七年级数学3.1~3.3(一元一次方程)检测题(鹅公中学
- 格式:doc
- 大小:74.00 KB
- 文档页数:1
一、选择题1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004-2.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数3.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 4.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020-5.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y =6.下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ 7.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .20228.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元 D .亏了(5a-5b )元9.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+B .253a a -+-C .2513a a --D .21a a -+-10.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +-D .(120%)15%a +11.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64 B .31,32,33 C .31,62,63 D .31,45,46 12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题13.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.14.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.15.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________. 16.将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x.(1)单项式:_______________; (2)多项式:_______________; (3)整式:_________________; (4)二项式:_______________. 17.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.18.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______; (2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______; (3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______. 19.图中阴影部分的面积为______.20.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.三、解答题21.先化简,再求值 (1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -= 22.已知多项式22622452x mxyy xy x中不含xy 项,求代数式32322125m m m m mm 的值.23.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.24.用代数式表示:(1)比x 的平方的5倍少2的数; (2)x 的相反数与y 的倒数的和; (3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数. 25.有这样一道题,计算()()4322433222422x x y x yxx y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?26.古人云:凡事宜先预后立.我们做任何事情都要先想清楚,然后再动手去做,才能避免盲目从事.一天,需要小亮计算一个L 形的花坛的面积,在动手测量前,小亮依花坛形状画出示意图,并用字母表示出了将要测量的边长(如图所示),小亮在列式进行面积计算时,发现还需要再测量一条边的长度,你认为他还需要测量哪条边的长度?请你在图中用字母n 表示出来,然后求出它的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.C解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误. 故选:C . 【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.D解析:D 【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可. 【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.4.A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 5.B解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.6.B解析:B 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误; 故选:B 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.7.A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:故选A.【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.8.