2016-2017学年新人教A版必修1高中数学 3.2.2函数模型的应用实例1教案(精品)
- 格式:doc
- 大小:957.38 KB
- 文档页数:4
3.2.2 函数模型的应用实例一、教学目标:知识与技能:1.会分析所给出数据,画出散点图. 2.会利用选择或建立的函数模型. 3.会运用函数模型解决实际问题. 过程与方法:1.通过对给出的数据的分析,抽象出相应的确定性函数模型,并验证函数模型的合理性.2.通过收集到的数据作出散点图,并通过观察图像判断问题所适用的函数模型,在合理选择部分数据计算机的拟合功能得出具体的满意的函数解析式,并应用模型解决实际问题.情感、态度和价值观:1.经历建立函数模型解决实际问题的过程,领悟数学源自生活,服务生活,体会数学的应用价值.2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思维和求真务实的科学态度. 二、重点难点重点:根据收集的数据作出散点图,并通过观察图像选择问题所适用的函数模型,利用演算或计算机数据建立具体的函数解析式.难点:怎样合理分析数据选择函数模型和建立具体的函数解析式. 三、教学方法通过让学生观察、思考、交流、讨论、展示。
四、教学过程(1)温故知新,提出问题;上节课我们已经学习了应用已知函数模型解决实际问题,主要的函数模型有y kx b =+,2y ax bx c =++,log a y x =,0rx y y e =.但在实际解决问题中,我们常常碰到没有函数模型或不能建立确切的函数模型,那我们又改如何选择和确定函数模型,如何解决实际问题呢?设计意图:从温故的角度自然地复习已经学习的函数模型内容,进入学习函数模型实际应用的情景,以及为本节课中选择函数模型作好铺垫.同时提出没有函数模型或不能建立确切的函数模型的实际问题如何解决,明确本节课的任务,以及点出本节课的课题.(2)问题探究;例1 人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:y=y0e rt,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?师生:共同完成例1 解答:(1)设1951~1959年的人口增长率分别为r1,r2,…,r9.由55196(1 + r1) = 56300,可得1951年的人口增长率,r1≈0.0200.同理可得,r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,r8≈0.0222,r9≈0.0184.于是,1951~1959年期间,我国人口的年均增长率为;r(r1+r2+…+r9)÷9≈0.0221.令y0=55196,则我国在1950~1959年期间的人口增长模型为y=55196e0.0221t,t∈N.根据表中的数据作出散点图并作出函数y=55196e0.0221t(t∈N)的图象由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.(2)将y=130000代入y=55196e0.0221t,由计算器可得t≈38.76.所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.例2 某地区不同身高的未成年男性的体重平均值如表年男性体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?解答:(1)以身高为横坐标,体重为纵坐标,画出散点图.根据点的分布特征,可考虑以y=a·b x 作为刻画这个地区未成年男性的体重与身高关系的函数模型.如果取其中的两组数据(70,7.90),(160,47.25),代入y=a·b x得:701607.947.25a ba b⎧=⋅⎪⎨=⋅⎪⎩,用计算器算得a≈2,b≈1.02.这样,我们就得到一个函数模型:y=2×1.02x.将已知数据代入上述函数解析式,或作出上述函数的图象,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系.(2)将x=175代入y=2×1.02x得y=2×1.02175,由计算器算得y≈63.98.由于78÷63.98≈1.22>1.2,所以,这个男生偏胖.设计意图:利用问题串引导学生分析问题所提供的数据特点,由数据特点抽象出函数模型,培养学生建模能力,从而提高解决问题的能力.学生独立思考与学生小组合作,即锻炼学生的思考能力,又加强学生的小组合作,学会团结合作,为下一种选择函数模型作好必要知识和能力铺垫.利用图像发现函数模型,渗透数形结合思想,同时加深对函数的表格、解析式、图像的三种表示形式.归纳总结:通过建立函数模型,解决实际实际问题的基本过程:设计意图:回顾解题过程,系统总结一个较为完整的建立函数模型解决问题的过程,学生理解从解题过程上升为解题策略,培养学生的反思和总结能力.当堂检测:1.某商人购货,进价按原价扣去25%,他希望对货物订一新价,以便按新价让利20%销售后可获得售价25%的纯利,则此商人经营这种货物的件数与按新价让利总额之间的函数关系是 .2.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过年后的剩留量为,则的函数解析式为.3.某企业实行裁员增效.