DSP noise cancellation
- 格式:docx
- 大小:83.63 KB
- 文档页数:6
一种基于DSP的音频实时处理系统作者:刘睿来源:《现代电子技术》2011年第01期摘要:声学回声消除器一直是视频会议系统不可缺少的组件。
将回声消除算法结合噪音消除和静音检测算法等,提出一种改进的实时音频处理系统方法,并在TMS320C6713B上实现,能够有效改善噪音、双工检测、非线性回声等导致自适应滤波器发散的问题。
该系统在保证正常双工通话的同时,对非线性回声的抑制有着明显的改善效果。
关键词:声学回声消除;噪音消除;静音检测;语音信号处理; DSP中图分类号:TN911-34文献标识码:A文章编号:1004-373X(2011)01-0085-03A Real-time Audio Processing System Based on DSPLIU Rui(AVCON Information Technology Co. Ltd., Shanghai 200433, China)Abstract: Acoustic echo canceller has being an indispensable component of video conferencing-time audio processing system is proposed in combination with echo cancellation, noise cancellation and voice activity detection. The system based onTMS320C6713B DSP chip, and improved the problems of noise, double-talk detection, nonlinear echo and other problems leading to divergent adaptive filter. The system can ensure normal double-talk, and has significantly improved results of non-linear echo suppression.Keywords: acoustic echo cancellation; noise cancellation; voice active detection; speech signal processing; DSP0 引言随着VOIP的广泛应用以及多媒体通信技术的发展和成熟,人们对互联网语音通信的音频品质提出了更高的体验要求。
anc芯片原理-概述说明以及解释1.引言1.1 概述ANC芯片,全称为Active Noise Control芯片,是一种专门用于抑制噪声的集成电路芯片。
噪声是我们日常生活和工作中无法避免的环境干扰因素,它会给我们带来不便和困扰,甚至对健康造成影响。
为了解决这一问题,ANC芯片应运而生。
ANC芯片的基本原理是通过感知环境中的噪声信号,并产生与噪声相反的音频信号,以实现噪声的主动抵消。
它可以用于消除机械噪声、交通噪声、风噪声等各种类型的噪声。
ANC芯片通常由多个传感器、滤波器、放大器和控制单元等组成,通过复杂的算法对噪声信号进行处理,从而实现高效的噪声抑制效果。
ANC芯片的应用领域十分广泛。
它可以应用于消费电子产品,如耳机、音箱等,使用户能够在噪声环境下享受清晰、高质量的音乐体验;同时,ANC芯片也广泛应用于航空航天、汽车、工业设备等领域,用于降低噪声对人们生活和工作的干扰和损害。
然而,ANC芯片的广泛应用也带来了一些挑战。
首先,ANC芯片需要消耗大量的电能来实现噪声的抵消,这对于一些便携式设备来说可能是一个问题;其次,由于噪声的复杂性和多样性,ANC芯片的设计和优化也具有一定的难度;此外,ANC芯片的成本较高,这也限制了其在某些领域的推广和应用。
综上所述,ANC芯片作为一种高效的噪声抑制技术,具有广阔的应用前景。
随着科技的不断进步,我们可以期待ANC芯片在未来的发展中变得更加智能、高效并且更加节能环保。
1.2 文章结构文章结构本篇文章主要围绕ANC芯片的原理展开,以帮助读者更全面地了解ANC(Active Noise Cancellation)技术以及其在各个领域的应用。
为了更好地组织文章内容,本文将分为以下几个部分进行详细介绍。
第一部分是引言部分,包括概述、文章结构和目的。
在概述中,我们将简要介绍ANC芯片的背景和基本概念,引起读者的兴趣。
文章结构部分(本节)将详细解释本文的整体架构,让读者能够对文章的内容有一个清晰的了解。
Digital Signal Processing and FilterDesignDigital Signal Processing (DSP) and filter design play a crucial role in various fields such as telecommunications, audio processing, image processing, and control systems. The primary goal of DSP is to analyze, manipulate, and extract useful information from signals, while filter design focuses on creating systems that can modify the frequency content of signals. In this response, I will explore the significance of DSP and filter design, their applications, and the challenges associated with them. One of the key aspects of DSP is its ability to process signals in real-time, making it an essential component in modern communication systems. From mobile phones to wireless networks, DSP algorithms are used to encode, decode, and modulate signals, ensuring reliable and efficient data transmission. Moreover, DSP techniques are also employed in audio processing applications such as noise cancellation, equalization, and compression, enhancing the quality of sound reproduction in devices like headphones and speakers. Filter design, on the other hand, is critical in shaping the frequency response of signals to meet specific requirements. For instance, in audio equalizers, filters are used to boost or attenuate certain frequency bands to achieve the desired sound characteristics. In addition, in control systems, filters are utilized to remove noise and disturbances from sensor measurements, enabling precise and stable operation of the system. Despite the numerous benefits of DSP and filter