB∠=∠D.DAB CBA∠=∠【答案】DABA CDE二、填空题(本大题共6个小题,每小题3分,满分18分)9.红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4 500 000用科学记数法表示为 . 【答案】64.510⨯10.分解因式:29ax a -= . 【答案】()()33a x x +-11.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 . 【答案】 100 12.在函数11y x =-中,自变量x 的取值范围是 . 【答案】1x ≠13.已知扇形的半径是30cm ,圆心角是60,则该扇形的弧长为 cm (结果保留π). 【答案】 10 π14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 个实心圆.【答案】 42三、解答题(本大题共9个小题,满分58分)……(1) (2) (3)BACD E15.解方程212xx x +=+. 【答案】解:方程两边同时乘以(2)x x +得:22(2)(2)x x x x +++=. 22242x x x x +++=.1x =-.检验:把1x =-代入(2)0x x +≠. ………………………………4分 ∴1x =-是原方程的解. ………………………………5分16.如图,D 是△ABC 的边AB 上一点,E 是AC 的中点,过点C 作//CF AB ,交DE 的延长线于点F .求证:AD = CF . 【答案】证明:∵E 是AC 的中点,∴AE = CE . ………………………1分 ∵CF ∥AB ,∴∠A =∠ECF , ∠ADE =∠F . ………………………………3分 在△ADE 与△CFE 中,,,,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE (AAS ). ……………………………4分 ∴AD CF =. ……………………………5分17.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:=100%⨯售价-进价利润率进价)【答案】解:设这件外衣的标价为x 元,依题意得: ……………………………1分0.820020010%x -=⨯. ……………………………3分0.820200x =+.0.8220x =.275x =. ……………………………5分答:这件外衣的标价为275元. ……………………………6分 18.今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整; (2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量. 【答案】解:(1)统计表和条形统计图补充如下:…………………………………………………………3分植树数量(棵)植树数量(棵)(2)抽样的50名学生植树的平均数是:354205156104.650x ⨯+⨯+⨯+⨯==(棵).……………………5分 (3)∵样本数据的平均数是4.6,∴估计该校800名学生参加这次植树活动的总体平均数是4.6棵. 于是4.6×800 =3 680(棵),∴估计该校800名学生植树约为3 680棵. ……………………………7分19.今年“五·一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率. 【答案】解:(1)列表法表示如下:或树形图:……………………………………………………………………4分(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种, 所以抽奖人员的获奖概率为61122p ==. …………………………7分 20.如图,某山顶上建有手机信号中转塔AB ,在地面D 处测得塔尖的仰角60ADC ∠=,塔底的仰角45BDC ∠=,点D 距塔AB 的距离DC 为100米,求手机信号中转塔AB 的高度(结果保留根号).【答案】解:由题意可知,△ACD 与△BCD 都是直角三角形.在Rt △BCD 中, ∵∠BDC = 45°,∴BC = CD = 100.在Rt △ACD 中,∵∠ADC = 60°,CD = 100, ∴tan60ACCD=, 即100AC= 1234211332443开 始D6045∴AC = …………………………4分 ∴AB AC BC =-1)=. …………………………5分答:手机信号中转塔的高度为1)米. …………………………6分21.