已知现有员工人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的条件下,每裁员一人,则留岗员工每人每年可多创收0.01万,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的,设该企业裁员人后年纯收益为万元.(1)写出关于的函数关系式,并指出的取值范围.(2) 当时,问该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁.)4.某工厂今年1月,2月,3月生产某产品分别为1万件,1.2万件,1.3万件,为了预测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可选用二次函数或指数型函数(其中,,为常数).已知4月份该产品的产量为1.37万件,请问选择以上哪个函数作为模型较好?并说明理由.答案;1.(x∉N*) 2.3.(1)由题意可得y=(a-x)(1+0.01x)-0.4x,因为,所以.即x的取值范围是中的自然数.(2)因为,且140<a≤280,所以当a为偶数时,,y取最大值.当a为奇数时,,y取最大值.(因为尽可能少裁人,所以舍去.)答:当员工人数为偶数时,裁员人,才能获得最大的经济效益,当员工人数为奇数时,裁员人,才能获得最大的经济效益.4.设y1=f(x)=ax2+bx+c(a≠0),则有;解得所以f(4)=-0.05×42+0.35×4+0.7=1.3.①设y2=g(x)=mn x+p则有;解得所以g(4)=-0.8×0.54+1.4=135.②比较①,②知,g(4)=1.35更接近4月份的实际产量1.37万件.故选择y=-0.8×0.5x+1.4作为模型较好.五、课堂小结所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述的一种数学结构.数学模型剔除了事物中一切与研究目标无本质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是最重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.六、课后作业课时练与测七、教学反思。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.某天0时,小鹏同学生病了,体温上升,吃过药后感觉好多了,中午时他的体温基本正常(正常体温约为37 ℃),但是下午他的体温又开始上升,直到半夜才感觉身上不那么发烫了.下面能大致反映出小鹏这一天(0时至24时)体温变化情况的图象是( )解析: 观察选项A 中的图象,体温逐渐降低,不符合题意;选项B 中的图象不能反映“下午他的体温又开始上升”这一过程;选项D 中的图象不能体现“下午他的体温又开始上升”与“直到半夜才感觉身上不那么发烫了”这一过程.答案: C2.已知A ,B 两地相距150千米,某人开汽车以60千米/时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (小时)的函数解析式是( )A .x =60tB .x =60t +50tC .x =⎩⎪⎨⎪⎧60t ,t 150-50t tD .x =⎩⎪⎨⎪⎧60t ,t 150,t150-t -t解析: 显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数,选D.答案: D3.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y (只)与引入时间x (年)的关系为y =a log 2(x +1),若该动物在引入一年后的数量为100只,则第7年它们发展到( )A .300只B .400只C .600只D .700只解析: 将x =1,y =100代入y =a log 2(x +1)得,100=a log 2(1+1),解得a =100,所以x =7时,y =100log 2(7+1)=300.答案: A4.用长度为24 m 的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3 mB .4 mC .5 mD .6 m解析: 设隔墙的长为x m ,矩形面积为S ,则S =x ·24-4x 2=x (12-2x )=-2x 2+12x =-2(x -3)2+18,所以当x =3时,S 有最大值为18. 答案: A二、填空题(每小题5分,共15分)5.生产某机器的总成本y (万元)与产量x (台)之间的函数关系式是y =x 2-75x ,若每台机器售价为25万元,则该厂获利润最大时生产的机器台数为________台.解析: 设该厂获利润为g (x ),则g (x )=25x -y =25x -(x 2-75x )=-x 2+100x =-(x -50)2+2 500, 当x =50时,g (x )有最大值2 500万元. 答案: 506.甲同学家到乙同学家的途中有一公园,甲同学家到公园的距离与乙同学家到公园的距离都是2 km.下图表示甲从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,其中甲在公园休息的时间是10 min ,那么y =f (x )的解析式为________.解析: 由题图知所求函数是一个分段函数,且各段均是直线,可用待定系数法求得y =f (x )=⎩⎪⎨⎪⎧115x x ,x,110x -x答案: y =f (x )=⎩⎪⎨⎪⎧115x x 30<x110x -x7.