design, there are several challenges associated with their implementation. One of the primary challenges is the trade-off between computational complexity and performance. Many DSP algorithms require significant computational resources, which can be a limiting factor in embedded systems with stringent power and processing constraints. Similarly, in filter design, achieving a sharp transition between the passband and stopband of a filter while maintaining a low computational load is a non-trivial task. Another significant challenge in DSP and filter design is the impact of non-idealities such as quantization and finite word length effects. When processing signals in digital systems, the representation of real-valued signals is inherently limited by the number of bitsused to store the data. This can lead to quantization errors and reduced signal-to-noise ratio, affecting the overall performance of the system. Similarly, in filter design, the finite word length of coefficients and internal variables can introduce errors and degrade the accuracy of the filter response. In conclusion, digital signal processing and filter design are indispensable tools in modern technology, with applications ranging from telecommunications to audio and image processing. While these techniques offer numerous benefits, they also pose significant challenges related to computational complexity, non-idealities, and trade-offs between performance and resources. Overcoming these challenges requires a deep understanding of signal processing theory, as well as innovative algorithms and implementation techniques. As technology continues to advance, the importance of DSP and filter design will only grow, driving further research and development in these fields.。
前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。
我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。
另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。
自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。
自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。
其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。
线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。
其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。
本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。
我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。
通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。
1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。
Bluetooth HeadsetUser ManualUser Manual1.Welcome (3)2.Product Overview (3)2.1Package Contents (3)2.2Headset Overview (4)2.3Base Overview (5)e Instructions (5)3.19600BT Pairing with Bluetooth Device (5)3.29600BT Usage (7)3.39600BT Charging (8)4.Features (8)4.1Headset multi-function button (8)4.2Headset Speaker Volume Button (9)4.3Headphone Mute Button (9)4.4Headset LED Indicators (9)5.Technical Specifications (11)5.19600Bluetooth Headset (11)5.2Headset battery (11)5.3Charging Base (12)5.4Product Disposal Treatment and FCC statement (12)1.WelcomeThank you for using the new9600Bluetooth Headset.We are confident that you will fully enjoy a range of powerful features this headset has,and also pleasantly be surprised to find the headset comfortable to wear and easy to use.2.Product Overview2.1Package ContentsHeadset Charging baseMicro USB cable User manual2.2Headset Overview2.3Base OverviewHead seatCharge contactsMicro USB port for chargee Instructions3.19600BT Pairing with Bluetooth Device1.Be sure that your smart phone/laptop with Bluetooth function.2.Active the Bluetooth function on