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-2 3020302222a b a b a b a a b aa b++++ -+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.9.B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a-+的和是32a-,∴这个多项式为:(3a-2)-(a2-2a+1)=3a-2-a2+2a-1=-a2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键.10.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a元.故选A.【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.11.C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.12.C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题13.990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b)1的第三项系数为0(a+b)2的第三项的系数为:1(a+b)3的解析:990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990. 【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.14.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024 【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案. 【详解】由图可知分割1次得到正方形的个数为4; 分割2次得到正方形的个数为216=4个; 分割3次得到正方形的个数为364=4个; …以此类推,分割5次得到正方形的个数为:54=1024个, 故答案为:1024. 【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.15.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2 【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.16.③④⑨①②⑤①②③④⑤⑨②⑤【分析】根据单项式多项式整式二项式的定义即可求解【详解】(1)单项式有:③④0⑨;(2)多项式有:①②⑤;(3)整式有:①②③④0⑤⑨;(4)二项式有:②⑤;故答案为:(解析:③④⑨ ①②⑤ ①②③④⑤⑨ ②⑤【分析】根据单项式,多项式,整式,二项式的定义即可求解.【详解】(1)单项式有:③23xy -,④0,⑨2x ; (2)多项式有:①223a b ab b ++,②2a b +,⑤3y x -+; (3)整式有:①223a b ab b ++,②2a b +,③23xy -,④0,⑤3y x -+,⑨2x ; (4)二项式有:②2a b +,⑤3y x -+; 故答案为:(1)③④⑨;(2)①②⑤;(3)①②③④⑤⑨;(4)②⑤【点睛】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.17.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.18.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.19.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】 解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键. 20.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.三、解答题21.(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.22.-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m=3226m m .当m =2时,原式= 322226 =14-.【点睛】 本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.23.0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.24.(1)5x 2-2;(2)-x +1y ;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.25.化简后为32y ,与x 无关.【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.26.图详见解析,am bn mn +-【分析】由图可知花坛是由两块矩形组成,若想求解矩形面积就必需知道矩形的长和宽,而图中少了左边矩形的宽.【详解】解:需要测量的边如图所示(或测量剩下的那条边的长度).图形的面积为am bn mn +-.【点睛】不规则的几何图形的面积的计算要转化为规则的几何图形面积的和差.。
人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。
12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。