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形的两边长x 、y 应分别为________.解析: 由图知x 、y 满足关系式x 20=24-y 16,即y =24-45x ,矩形的面积S =xy =x ⎝⎛⎭⎫24-45x =-45(x -15)2+180,故x =15,y =12时S 取最大值.答案: x =15,y =12三、解答题(每小题10分,共20分)8.某游乐场每天的盈利额y 元与售出的门票张数x 之间的函数关系如图所示,试由图象解决下列问题:(1)求y 与x 的函数解析式;(2)要使该游乐场每天的盈利额超过1 000元,每天至少卖出多少张门票?解析: (1)由图象知,可设y =kx +b ,x ∈[0,200]时,过点(0,-1 000)和(200,1 000),解得k =10,b =-1 000,从而y =10x -1 000;x ∈(200,300]时,过点(200,500)和(300,2 000),解得k =15,b =-2 500,从而y =15x -2 500,所以y =⎩⎪⎨⎪⎧10x -1 000,x ∈[0,200],15x -2 500,x ∈,300].(2)每天的盈利额超过1 000元,则x ∈(200,300],由15x -2 500>1 000得,x >7003,故每天至少需要卖出234张门票.9.为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课桌的高度为y cm ,椅子的高度为x cm ,则y 应是x 的一次函数,下表列出了两套符合条件的课桌椅的高度:(1)请你确定y 与(2)现有一把高42.0 cm 的椅子和一张高78.2 cm 的课桌,它们是否配套?为什么? 解析: (1)根据题意,课桌高度y 是椅子高度x 的一次函数,故可设函数解析式为y =kx +b (k ≠0).将符合条件的两套课桌椅的高度代入上述函数解析式.得⎩⎪⎨⎪⎧ 40k +b =75,37k +b =70.2,所以⎩⎪⎨⎪⎧k =1.6,b =11,所以y 与x 的函数解析式是y =1.6x +11. (2)把x =42代入(1)中所求的函数解析式中,有y =1.6×42+11=78.2. 所以给出的这套桌椅是配套的.。
高中数学学习材料马鸣风萧萧*整理制作3.2.2 函数模型的应用实例【选题明细表】题号知识点、方法易中难利用已知函数模型解决问题 1 3、8自建函数模型解决问题2、6 4、9拟合函数模型解决问题7 5 10基础达标1.一辆汽车在某段路程中的行驶速度v与时间t的关系图象如图,则t=2时,汽车已行驶的路程为km.( C )(A)100 (B)125 (C)150 (D)225解析:t=2时,汽车行驶的路程为:s=50×0.5+75×1+100×0.5=25+75+50=150 km.故选C.2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( D )(A)14400亩(B)172800亩(C)20736亩(D)17280亩解析:设年份为x,造林亩数为y,则y=10000×(1+20%)x-1,∴x=4时,y=17280.故选D.3.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为( C )(A)15 (B)40 (C)25 (D)130解析:令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不合题意.故拟录用人数为25.故选C.4.(2012厦门高一检测)某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为( B )(A)30元(B)42元(C)54元(D)越高越好解析:设当每件商品的售价为x元时,每天获得的销售利润为y元.由题意得,y=m(x-30)=(x-30)(162-3x).上式配方得y=-3(x-42)2+432.∴当x=42时,利润最大.故选B.5.今有一组实验数据如表所示:t 1.99 3.0 4.0 5.1 6.12u 1.5 4.04 7.5 12 18.01则体现这些数据关系的最佳函数模型是( C )(A)u=log2t (B)u=2t-2(C)u=- (D)u=2t-2解析:由散点图可知,图象不是直线,排除D;图象不符合对数函数的图象特征,排除A;当t=3时,2t-2=23-2=6,-=-=4,由表格知当t=3时,u=4.04,模型u=-能较好地体现这些数据关系.故选C.6.由于电子技术的飞速发展,计算机的成本不断降低,每隔5年计算机的价格降低,现在价格为8100元的计算机经过15年的价格为元.解析:每隔5年价格降低,15年共降价3次,每次降价为原来的,则15年后计算机的价格为:8100×(1-)3=2400元.答案:24007.现测得(x,y)的两组值为(1,2),(2,5),现在两个拟合模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好. 解析:对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型更好.答案:甲能力提升8.某个病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k= ,经过5小时,1个病毒能繁殖为个.