(2013云南红河州,21,6分)如图,正比例函数1y x =的图象与反比例函数2ky x=(0k ≠)的图象相交于A 、B 两点,点A 的纵坐标为2. (1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当12y y >时,自变量x 的取值范围. 【答案】解:(1)设A 点的坐标为(m ,2)2m =,所以点A 的坐标为(2,2). ∴224k =⨯=.∴反比例函数的解析式为:24y x=.…………………………3分 (2)当12y y =时,4x x=. 解得2x =±.∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2). 由图象可知,当12y y >时,自变量x 的取值范围是:20x -<<或2x >.……………………………………………………………………6分22.(2013云南红河州,22,7分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E .(1)判断四边形ACED 的形状,并说明理由; (2)若BD = 8cm ,求线段BE 的长.BACDE【答案】解:(1)四边形ACED 是平行四边形. ………………………………1分理由如下:∵四边形ABCD 是正方形, ∴AD ∥BC ,即AD ∥CE . ∵DE ∥AC ,∴四边形ACED 是平行四边形. ………………………………3分 (2)由(1)知,BC = AD = CE = CD , 在Rt △BCD 中, 令BC CD x ==,则2228x x +=. ………………………………5分解得1x =2x =-.∴2)BE x cm ==. ………………………………7分23.(2013云南红河州,23,9分)如图,抛物线24y x =-+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 是抛物线上的一个动点且在第一象限,过点P 作x 轴的垂线,垂足为D ,交直线BC 于点E .(1)求点A 、B 、C 的坐标和直线BC 的解析式; (2)求△ODE 面积的最大值及相应的点E 的坐标;(3)是否存在以点P 、O 、D 为顶点的三角形与△OAC 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.【答案】解:(1)在24y x =-+中,当y =0时,即240x -+=,解得2x =±.当0x =时,即04y =+,解得4y =.所以点A 、B 、C 的坐标依次是A (-2,0)、 B (2,0)、C (0,4).设直线BC 的解析式为y kx b =+(0k ≠),则204k b b +=⎧⎨=⎩,解得24k b =-⎧⎨=⎩. 所以直线BC 的解析式为24y x =-+. ………………………………3分 (2)∵点E 在直线BC 上,∴设点E 的坐标为(, 24)x x -+,则△ODE 的面积S 可表示为:221(24)2(1)12S x x x x x =-+=-+=--+. ∴当1x =时,△ODE 的面积有最大值1.此时,242142x -+=-⨯+=,∴点E 的坐标为(1,2). …………………5分 (3)存在以点P 、O 、D 为顶点的三角形与△OAC 相似,理由如下: 设点P 的坐标为2(, 4)x x -+,02x <<.因为△OAC 与△OPD 都是直角三角形,分两种情况: ①当△PDO ∽△COA 时,PD ODCO AO=, 2442x x-+=,解得11x,21x =(不符合题意,舍去).当1x =时,21)42y =-+=. 此时,点P的坐标为2).②当△PDO ∽△AOC 时,PD OD AO CO=, 2424x x -+=,解得3x =,4x =(不符合题意,舍去).当x =24y =-+此时,点P的坐标为. 综上可得,满足条件的点P 有两个:112)P,2P . ………………………9分 (注:本卷中所有解答题,若有其它方法得出正确结论的,请参照评分标准给分)。
4 敦煌种业17.26 -1.15%
5 丰乐种业15.79 -1.19%
名次名称最新跌幅
1 国投中鲁14.88 -4.25%
(1) 下列哪个说法不正确
(A)具有相同基本结构的药物,它们的药理作用不一定相同
(B)最合适的脂水分配系数,可使药物有最大活性
(C)适度增加中枢神经系统药物的脂水分配系数,活性会有所提高