3.1.1一元一次方程1.已知式子:①3-4=-1;②2x-5y ;③1+2x =0;④6x+4y =2;⑤3x 2-2x +1=0.其中是等式的有________,其中含有未知数的等式有________,所以是方程的有________.(填序号)2. 下列方程中是一元一次方程的是( )A .y +3=0B .x +2y =3C .x 2=2x D.1y+y =2 3.若x=2是关于x 的方程2x+3m-1=0的解,则m 的值为( )A.-1B.0C.1D.4. 下列是一元一次方程的为( )A .2x -1=5B .4x 2+8=12C .2x +3y =10D .2x <55.下列方程中,是一元一次方程的是( )A .x 2+2=x 2-1 B.x -24=x +1 C .xy +2x =2y -2 D.3x=x -2 6.某地团组织集中开展“佩戴团徽送温暖,争做明义献爱心”的活动,王老师利用寒假带领团员乘车到农村开展“送字典下乡”活动.每张车票原价是50元,甲车车主说:“乘我的车可以打8折(即原价的80%)优惠.”乙车车主说:“乘我的车可以打9折(即原价的90%)优惠,老师不用买票.”王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生?如果设一共带了x 名学生,那么可列方程为 .7.在-2和3中,能使方程5x -10=5左右两边相等的是________,故方程5x -10=5的解为________.8.根据佳佳与音音的对话,解决下面的问题:佳佳:我手中有四张卡片,它们上面分别写有8,3x +2,12x -3,1x. 音音:我用等号将这四张卡片中的任意两张卡片上的数或式子连接起来,就会得到等式.(1)音音一共可以写出几个等式?(2)在她写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.9.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客:“我在店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”请你求出顾客在店里买了多少箱这种特价鸡蛋.(列出方程即可)10.写出一个解为x =2的方程:________________.11.⑦已知x =3是关于x 的方程2x -a =1的解,则a 的值是( )A .-5B .5C .7D .212.已知关于x 的方程(m-3)x m+4+18=0是一元一次方程.试求:(1)m 的值;(2)2(3m+2)-3(4m-1)的值.13.根据题意列出方程(只列方程):(1)某数的40%比它的相反数的12还少12,设这个数为x ; (2)某长方形的周长是10,长与宽之比为3∶2,则长和宽各是多少?设长为3x ;(3)从一块正方形的铁皮上截去一个长等于正方形的边长,且宽为2 cm 的长方形条,余下的面积是80 cm 2,那么原来的正方形铁皮的边长是多少?设原来正方形铁皮的边长是x cm.14. 某班学生去学校食堂打饭,共用了65个碗,吃饭的时候每2个人合用1个饭碗,每3个人合用1个汤碗,每4个人合用1个菜碗.设这个班有学生x 人,则所列方程为______________.15.已知方程(m -1)x |m|+2=0是关于x 的一元一次方程,则m 的值为________.16.阅读理解:若p ,q ,m 为整数,且三次方程x 3+px 2+qx +m =0有整数解x =c ,则将x =c代入方程,得c 3+pc 2+qc +m =0,根据加数与和的关系,得m =-c 3-pc 2-qc ,对右边逆用分配律,得m =c(-c 2-pc -q).因为-c 2-pc -q ,c 及m 都是整数,所以c 是m 的因数.上述过程说明:整数系数方程x 3+px 2+qx +m =0的整数解只可能是m 的因数.例如:方程x 3+4x 2+3x -2=0中-2的因数为±1和±2,将它们分别代入方程x 3+4x 2+3x -2=0进行验证,得x =-2是该方程的整数解,-1,1,2不是该方程的整数解.根据以上信息,解决下列问题:(1)试猜想方程x 3+x 2+5x +7=0的整数解可能是哪几个整数.(2)方程x 3-2x 2-4x +3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.17.根据“欢欢”与“乐乐”的对话,解决下面的问题:欢欢:我手中有四张卡片,它们上面分别写有8,3x +2,12x -3,1x. 乐乐:我用等号将这四张卡片中的任意两张卡片上的数或式子连接起来,就会得到等式或一元一次方程.(1)乐乐一共能写出几个等式?(2)在她写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.答案1. ①③④⑤ ③④⑤ ③④⑤2. A3. A4. A5. B6. (x+1)×50×80%=90%×50x7. 3 x =38. 解:(1)根据题意,得3x +2=8,12x -3=8,1x =8,3x +2=12x -3,3x +2=1x ,12x -3=1x,所以音音一共可以写出6个等式. (2)一元一次方程有3个,分别为3x +2=8,12x -3=8,3x +2=12x -3. 9. 解设顾客在店里买了x 箱这种特价鸡蛋,由题意,得12x=2×14x -96.10. 答案不唯一,如x -2=011. B12. 解(1)由题意知m+4=1,且m-3≠0,所以m=-3.(2)原式=6m+4-12m+3=-6m+7.当m=-3时,原式=-6×(-3)+7=25.13. 解:(1)由题意,得40%x +12=-12x. (2)因为长方形的长为3x ,则宽为2x.根据题意,得2(2x +3x)=10.(3)根据题意,得x 2-2x =80.14. x 2+x 3+x 4=65 15.-116.解:(1)由题中信息可知:该方程如果有整数解,那么只可能是7的因数,而7的因数只有1,-1,7,-7这四个数,所以方程x 3+x 2+5x +7=0的整数解可能是1,-1,7,-7.(2)该方程有整数解.方程的整数解只可能是3的因数,即1,-1,3,-3,将它们分别代入方程x 3-2x 2-4x +3=0,得x =3是该方程的整数解.17. 解:(1)6个.(2)有3个一元一次方程,它们分别是3x +2=8,12x -3=8,3x +2=12x -3.。