解析:当t=0.5时,y=2,∴2=,∴k=2ln 2,∴y=e2tln 2,当t=5时,y=e10ln 2=210=1024.答案:2ln 2 10249.(2012山东省实验中学高一月考)某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如表所示:月份用气量(立方米) 煤气费(元)1 4 42 25 143 35 19该市煤气收费的方法是:煤气费=基本费+超额费+保险费.若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C5)元;若用气量超过A立方米时,超过部分每立方米付B元.(1)根据表格求A、B、C的值;(2)若用户第四月份用气量为30立方米,则应交煤气费多少元?解:(1)设每月用气量为x立方米,支付费用为y元,①根据题意,得y=-由题设知,A>4,0<C5,因此3+C8,从表格中可以看出第二、三月份的费用均大于8元.故用气量25立方米、35立方米均应大于最低额度A立方米,从而将x=25,x=35代入①得--解得(2)由(1)得y=把x=30代入,得y=16.5.即第四月份应交煤气费为16.5元.10.某个体经营者把开始六个月试销A、B两种商品的逐月投资金额与所获纯利润列成如表:投资A种商1 2 3 4 5 6品金额(万元)获纯利润(万元) 0.65 1.39 1.85 2 1.84 1.40投资B种商1 2 3 4 5 6品金额(万元)获纯利润(万元) 0.25 0.49 0.76 1 1.26 1.51 该经营者准备第七个月投入12万元经营这两种商品,但不知投入A,B两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大纯利润,并按你的方案求出该经营者第七个月可获得的最大纯利润(结果保留两位有效数字).解:以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示.观察散点图可以看出,A种商品所获纯利润y与投资额x之间的变化规律可以用二次函数模型进行模拟,如图(1)所示.取(4,2)为最高点,则y=a(x-4)2+2,再把点(1,0.65)代入,得0.65=a(1-4)2+2,解得a=-0.15,所以y=-0.15(x-4)2+2.B种商品所获纯利润y与投资额x之间的变化规律是线性的,可以用一次函数模型进行模拟,如图(2)所示.设y=kx+b,取点(1,0.25)和(4,1)代入,得解得所以y=0.25x.设第七个月投入A,B两种商品的资金分别为x A万元,x B万元,总利润为W万元,那么所以W=-0.15(x A-)2+0.15×()2+2.6.当x A=≈3.2万元时,W取最大值,约为4.1万元,此时x B=8.8万元.即该经营者第七个月把12万元中的3.2万元投资A种商品,8.8万元投资B种商品,可获得最大利润约为4.1万元.。
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
3.2.2函数模型的应用实例班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.在不考虑空气阻力的情况下,火箭的最大速度v (单位:米/秒)和燃料的质量M (单位:千克)、火箭(除燃料外)的质量m (单位:千克)的函数关系式是v=2000·ln(1+M m ).当燃料质量是火箭质量的 倍时,火箭的最大速度可达12千米/秒.2.某地区植被被破坏,土地沙化越来越严重,最近三年测得该地区沙漠面积增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠面积增加值y (单位:万公顷)关于年数x 的函数关系较为近似的是A.y =0.2xB.y =110(x 2+2x )C.y =2x 10D.y =0.2+log 16x3.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A.200副B.400副C.600副D.800副4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y={4x,1≤x<10,x∈N2x+10,10≤x<100,x∈N1.5x,x≥100,x∈N,其中,代表拟录用人数,代表面试人数,若应聘的面试人数为60人,则该公司拟录用人数为A.15B.40C.25D.1305.有一批材料可以建成200m的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成面积相等的矩形,如图所示,则围成的矩形场地的最大面积为m2(围墙厚度不计).6.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt(其中k为常数;t表示时间,单位:小时;y表示病毒个数),则k= ,经过5小时,1个病毒能繁殖为个.7.一工厂对某种原料的全年需求量是Q吨,为保证生产又节省开支,打算全年分若干次等量订购,且每次用完后立即购进.已知每次订购费用是a元,工厂每天使用的原料数量相同,仓库贮存原料的年保管费用是b元/吨,问全年订购多少次,才能使订购费用与保管费用之和最少?8.我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度用瓦/米2(W/m2)表示,但在实际测量时,常用声音的强度水平L1表示,它们满足以下公式:L1=10∙lg II0(单位为分贝,L1≥0,其中I0=1×10−2W/m2,这是人们平均能听到的最小强度,是听觉的开端).