your smart phone/laptop.3.Turn on your headset4.Pairing headset with your smart phone/laptop.1)Press the multi-function key for more than6s,the LED will flash red and blue alternately,which indicates the headset is in pairing mode.2)Search Bluetooth device on your smart phone/laptops.Open “Bluetooth”menu and press“discover”or“add”to search9600BT on your smart phone/laptop.3)When“9600BT”showing on your Bluetooth devices list,please click it to begin the pairing.Sometimes,the PIN code“0000”is required.4)If pairing is successful,the LED will turn on blue and9600BT icon will show on your smart phone/laptop.You can make calls or listen to music now.Next time,you don’t need to do pairing again,just click9600 BT icon to make connection.5.If pairing fails,please turn off the headset,and repeat step4.6.9600BT can pair with two devices simultaneously.If you want to pair 9600BT with another device simultaneously,please turn off Bluetooth function on the first smart phone/laptop and power off the headset.Then repeat step2,step3,step4with the second smart phone/laptop.After pairing successfully,reactive the Bluetooth function on the first smartphone/laptop.You will find9600BT is pairing with two devices now. 7.If no smart phone/laptop is paired with the9600BT within120S in pairing mode,the9600BT will shut down to save power consumption automatically.8.After getting paired with9600BT,you can rename it on your smart phone/laptop.Tips:Headset is using a procedure called"pairing"to connect to a Bluetooth device.3.29600BT Usage1.Answer a Call:After smart phone/laptop successfully pairing with9600BT,the headset will ring when a call coming,please press the multifunction key to answer it.2.Hang up a CallPlease short press the multifunction key to hang up a call.3.Microphone mute and on:During a call,short press the MUTE button will make microphone on mute status.If short press the MUTE button again,the microphone will be on.4.Volume AdjustmentShort click volume+key to increase the volume while short click volume -key to decrease it.3.39600BT ChargingWhen9600BT headset is charging,the red light will on.The green light will on when it is fully charged.When take the headset off from its charger base,the headset will be in standby mode.And it is will shut down automatically to save power consumption if there is no paring active.4.Features4.1Headset multifunction buttonShort or long press the Multifunctional button to answer and end a call .Multi-function buttonFunction Short press Long press Answer a call√End a call√Power on3sParing6s+ Power off3s4.2Headset Speaker Volume ButtonThe speaker volume buttons:to adjust the headset speaker volume.Speaker volume button"+"Speaker volume button”-"4.3Headset Mute ButtonMute button:to make the microphone mute or on.Mute button4.4Headset LED IndicatorsLED indicates call statusLed indicatorHeadset status LED statusPower on Blue light flashes four times(300ms on,300ms off) Power off Red light flashes once(2s)Pairing mode Blue light and red light flash alternately(red lighton750ms,blue light on750ms)Pairing successfully Blue light flashes(300ms on,8s off)Answer a call or play music Blue light flashes(300ms on,8s off)Charging Red light onFully Charged Blue light on5.Technical Specifications5.1Headset●Wideband audio for exceptional sound quality.●Volume and mute controls●Advanced hearing protection with safetone™.●Bluetooth Version:V5.0backward compatible.