七年级上册数学同步练习+单元测试第三章 一元一次方程3.1 从算式到方程基础巩固1.(知识点1)下列叙述,正确的是( )A .方程是含有未知数的式子B .方程是等式C .只有含有字母x ,y 的等式才叫方程D .带等号和字母的式子叫方程2.(知识点2)下列方程,是一元一次方程的是( )A .021=+xB .3a +6=4a -8C .x 2+2x =7D .2x -7=3y +13.(题型一)已知x =3是关于x 的方程5x -a =3的解,则a 的值是( )A .-14B .12C .14D .-134.(知识点3)在x =3和x =-6中,是方程x -3(x +2)=6的解__________.5.(知识点4)列方程表示“比a 的3倍大5的数等于a 的4倍”为___________.6.(题型三)已知3x =4y ,则y x=______________.7.(题型四)已知-2x +3y =3x -2y +1,则x 和y 的大小关系是_______________.8.(知识点6)利用等式的性质解下列方程:(1)214=y ; (2)2x +3=11;(3)x =x+31123. 能力提升9.(考点二)[安徽中考]2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%.若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a ,b 之间满足的关系式是( )A .b=a (1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)10.(知识点4)一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是多少元?设衬衫的成本为x元.(1)填写下表:(用含有x的代数式表示)(2)根据相等关系列出方程:.11.(题型一)已知方程(3m-4)x2-(5-3m)x-4m=-2m是关于x的一元一次方程. (1)求m和x的值;(2)若n满足关系式|2n+m|=1,求n的值.答案基础巩固1. B 解析:由方程的概念,含有未知数的等式叫作方程,可知A ,C ,D 错误,B 正确.A.缺少等式;C.没有说明字母x ,y 是未知数,且局限了方程的概念;D.没有说明字母是未知数.故选B.2. B 解析:A.分母中含有未知数,等式左边不是整式,不是一元一次方程;B.符合一元一次方程的概念;C.未知数的最高次数为2,不是一元一次方程;D.含有两个未知数,不是一元一次方程.故选B.3. B 解析:把x=3代入方程,得15-a =3,所以a =12.故选B.4. x =-6 解析:将x =3代入方程,左边=3-3×5=-12,右边=6,左边≠右边;将x =-6代入方程,左边=-6-3×(-4)=6,右边=6,左边=右边,所以x =-6是方程x -3(x +2)=6的解.5. 3a +5=4a6. 34解析:根据等式的性质2,等式3x =4y 两边同时除以3y ,得34=y x . 7. x <y 解析:-2x +3y =3x -2y +1,等式两边同时减去3x -2y ,得-5x +5y =1,等式两边同时加上5x ,得5y =5x +1,所以x <y .8. 解:(1)在等式的两边同时乘4,得2421=×y=,即y =2. (2)在等式的两边同时减去3,得2x =11-3,即2x =8.两边同时除以2,得x =4.(3)在等式的两边同时减去131x+,得167x=-.两边同时除以67,得76x=-. 能力提升9. C 解析:因为2013年我省财政收入为a 亿元,2014年我省财政收入比2013年增长8.9%,所以2014年我省财政收入为a (1+8.9%)亿元.因为2015年比2014年增长9.5%,2015年我省财政收入为b 亿元,所以2015年我省财政收入为b=a (1+8.9%)(1+9.5%).故选C.10. (1)x +600.8x +48(2)(0.8x +48)-x =2411. 分析:(1)由一元一次方程的概念可知3m -4=0,且-(5-3m )≠0,从而可求得m 的值;将m 的值代入方程,从而可求得x 的值;(2)将m 的值代入,然后根据绝对值的性质得到关于n 的一元一次方程,从而可求得n 的值.解:(1)因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程, 所以3m -4=0,且-(5-3m )≠0,所以m =34.将m =34代入方程,得38316=--x-,所以x =38-.(2)将m =34代入|2n+m |=1,得2n +34=1,所以2n +34=1或2n +34=-1,所以n =61-或n =67-.3.2解一元一次方程(一)——合并同类项与移项基础巩固1.(题型一)方程-2x =-3的解是( )A .32x=B .32-x=C .23x=D .23-x= 2.(知识点3)下列方程变形,属于移项的是( )A .由3x =-2,得32-x=B .由32=x ,得x =6C .由5x -10=0,得5x =10D .由2+3x =0,得3x +2=03.(题型一)对任意四个有理数a ,b ,c ,d 定义新运算:=ad-bc c d a b ,已知18142=x x -,则x =( )A .-1B .2C .3D .44.(题型二)张红在某月日历的一个竖列上圈了三个相邻的数,这三个数的和恰好是33,则这三个数中最大的一个数是___________.5.(题型二)若某数的3倍等于这个数的一半与1的和,则这个数是___________.6.(题型一)解方程:(1)2x +1=2-x ;(2)5-3y +1=3;(3)8y -4+12=3y +6.7.(题型二 角度d )七年级某班共63人,其中男生与女生的人数之比为4∶5,问:这个班男、女生各有多少人?8.(题型二 角度e )一个两位数,十位上的数字是个位上数字的3倍,如果把十位上的数字与个位上的数字对调,所得的两位数比原来的两位数小54,求原来的两位数.能力提升9.(题型三)解关于x 的方程:mx -2=3m +5x .10.(题型二)在做解方程的练习时,学习卷中有一个方程“y+=y-21212■”中的■没印清晰,李聪问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时式子5(x -1)-2(x -2)-4的值相同.”聪明的李聪很快补上了这个常数.同学们,你们能补上这个常数吗?11.(题型二)“五一”期间,某校由4位教师和若干名学生组成的旅游团到国家级旅游风景区旅游,甲旅行社的收费标准是:如果买4张全票,那么其余人的票价按七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,团体票按原价的八折优惠.