(D)药物的脂水分配系数是影响药物活性的因素之一
(E)镇静催眠药的lgP值越大,活性越强
(2) 药物的解离度与生物活性有什么样的关系
(A)增加解离度,离子浓度上升,活性增强
(B)增加解离度,离子浓度下降,活性增强
(C)增加解离度,不利吸收,活性下降
(D)增加解离度,有利吸收,活性增强
(E)合适的解离度,有最大活性
(3) lgP用来表示哪一个结构参数
(A)化合物的疏水参数(B)取代基的电性参数
(C)取代基的立体参数(D)指示变量
(E)取代基的疏水参数
(4) 下列不正确的说法是
(A)新药开发是涉及多种学科与领域的一个系统工程
(B)前药进入体内后需转化为原药再发挥作用
(C)软药是易于被代谢和排泄的药物
(D)生物电子等排体置换可产生相似或相反的生物活性
(E)先导化合物是经各种途径获得的具有生物活性的药物合成前体
(5) 氟尿嘧啶通过细胞膜,常以( )方式进行
(A)简单扩散(B)加速扩散
(C)主动转运(D)吞饮过程(E)易化扩散
(6) 下面叙述中不正确的是
(A)理化性质主要影响非特异性结构药物的活性。
(B)特异性结构药物的活性取决于与受体结合的能力及化学结构。
(C)分子结构的改变一般不对脂水分配系数发生显著影响。
(D)作用于中枢神经系统的药物,需要通过血脑屏障,一般具有较大的脂水分配系数。
(E)具有相同解离率,作用于相同受体的化合物,多显示相同的生物活性。
(7) 下列哪一项不能用药物的化学修饰方法来解决
(A)提高药物的选择性(B)提高药物的稳定性
(C)改善药物的吸收(D)改变药物的作用类型
(E)延长药物的作用时间
(8) 通常前药设计不用于
(A)增加高极性药物的脂溶性以改善吸收和分布
(B)将易变结构改变为稳定结构,提高药物的化学稳定性
(C)消除不适宜的制剂性质
(D)改变药物的作用靶点
(E)在体内逐渐分解释放出原药,延长作用时间
二、配比选择题
(1) (A)Hansch分析(B)Kier方法
(C)MolecularShapeAnalysis方法
(D)DistanceGeometry方法
(E)ComparativeMolecularFieldAnalysis方法
1、距离几何学方法
2、比较分子力场分析
3、用分子连接性指数作为描述化学结构的参数
4、分子形状分析法
5、线性自由能相关模型
三、比较选择题
(1) (A)Hansch分析(B)CoMFA方法
(C)两者均是(D)两者均不是
1、计算机辅助药物设计的方法
2、用于受体的结构已知时的药物研究方法
3、用于受体的结构未知时的药物研究方法
4、用数学模型研究结构参数和生物活性之间的关系
5、从研究药物的优势构象的能量出发
四、多项选择题
(1) 以下哪些说法是正确的
(A)弱酸性药物在胃中容易被吸收
(B)弱碱性药物在肠道中容易被吸收
(C)离子状态的药物容易透过生物膜
(D)口服药物的吸收情况与解离度无关
(E)口服药物的吸收情况与所处的介质的pH有关
(2) 在Hansch方程中,常用的参数有
(A)lgP (B)mp (C)pKa (D)MR (E)σ
(3) 先导化合物可来源于
(A)借助计算机辅助设计手段的合理药物设计
(B)组合化学与高通量筛选相互配合的研究
(C)天然生物活性物质的合成中间体
(D)具有多重作用的临床现有药物
(E)偶然事件
(4) 前药的特征有
(A)原药与载体一般以共价键连接
(B)前药只在体内水解形成原药,为可逆性或生物可逆性药物
(C)前药应无活性或活性低于原药
(D)载体分子应无活性
(E)前药在体内产生原药的速率应是快速动力学过程,以保障原药在作用部位有足够的药物浓度,并应尽量减低前药的直接代谢
(5) 表示药物在有机相中的溶解度,可用
(A)亲水性(B)亲脂性
(C)疏水性(D)疏脂性(E)酸碱性
(6) 决定药效的主要因素是
(A)能被吸收、代谢
(B)以一定的浓度到达作用部位
(C)药物和受体结合成复合体
(D)药物受体复合体产生生物化学和生物物理的变化
(E)不受其它药物干扰
(7) 新药研究开发的重要性在于
(A)使无药可治的疾病变为有药可治
(B)使欠理想的防治药物更新换代为更好的药物
(C)经济效益较高
(D)促进和带动许多相关的基础学科及应用学科的发展
(E)对制药企业、多种相关行业以及国民经济的高速发展起着重要的推动作用
(8) 模型化合物的发掘方法有
(A)意外获得(B)由天然产物中获得
(C)在生命基础过程研究中发现
(D)在药物代谢中发现(E)由受体模式推测
(9) 常用于结构修饰的方法有
(A)成盐(B)成酰胺(C)加氢
(D)氨甲基化(E)成几何异构体。