●Advanced Multi-points●Profile:Headset:1.2Handsfree:1.6A2DP●Microphone with noise cancellation●Crystal clear sound and voice(DSP)●Range:up to30m●Talk time:21hours from300mAh battery●Stand by time:500hours●Compatible with Smart Phone,Desk Phone,Computer(Laptop)●Working environment:0˚C to+40˚C;up to95%relative humiditynon-condensing.●Visual indicators:LED indicates call status,pairing status and others.●Beep:indicate volume level,microphone mute,and others.●Sound:Mic Noise canceling,the sixth generation CVC echocancellation,tone control.●Charging:When9600BT docking the base to charge5.2Headset batteryBattery type:Lithium-ion polymer.Battery capacity:300mA per hour standard.Battery talking time:Up to21hours.Battery life:Minimum recharging1000times.Battery standby time:At least500hours.Operating temperature range:-20˚C to+60˚C.Battery charging time:Less than60minutes to charge20%.Less than90minutes to charge50%.Fully charged in less than3.5hours. Battery storage life:Before first charging,if turn off the headset,the battery will have power for six months.5.3Charging Base9600BT charging base meets the following specifications.Port:Micro USB port is Power in interface,use USB cable connect PC or USB adapter to chargeSize:81mm x81mm x67mm.Weight:135±5g5.4Product Disposal Treatment and FCC statement5.4.1Dispose of in accordance with local regulations as headphones and recyclingregulations.Never treated headset as household waste.Do not dispose of the headset in a fire,this battery may explode.If damaged,the battery may explode.5.4.2FCC statement:This device complies with part15of the FCC Rules.Operation is subject to the following two conditions:(1)This device may not cause harmful interference, and(2)this device must accept any interference received,including interference that may cause undesired operation.Warning:Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Note:This equipment has been tested and found to comply with the limits for a Class B digital device,pursuant to part15of the FCC Rules.These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and,if not installed and used in accordance with the instructions,may cause harmful interference to radio communications.However,there is no guarantee that interference will not occur in a particular installation.If this equipment does cause harmful interference to radio or television reception,which can be determined by turning the equipment off and on,the user is encouraged to try to correct the interference by one or more of the following measures:Reorient or relocate the receiving antenna.Increase the separation between the equipment and receiver.Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.Consult the dealer or an experienced radio/TV technician for help.RF Warning Statement:This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.。
一种LMS算法的实现及应用赖川【摘要】定步长LMS算法虽然结构简单,易于实现,但也存在后期信号变弱,步长过大,导致收敛变慢的问题.针对该问题,首先在硬件设计上采用了射频信号正交分解的思想,降低滤波器维度;然后软件上设计了一种实时采样决定步长的方法.该方法使得不同频点、不同强度的信号有不同的步长.通过降低滤波器维度和变步长的方式加快LMS算法的收敛速度.利用C语言编程在DSP6416芯片上实现了这种变步长LMS算法.实物测试表明:该算法具有收敛速度快,对单载波、FM、AM信号的噪声都能达到40 dBm的对消效果.【期刊名称】《通信技术》【年(卷),期】2019(052)005【总页数】6页(P1055-1060)【关键词】LMS;DSP;对消【作者】赖川【作者单位】西南电子技术研究所,四川成都 610036【正文语种】中文【中图分类】TN9180 引言现代战争中,接收机不但会受到外部环境干扰信号的影响,同时也会受到自身发射机信号的影响,导致接收信号变差,无法正常接收信号,甚至导致通信中断。
消除这些噪声的主要方法是使用滤波器滤波。
滤波器可以较好的过滤干扰信号,保证正常信号到达接收端,从而改善通信状态。
但是,一般的滤波器需要根据频点范围的变化而变化,即需要滤波的范围越大,滤波器就需要做的足够宽,从而导致设备成倍增加;同时,滤波器的滤波范围也有限,如果干扰信号频点和接收信号频点太近,滤波器基本就没有效果了。
有没有一种滤波器能够自适应的根据接收频点调整信号,过滤非接收频点的噪声信号成为人们研究的重点。
自1960年Windrow和Hoff等人提出最小均方误差(Least Mean Square,LMS)算法以来,人们在自适应滤波方面取得了丰硕的成果。
LMS算法具有结构简单,计算量小,稳定性好,易于实现等优点,在自适应滤波中得到的广泛应用。