这两家旅行社的全票价格均为每人300元.(1)若有x名学生参加该旅游团,请用含有x的式子表示两家旅行社的费用. (2)当有多少名学生参加该旅游团时,两家旅行社的费用相等?(3)若有10名学生参加该旅游团,则选择哪家旅行社更省钱?答案基础巩固1. C 解析:系数化为1,得x =23.故选C. 2. C 解析:A.由3x =-2,得x =32-,是系数化为1,不符合题意;B.由2x =3,得x =6,是系数化为1,不符合题意;C.由5x -10=0,得5x =10,是移项,符合题意;D.由2+3x =0,得3x +2=0,不符合题意.故选C.3. C 解析:因为=ad-bc c d a b ,所以1842142=+x =x x -x ,解得x =3.故选C.4. 18 解析:设中间的数是a ,则上边的数是a-7,下边的数是a +7.根据题意,得a+a -7+a +7=33,解得a =11.故a +7=18.5. 52解析:设这个数是x .依题意,得1213x+x=,解得x =52. 6. 解:(1)移项,得2x+x =2-1.合并同类项,得3x =1.系数化为1,得x =31. (2)移项,得-3y =3-5-1.合并同类项,得-3y =-3.系数化为1,得y =1.(3)移项,得8y -3y =6+4-12.合并同类项,得5y =-2.系数化为1,得y=-0.4.7. 解:设这个班男生有4x 人,则女生有5x 人.依题意,得4x +5x =63,解得x =7.所以4x =28,5x =35.答:这个班男生有28人,女生有35人.8. 分析:设原来的两位数的个位上的数字为x ,则十位上的数字为3x ,由题意得等量关系:原两位数=新两位数+54,列出方程,然后解方程即可.解:设原来的两位数的个位上的数字为x ,则十位上的数字为3x .由题意,得30x+x =10x +3x +54,解得x =3.则3x =9.所以原来的两位数为93.能力提升9. 分析:方程移项、合并同类项后,分x 的系数是否为0两种情况讨论,即可得出结果.解:方程移项、合并同类项,得(m -5)x =3m +2.当m -5≠0,即m ≠5时,解得x =523m-m+. 当m -5=0,即m =5时,原方程无解.10. 解:能.5(x -1)-2(x -2)-4=5x -5-2x +4-4=3x -5.当x =2时,3x -5=3×2-5=1,即y =1.将y =1代入方程,得2×1-21=21×1+■, 解得■=1.即这个常数是1.11. 解:(1)甲旅行社的费用是4×300+0.7×300x =1 200+210x (元),乙旅行社的费用是0.8×300(x +4)=960+240x (元).(2)若两家旅行社的费用相等,则1 200+210x =960+240x ,解得x =8.所以当有8名学生参加该旅游团时,两家旅行社的费用相等.(3)当x =10时,甲旅行社的费用是1 200+210×10=3 300(元),乙旅行社的费用是960+240×10=3 360(元).因为3 360>3 300,所以当有10名学生参加该旅游团时,选择甲旅行社更省钱.3.3解一元一次方程(二)——去括号与去分母基础巩固1.(知识点2)解方程3132+-=x x ,去分母后可以得到( ) A .1-x -3=3x B .6-2x -6=3xC .6-x +3=3xD .1-x +3=3x2.(知识点1)对方程 1413(23)4324⎡⎤--=⎢⎥⎣⎦x x x 变形第一步较好的方法是() A .去分母 B .去括号C .移项D .合并同类项3.在下列解方程过程中,变形正确的是( )A .由2x -1=3,得2x =3-1B .由 311 1.240.1++=+x x ,得 31011241++=+x x C .由-75x =76,得x =7576- D .由 32-x x =1,得2x -3x =6 4.(题型一)方程3x +2(1-x )=4的解是( )A .x = 25B .x = 65C .x =2D .x =1 5.(题型三)已知 42-x 与25互为倒数,则x 等于 . 6.(题型三)已知x =1是方程3123+-=-ax x a 的解,则a =_______. 7.(题型二)依据下列解方程0.30.5210.23+-=x x 的过程,请在下列括号内填写变形依据.解: 352123+-=x x ,( ) 3(3x +5)=2(2x -1),( )9x +15=4x -2,( )9x -4x =-15-2,( )5x =-17,( )x =-175.( )8.(考点一)解下列方程:(1)-4x +1=-2( 12-x ); (2)377245-+-=-x x . 9.(题型五)一艘轮船从甲地开往乙地,顺水而行,每小时行驶28 km ,到达乙地后又逆水返回,回到甲地;逆水比顺水多用2 h .如果水流速度是每小时4 km ,那么甲、乙两地相距多少千米?能力提升10.(题型六)解方程:|5x +3|=2x +9.答案基础巩固1.B 解析:方程两边同乘6,得6-2(x +3)=3x .去括号,得6-2x -6=3x .故选B.2.B 解析:去括号,得13x -18 (2x -3)=34 x ,则变形第一步较好的方法是去括号.故选B.3.D 解析:A 选项错误,等式的两边同时加1,得2x =3+1;B 选项错误,把方程中分母的小数化为整数,得4x +1=30101+x +1.2;C 选项错误,方程两边同时除以-75,得x =7675-;D 选项正确,方程两边同乘6,得2x -3x =6.故选D. 4.C 解析:去括号,得3x +2-2x =4.移项、合并同类项,x =2.故选C.5. 9 解析:因为42-x 与25互为倒数,所以42-x ×25=1,解得x =9. 6. -5 解析:把x =1代入方程,得32+a =1-13-a .去分母,得3a +9=6-2+2a .移项、合并同类项,得a =-5.7.分数的基本性质等式的性质2去括号法则等式的性质1合并同类项法则等式的性质28.解:(1)去括号,得-4x +1=-1+2x .移项、合并同类项,得6x =2,解得x =13.(2)去分母,得40-5(3x -7)=-4(x +7).