回答以下问题:(1)树叶沙沙声的强度是1×10−12W/m2,耳语的强度是1×10−10W/m2,恬静的无线电广播的强度是1×10−8W/m2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度的范围为多少?【能力提升】通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分钟),可以有以下公式:f(x)={−0.1x 2+2.6x +43,0<x ≤1059,10<x ≤16−3x +107,16<x ≤30.(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?(2)开讲5分钟时与开讲20分钟时比较,学生的接受能力何时强一些?(3)一道数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?信达3.2.2函课后作业·详细答案课后作业·详细答案【基础过关】1.e 6-1【解析】当v=12000米/秒时,2000·ln(1+M m )=12000,∴ln(1+M m )=6,∴M m=e 6-1. 2.C【解析】由题意得,当x =1时,y =0.2,排除B;当x =2时,y =0.4,排除D;当x =3时,y =0.76,排除A.故选C.3.D【解析】由5x+4000≤10x,解得x ≥800,即日产手套至少800副时才不亏本.4.C【解析】若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25满足题意;若1.5x =60,则x =40<100不合题意.故拟录用人数为25人.5.2500【解析】设矩形场地的宽为x m,则矩形场地的长为(200-4x )m,则矩形场地的面积S=x (200-4x )=-4(x-25)2+2500(0<x <50),∴x=25时,S max =2500.6.2ln2 1024【解析】当t=0.5时,y=2,∴2=e 12k ,∴k=2ln2,∴y=e 2t ln2,当t=5时,y=e 10ln2=210=1024.7.解:由题意得:订购费与全年保管费用之和为y =na +Q 2∙1n ∙b. 而y =na +Q 2∙1n ∙b ≥2√na ∙bQ 2n =√2abQ ,当na =bQ 2n 时等号成立; 即当n =bQ 2a 时,y min =√2abQ.【解析】本题考查函数模型及其实际应用. 8.(1)由题意可知:树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,所以L I 1=10lg1=0,即树叶沙沙声的强度水平为0分贝;耳语的强度是I 2=1×10-10W/m 2,则I2I 0=102,所以L I 2=10lg102=20,即耳语的强度水平为20分贝;恬静的无线电广播的强度是I 3=1×10-8W/m 2,则I3I 0=104, 所以,L I 3=10lg104=40,即恬静的无线电广播的强度水平为40分贝.(2)由题意知:即0≤10lg II 0<50,所以,1≤II 0<105,即10-12≤I <10-7.所以新建的安静小区的声音强度I 大于或等于10-12W/m 2,同时应小于10-7W/m 2.【解析】(1)代入公式L I =10lg 1I 0即可. (2)列出L I 满足的条件,解不等式.【能力提升】(1)当0<x ≤10时,f(x)=-0.1x 2+2.6x+43=-0.1(x-13)2+59.9.故f(x)在0<x ≤10时,函数值越来越大,最大值为f(10)=-0.1×(10-13)2+59.9=59. 当10<x ≤16时,f(x)=59.当x>16时,f(x)的值越来越小,且f(x)<59,因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟.(2)f(5)=-0.1×(5-13)2+59.9=53.5,f(20)=-3×20+107=47<53.5,故开讲5分钟时学生的接受能力比开讲20分钟时要强一些.(3)当0<x ≤10时,令f(x)=55,解得x=6(x=20舍去).当x>16时,令f(x)=55,解得x=1713. 因此学生达到(含超过)55的接受能力时间为1713-6=1113(分钟)<13(分钟). 故老师来不及在学生一直达到所需接受能力的状态下讲授完这道难题.。
河北省容城中学高中数学《3.2.2 函数模型的应用实例(Ⅰ)》教案新人教A版必修1一、教学目标:1.知识与技术能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.2.进程与方式感受运用函数概念成立模型的过程和方式,体会一次函数、二次函数模型在数学和其他学科中的重要性.3.情感、态度、价值观体会运用函数思想处置现实生活中和社会中的一些简单问题的实用价值.二、教学重点与难点:1.教学重点:运用一次函数、二次函数模型解决一些实际问题.2.教学难点:将实际问题转变成数学模型.三、学法与教学用具1.学法:学生自主阅读教材,采用尝试、讨论方式进行探讨.2.教学用具:多媒体四、教学假想(一)创设情景,揭露课题引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了如此的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你明白孙子是如何解答那个“鸡兔同笼”问题的吗?