但是,LMS采用了固定步长的收敛算法,导致前期干扰信号强时,收敛效果明显;后期信号变弱,步长过大,导致收敛变慢的问题也十分突出。
Digital Signal Processing in Audio Digital Signal Processing (DSP) in audio is a crucial aspect of modern audio technology, playing a significant role in the creation, manipulation, and transmission of audio signals. DSP involves the use of algorithms to modify and enhance audio signals, allowing for a wide range of applications in audio production, music recording, telecommunications, and more. This technology has revolutionized the way we experience and interact with audio, enabling the development of advanced audio processing techniques that have greatly improved the quality and versatility of audio systems. One of the key areas where DSP has had a profound impact is in the field of audio production and music recording. DSP algorithms are used to clean up audio recordings, remove background noise, and enhance the overall sound quality of the recordings. This has allowed for the creation of high-fidelity audio recordings that accurately capture the nuances of live performances, providing listeners with an immersive and authentic listening experience. Additionally, DSP has enabled the development of audio effects such as reverb, delay, and equalization, which are essential tools for music producers and audio engineers in shaping the sound of a recording. In the realm of telecommunications, DSP plays a vital role in the transmission and reception of audio signals over various communication channels. DSP algorithms are used to compress audio data for efficient transmission over limited bandwidth channels, such as in the case of internet audio streaming or mobile phone calls. This compression allows for the real-time transmission of high-quality audio with minimal latency, ensuring clear and uninterrupted communication between users. Furthermore, DSP is also utilized in noise cancellation technologies, which help to eliminate background noise during phone calls, resulting in improved voice clarity and intelligibility. Moreover, DSP has significantly contributed to the development of audio processing hardware and software, leading to the creation of digital audio workstations (DAWs) and audio plugins that are widely used in the music and film industry. These tools leverage DSP algorithms to provide musicians, producers, and sound designers with a wide array of creative possibilities, allowing for the manipulation of audio signals in ways that were previously unattainable. From time-stretching and pitch-shifting to spectral processing andconvolution reverb, DSP has empowered artists to push the boundaries of sonic experimentation and innovation. Despite the numerous advancements facilitated by DSP in audio, there are also challenges and limitations associated with its implementation. One of the primary concerns is the potential loss of audio quality due to excessive digital processing. While DSP algorithms can enhance audio signals, improper or excessive use of these algorithms can introduce artifacts and distortion, ultimately degrading the quality of the audio. This is particularly relevant in the context of audio mastering, where the delicate balance between enhancing the audio and preserving its original character must be carefully maintained. Furthermore, the proliferation of DSP in audio technology has raised questions regarding the ethical use of audio processing tools. With the ability to manipulate audio signals in virtually limitless ways, there is a concern about the authenticity and integrity