去括号,得40-15x +35=-4x -28.移项、合并同类项,得11x =103,解得x =10311 . 9.解:设甲、乙两地之间的距离为x km. 由题意,得284428---x x =2, 去分母,得7x -5x =280.合并同类项,得2x =280,解得x =140.答:甲、乙两地相距140 km .能力提升10.解:由绝对值的意义,得5x +3=±(2x +9),且2x +9≥0.(1)由5x +3=2x +9,解得x =2.当x=2时,2x+9=2×2+9=13>0, 所以x=2是原方程的解.(2)由5x+3=-(2x+9),解得x=127-.当x=127-时,2x+9=2×127-+9=397>0,所以x=127-是原方程的解.所以原方程的解为x=2或x=127 -.3.4实际问题与一元一次方程基础巩固1.(知识点2)某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.求甲、乙共用几天可以完成全部工作,若设甲、乙共用x天完成全部工作,则符合题意的方程是()A.222214530-+=xB.222213045++=xC.222214530++=xD.2213045-+=x x2.(题型一)一份数学试卷只有25道选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试题,得了70分,则他一共做对的选择题为()A.17道B.18道C.19道D.20道3.(知识点4)某市中学生足球联赛规定:胜1场得3分,平1场得1分,负1场得0分.若希望之星队在全部14场比赛中保持不败,共得34分,则该队平_________场.4.(题型一角度a)要锻造一个直径长为10 cm,高为8 cm的圆柱体毛坯,应截取直径长为8 cm的圆钢多长?设应截取直径长为8 cm的圆钢x cm,则可列出方程为________.5.(题型一角度b)在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处总人数为在乙处总人数的2倍,则应调到甲处________人.6.(知识点3)某商场销售一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么销售这种商品原来的利润率是________.注:利润率=(销售价-进价)÷进价×100%7.(知识点1)一张课桌包括1块桌面和4条桌腿,1 m3木料可制作50块桌面或200条桌腿.现有5 m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得到的桌面和桌腿刚好配套?(不考虑材料损耗)8.(题型一角度c)某企业存入银行甲、乙两种不同利率的存款共20万元,已知甲种存款的年利率为2.5%,乙种存款的年利率为2.25%,一年后该企业可获得利息4 850元,问:甲、乙两种存款各为多少万元?9.(题型三)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折算;在乙超市累计购买商品超出200元之后,超出部分按原价的九折算.设顾客预计累计购物x元(x>300).(1)请用含x的式子分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.能力提升10.(题型三)某牛奶加工厂现有鲜奶8吨,若到市场上直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每加工1吨鲜奶可获取利润1 200元;若制成奶片销售,每加工1吨鲜奶可获取利润2 000元.该工厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?11.(题型二)如图3-4-1,在数轴上,点A,B表示的数分别为5,-3,线段AB 的中点为M.动点P以1个单位长度/秒的速度从点A出发,向数轴的负方向运动.同时,动点Q以2个单位长度/秒的速度从点B出发,向数轴的正方向运动.(1)线段AB的长度为______个单位长度,点M表示的数为________.(2)当点Q运动到点M时,点P运动到点N,则MN的长度为_______个单位长度.(3)设点P运动的时间为t秒.是否存在这样的t,使P A+Q A为5个单位长度?如果存在,请求出t的值和此时点P表示的数;如果不存在,请说明理由.图3-4-112.(知识点5)某市规定用水收费标准如下:当每户每月用水不超过6 m3时,水费按每立方米a元收费;当超过6 m3时,不超过的部分每立方米仍按a元收费,超过的部分按每立方米b元收费.该市某户今年3,4月份的用水量和水费如下表:(1)求出a与b的值.(2)求当用户用水为x m3时的水费(用含x的式子表示). (3)某用户某月交水费39元,则这个月该用户用水多少立方米?答案基础巩固1.A 解析:设甲、乙共用x 天完成全部工作,则甲单独干了(x -22)天.把总的工作量看成1,则甲每天完成全部工作的145,乙每天完成全部工作的130.根据等量关系列方程,得22224530-+x =1.故选A. 2.C 解析:设该同学做对了x 道选择题.根据题意列方程,得4x -(25-x )×1=70,解得x =19.故选C.3. 4 解析:希望之星队在14场比赛中保持不败,即胜或平.设该队胜x 场,则平(14-x )场.根据题意,得3x +1×(14-x )=34,解得x =10.所以14-x =14-10=4.故该队平4场. 4.π×210()2×8=π×28()2×x 解析:根据圆柱形毛坯与圆钢的体积相等可得π×210()2×8=π×28()2×x . 5. 17 解析:设应调到甲处x 人,则应调到乙处(20-x )人.根据题意,得27+x =2×(19+20-x ),解得x =17.6. 17% 解析:设原利润率是x ,进价为a ,则售价为a (1+x ).根据题意,得()()()11 6.4%1 6.4%+---a x a a -x =8%,解得x =0.17.所以销售这种商品原来的利润率是17%.7.分析:设用x m 3的木料制作桌面,则用(5-x )m 3的木料制作桌腿恰好配套,根据桌腿数是桌面数的4倍,建立方程求解即可.解:设用x m 3的木料制作桌面,则用(5-x )m 3的木料制作桌腿.由题意,得4×50x =200(5-x ),解得x =2.5,5-x =2.5.