你有什么更好的方式?老师介绍孙子的斗胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.如此,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.比例激发学生学习兴趣,增强其求知欲望.可引导学生运用方程的思想解答“鸡兔同笼”问题.(二)结合实例,探求新知例1.某列火车众北京西站开往石家庄,全程277km,火车动身10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时刻t之间的关系式,并求火车离开北京2h内行驶的路程.探索:1)本例所涉及的变量有哪些?它们的取值范围如何;2)所涉及的变量的关系如何?3)写出本例的解答进程.老师提示:路程S和自变量t的取值范围(即函数的概念域),注意t的实际意义.学生独立试探,完成解答,并彼此讨论、交流、评析.例2.某商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商店制定了两种优惠办法:1)本例所涉及的变量之间的关系可用何种函数模型来描述?2)本例涉及到几个函数模型?3)如何理解“更省钱?”;4)写出具体的解答进程.在学生自主试探,彼此讨论完本钱例题解答以后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一进程称为建模,是解应用题的关键。
高中数学 3.2.2函数模型的应用实例1教案新人教A版必修1
教学目标
1. 通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用;
2. 了解分段函数、指数函数、对数函数等函数模型的应用.
自主学习
一、课前准备
(阅读教材P101~ P104,找出疑惑之处)
典型例题分析
例1 一辆汽车在某段路程中的行驶速度与时间的关系如右图:
(1)求图中阴影部分的面积,并说明所求面积的实际意义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数S和时间t的函数解析式.
变式:某客运公司定客票的方法是:如果行程不超过100km,票价是0.5元/km,如果超过100km,则超过100km的部分按0.4元/km定价. 则客运票价y元与行程公里x km之间的函数关系是 .
例2人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制
人口增长提供依据. 早在1798年,英国经济学家马尔萨斯(1766-1834)就提出了自然状态下的人口增长模型:0rt y y e =,其中t 表示经过的时间,0y 表示0t =时的人口数,r 表示
人口的年平均增长率. 下表是1950~1959年我国的人口数据资料:(单位:万人) 年份 1950 1951 1952 1953 1954
人数 55196 56300 57482 58796 60266
年份 1955 1956 1957 1958 1959
人数 61456 62828 64563 65994 67207
1)若以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;
2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?
目标检测
A 级:必做题
1. 按复利计算,若存入银行5万元,年利率2%,3年后支取,则可得利息(单位:万元) 为( ).
A. 5(1+0.02)3
B. 5(1+0.02)2
C. 5(1+0.02)3-5 C. 5(1+0.02)2-5
2. x 克a %盐水中,加入y 克b %的盐水,浓度变为c %,则x 与y 的函数关系式为( ).
A. y =
c a c b --x B. y =c a b c --x C. y =
a c
b
c --x D. y =b c c a
--x
3. A 、B 两家电器公司在今年1—5月份的销售量如下图所示,
则B 相对于A 其市场份额比例比较大的月份是( ).
A. 2 月
B. 3月
C. 4月
D. 5 月
B 级:选做题 1. 拟定从甲地到乙地通话m 分钟的电话费由f (m )=1.06(0.5×[m ]+1)元给出,其中m >0,
[m ]是大于或等于m 的最小整数(职[3]=3,[3.7]=4),则从甲地到乙地通话时间为5.5分钟的话费为 元.
2. 已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x 年后的剩留量为y ,则()y f x =的函数解析式为 .
3.经市场调查,某商品在过去100天内的销售量和价格均为时间t (d )的函数,且销售量近似地满足1109()33g t t =-+(1100t ≤≤,t N ∈);前40天价格为1()224
f t t =+(140t ≤≤,t N ∈),后40天的价格为()522
t
f t =-+(41100t ≤≤,t N ∈),试写出该种商品的日销售额S 与时间t 的函数关系.
三、总结提升
※ 学习小结
54321(月)20
40
60
80
100
(万台)A B
1. 分段函数模型;
2. 人口增长指数型函数模型;。