of audio content. The rise of auto-tune and vocal manipulation software, for instance, has sparked debates about the impact of DSP on the natural expression and performance of musicians. Additionally, the use of DSP for audio forensics and manipulation in the context of law enforcement and legal proceedings has raised ethical and privacy concerns, highlighting the need for responsible and transparent use of audio processing technologies. In conclusion, digital signal processing in audio has revolutionized the way we create, experience, and interact with audio content. From its pivotal role in audio production and telecommunications to its influence on music technology and creative expression, DSP has reshaped the landscape of audio engineering and opened up new possibilities for artistic innovation. However, as with any technology, the responsible and ethical use of DSP is paramount in ensuring that its potential benefits are maximized while mitigating its potential drawbacks. As DSP continues to evolve, it is essential to approach its application in audio with a thoughtful and discerning mindset, recognizing both its immense potential and the ethical considerations that accompany its use.。
DSP(Digital Signal Processor,数字信号处理器)是在模拟信号变换成数字信号以后进行高速实时处理的专用处理器件,DSP具有接口简单、方便;精度高、运算速度快、稳定性好;编程方便,容易实现复杂的算法;集成方便等优点,已经被广泛的应用于通信、雷达、语音、图像、消费类电子产品等领域。
DSP技术的发展和应用,使得自适应信
号处理技术得以实现。
自适应噪声消除是消除强背景噪声的一种有效的技术,在通常情况下,背景噪声不是稳定不变的,而是随着时间的变化而变化。
因此,噪声消除应该是一个自适应噪声处理过程:既可以在时变的噪声环境下工作,还可以根据环境的改变而调整自身的工作参数。
在本文中,利用DSP的优越性能,在TI公司TMS320VC5416芯片上,分别实现LMS和RLS算法的自适应强噪声消除系统,该系统经过验证,能够很好地消除背景噪声,恢复出原始话音信号。
1 自适应噪声消除算法
自适应噪声消除算法的基本思想是将噪声混杂的信号通过一个滤波器
来达到抑制噪声,并使信号本身无失真通过的这样一个过程。
并且,正如上面所述,这个自适应处理过程不需要预先知道信号以及噪声的特点。
图1为自适应噪声消除算法的原理框图。
为了实现这个自适应噪声消除系统,这里使用2个输入源和1个自适
应滤波器。
一个输入源是混入了噪声的信号(称之为主输入源,用s十n 0表示),另一个输入源为背景噪声,这个背景噪声与主输入源噪声相关,而与主输入源中的信号无关(称之为噪声参考输入源,用n1表示),
噪声参考输入源通过自适应滤波器后输出yo滤波器不断地自我重新调整,使得y与n0的误差达到最小。
然后用主信号源减去输出y得到系统的输出z=s+n0-y,z即去噪后的信号。
假设s,n0,n1,y是平稳过程,并且均值为0,s与n0和n1无关联,而n1和n0相关,则可以得出以下的表达式:
当调整滤波器,使得E[z2]达到最小值时,E[(n0-y)2]也是最小值,因此,系统输出z可以作为自适应滤波器的误差信号。
文中的自适应滤波器采用2种自适应滤波算法:一种是最小均方算法(L
MS),另一种是RLS算法。
最小均方算法(LMS)应用最广、算法最简单。
LMS算法主要目的是使误差信号的均方值达到最小。
自适应滤波器的系数由下式决定。
其中,P(i)是第i个自相关矩阵的逆;k(i)是第i个增益向量;λ是指数型遗忘因子。
从算法中矩阵的运算可以看出来,RLS算法比LMS算法要复杂得多。
对于一个N阶的滤波器,LMS算法每次迭代需要O(N)次运算,而RLS算法需要O(N2)此运算。
在DSK方式实现时,发现在48 kHz的采样率下,采用LMS算法设计的滤波器的阶数最多20阶,而在同样的条件下,采用RLS算法设计的滤波器的阶数只有5阶
左右。
2 DSP实现
本文的自适应噪声消除算法处理器件采用TI的TMS320VC5416型D SP处理器。
该处理器采用改进的哈佛结构,拥有专用的硬件乘法器和专门为数字信号处理而设计的指令系统,快速的指令周期等优点。
由于声音是模拟信号,要使用DSP对其进行处理,首先需要将模拟信号进行模/数转换,本文采用MAX197作为A/D转换芯片。
MAX 197是Maxim公司推出的8通道、12位的高速A/
D转换芯片,单次转换时间仅为6μs,采样速率可达100 kSa/s。
经过噪声消除后的信号质量可以通过音箱来辨别,因此,在噪声消除后,还要将信号进行数/模转换。
本文采用MX7541作为系统的D/A转换芯片。
MX7541是美国Maxim公司生产的高速高精度1
2位数字/模拟转换器芯片,由于MX7541转换器件的功耗特别低,而且其线性失真可低达0.012%,因此,该D/A转换器芯片特别适合于精密模拟数据的获得和控制。
本文的自适应噪声消除系统结构图2所示。
麦克风1用于采集带有强烈背景噪声的话音信号作为系统的输入1,麦克风2用于采集背景噪声作为输入2,输入1和输入2经过音频接口输入到MAX197中进行A/D转换,转换后的信号被送入TMS320V C5416中进行自适应噪声消除处理,处理后的信号经过MX7541的D /A转换后,送入音箱进行播放。
另外,还可以通过计算机和Matlab 软件来比较自适应噪声消除系统的输入/输出信号,验证自适应噪声消
除系统工作情况。
图3为3台计算机记录的自适应噪声消除系统的工作情况:
比较主输入信号、参考噪声输入信号和滤波器输出信号,可以清楚地看出输出与主输入信号相比,噪声成分被大大削弱,这与用音箱直接听到的声音效果一致,以上结果证明用DSP成功地实现了实时的自适应噪
声消除系统。
3 结语
本文采用TI的TMS320VC5416型DSP成功地实现了自适应噪声消除系统,试验的结果显示LMS算法和RLS算法是去除噪声的自适应滤波器非常有效的方法,DSP板也是实现实时自适应噪声消除系统的好
平台。
在整个系统工作过程中,仍有少量的背景噪声不能完全从信号中去除掉,为了测试算法的效果,用Matlab产生一个白噪声信号作为噪声参考信号,同时将参考噪声信号进行微小扭曲后与从麦克风输入的语音信号叠加后作为主输入信号,然后用前文所述的实现方式对主输入信号和参考噪声信号进行自适应噪声去除算法处理。
在处理后,噪声完全从信号中去除掉了,由此,可以看出,背景噪声不能完全从信号中去除掉问题不是由算法造成的,而是由于试验设备造成的。
麦克风、电缆以及采样造成会造成信号扭曲,而这些扭曲在噪声去除算法中是无法补偿的,因此其可能是造成这个问题的最可能原因。