答:用2.5 m 3的木料制作桌面,2.5 m 3的木料制作桌腿,能使制作的桌面和桌腿刚好配套.8.分析:设甲种存款为x 万元,根据“一年后该企业可获得利息4 850元”,列方程求解即可,注意单位统一为万元.解:设甲种存款为x 万元,则乙种存款为(20-x )万元.由题意,得x ·2.5%+(20-x )·2.25%=0.485,解得x=14.所以20-x=20-14=6.答:甲、乙两种存款分别为14万元和6万元.9.解:(1)因为在甲超市累计购买商品超出300元之后,超出部分按原价的八折算,所以在甲超市购物所付的费用为300+0.8(x-300)=0.8x+60(元).因为在乙超市累计购买商品超出200元之后,超出部分按原价的九折算,所以在乙超市购物所付的费用为200+0.9(x-200)=0.9x+20(元).(2)当0.8x+60=0.9x+20时,解得x=400.所以当x=400时,顾客到两家超市购物一样优惠;当x>400时,顾客到甲超市购物更优惠;当x<400时,顾客到乙超市购物更优惠.能力提升10.解:(方案一)最多生产4吨奶片,其余的鲜奶直接销售,则其利润为4×2 000+(8-4)×500=10 000(元).(方案二)设生产奶片x天,则生产酸奶(4-x)天.根据题意,得x+3(4-x)=8,解得x=2.2天生产酸奶加工的鲜奶是2×3=6(吨),则利润为2×2 000+6×1 200=4 000+7 200=11 200(元).因为10 000<11 200,所以方案二获利最多.11.分析:(1)数轴上两点间的距离等于右边的点表示的数减去左边的点表示的数,据此求解;(2)求得点Q到点M的时间,从而确定点N所表示的数,写出线段MN的长度;(3)分别表示出P A,Q A的长度,根据“P A+Q A=5”列出方程求解即可.解:(1)81.AB=5-(-3)=8.因为M为AB的中点,所以点M距离点A4个单位长度,所以点M表示的数为1.(2)2.当点Q运动到点M时用时2秒,此时点P运动到3的位置,所以MN=3-1=2.(3)假设存在这样的t,根据题意,得t+8-2t=5,解得t=3.所以存在t=3,使得P A+Q A=5.此时,点P表示的数为2.12.分析:(1)根据表格中的数据,3月份属于第一种收费,5a=7.5;4月份属于第二种收费,6a+(9-6)b=27,即可求出a,b的值;(2)分两种情况:当x<6时,当x>6时,分别求得用户用水为x m3时的水费;(3)先判断这个月该用户的用水量一定超过6 m3,再根据等量关系:6 m3的水费+超过6 m3的水费=39元,列出方程求解即可.解:(1)因为5<6,所以3月份用水量不超过6立方米,则5a=7.5,解得a=1.5.所以6×1.5+(9-6)b=27,解得b=6.(2)当x<6时,水费为1.5x元;当x>6时,水费为6×1.5+6(x-6)=6x-27(元).(3)因为6×1.5=9<39(元),所以这个月该用户的用水量一定超过6 m3.所以6x-27=39,解得x=11.答:这个月该用户用水11 m3.章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.在方程①3x -y =2,②x +1x -2=0,③1122=x ,④ x 2-2x -3=0中一元一次方程的个数为( )A .1B .2C .3D .42.已知x =1是方程x +2a =-1的解,那么a 的值是( )A .-1B .0C .1D .23.方程|x -3|=6的解是( )A .9B .±9C .3D .9或-34.运用等式的性质变形,正确的是( ) A .如果a =b ,那么a +c=b -c B .如果 =a b c c,那么a =b C .如果a =b ,那么=a b c c D .如果a =3,那么a 2=3a 2 5.解方程 21101136++-=x x 时,去分母、去括号后,正确的结果是( ) A .4x +1-10x +1=1 B .4x +2-10x -1=1C .4x +2-10x -1=6D .4x +2-10x +1=66.若4x -5与 212-x 的值相等,则x 的值是( )A .1B .32C .23D .27.马强在计算“41+x ”时,误将“+”看成“-”,结果得12,则41+x 的值应为( )A .29B .53C .67D .708.为了参加全校文艺演出,某年级组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队的人数的3倍.设从舞蹈队中抽调了x 人参加合唱队,可得正确的方程是( )A .3(46-x )=30+xB .46+x =3(30-x )C.46-3x=30+x D.46-x=3(30-x)9.当x=1时,式子ax3+bx+1的值是2,则方程123244+-+=ax bx x的解是()A.x=13B.x=-13C.x=1 D.x=-110.某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,而按原价的九折出售,将赚20元,那么这种商品的原价是()A.500元B.400元C.300元D.200元二、填空题(每小题4分,共32分)11.若关于x的方程(k-2)x|k-1|+5=0是一元一次方程,则k=______.12.若a-5=b-5,则a=b,这是根据______.13.在方程3a-5=2a+6的两边同时减去一个多项式可以得到方程的解为a=11,则这个多项式是________.14.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为________.15.如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于________.16.在有理数范围内定义运算“△”,其规则为a△b=ab+1,则方程(3△4)△x=2的解为x=________.17.张强在做作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是x+ 13=13x+■,怎么办呢?张强想了想,便翻看了书后的答案,此方程的解是x=-3,张强很快补好了这个常数,并迅速完成了作业,这个常数是______.18.请你阅读下面的诗句:“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的树为______棵.三、解答题(共58分)19.(8分)解下列方程:(1)3x(7-x)=18-x(3x-15);(2)0.170.21 0.70.03--=x x.20.(8分)下面是马小哈同学做的一道题:解方程:212134-+=-x x.解:①去分母,得4(2x-1)=1-3(x+2).②去括号,得8x-4=1-3x-6.③移项,得8x+3x=1-6+4.④合并同类项,得11x=-1.⑤系数化为1,得x=-1 11.(1)上面的解题过程中最早出现错误的步骤(填序号)是________.(2)请正确的解方程:12224-+-=-x xx.21.(10分)已知|a-3|+(b+1)2=0,式子22-+b a m的值比12b-a+m的值多1,求m的值.22.(10分)当m为何值时,关于x的方程4x-m=2x+5的解比2(x-m)=3(x-2)-1的解小2.23.(10分)已知a是非零整数,关于x的方程ax|a|-bx2+x-2=0是一元一次方程,求a+b的值与方程的解.24.(12分)一艘载重480 t的船,容积是1 050 m3,现有甲种货物450 m3,乙种货物350 t,而甲种货物每吨的体积为2.5 m3,乙种货物每立方米0.5 t.问:(1)甲、乙两种货物是否都能装上船?如果不能,请说明理由.(2)为了最大限度地利用船的载质量和容积,两种货物应各装多少吨?答案一、1.A 解析:①含有两个未知数,不是一元一次方程;②方程左边不是整式,不是一元一次方程;③符合一元一次方程的概念;④未知数的最高次数是2,不是一元一次方程.故选A.2.A 解析:把x =1代入方程,得1+2a =-1,解得a =-1.故选A.3.D 解析:因为|x -3|=6,所以x -3=6或x -3=-6.①x -3=6,解得x =9;②x -3=-6,解得x =-3.故选D.4.B 解析:A.利用等式的性质1,两边都加c ,得到a +c=b +c ,所以A 不正确;B.利用等式的性质2,两边都乘c ,得到a =b ,所以B 正确;C.因为c 可能为0,所以C 不正确;D.因为a 2=9,3a 2=27,所以a 2≠3a 2,所以D 不正确.故选B.5.C 解析:去分母,得2(2x +1)-(10x +1)=6.去括号,得4x +2-10x -1=6.故选C.6.B 解析:根据题意,得4x -5=212 x .去分母,得8x -10=2x -1,解得x =32.故选B.7.D 解析:根据题意,得41-x =12,解得x =29.所以41+x =41+29=70.故选D.8.B 解析:由题意可知,46+x =3(30-x ).故选B.9.C 解析:把x =1代入ax 3+bx +1=2,得a +b +1=2,即a +b =1.去分母,得2ax +2+2bx -3=x ,整理,得(2a +2b -1)x =1,即[2(a +b )-1]x =1.把a +b =1代入,得x =1.故选C.10.C 解析:设这种商品的原价是x 元.根据题意,得75%x +25=90%x -20,解得x =300.故选C.二、 11. 0 解析:由关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,得|k -1|=1且k -2≠0,解得k =0.12.等式的性质1 解析:在等式的两边同时加5就可以得到a =b .这是根据等式的性质1.13. 2a -5 解析:方程两边都减2a -5,得a =11.14.x =1 解析:因为a ,b 互为相反数,且ab ≠0,所以ba =-1.方程ax +b =0的解为x =-b a=1. 15. 9 解析:根据题意,得2(x +3)+3(1-x )=0.去括号,得2x +6+3-3x =0.移项,合并同类项,得-x =-9,解得x =9. 16.113解析:根据题中的新定义,得3△4=12+1=13.代入方程(3△4)△x =2,得13△x =2,即13x +1=2,解得x =113. 17.53- 解析:设这个常数是a .把x =-3代入方程,得-3+13=13×(-3)+a ,解得a =53-.故这个常数是53-. 18. 5 解析:设诗句中谈到的树为x 棵,则鸦有(3x +5)只.根据题意,得5(x -1)=3x +5,解得x =5.所以诗句中谈到的树为5棵.三、19.解:(1)去括号,得21x -3x 2=18-3x 2+15x .移项、合并同类项,得6x =18,解得x =3.(2)将分母转化为整数,得=101720173--x x 方程两边同乘21,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 20.分析:(1)根据等式的性质,解一元一次方程的步骤即可判断;(2)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解. 解:(1)①.(2)去分母,得4x -2(x -1)=8-(x +2).去括号,得4x -2x +2=8-x -2.移项,得4x -2x +x =8-2-2.合并同类项,得3x =4.系数化为1,得x =43.21.分析:先根据|a -3|+(b +1)2=0求出a ,b 的值,再根据式子22-+b a m 的值比12b -a +m 的值多1列出方程 22-+b a m =12b -a +m ,把a ,b 的值分别代入求出m 的值. 解:因为|a -3|≥0,(b +1)2≥0,且|a -3|+(b +1)2=0,所以a -3=0且b +1=0,解得a =3,b =-1. 由题意,得22-+b a m =12b -a +m +1, 即131252-=--+++m m , 解得m =0.所以m 的值为0.22.分析:先分别解两个方程求得方程的解,再根据关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2,即可列方程求得m 的值.解:由4x -m =2x +5,得x =52+m . 由2(x -m )=3(x -2)-1,得x =-2m +7.因为关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2, 所以52+m +2=-2m +7, 解得m =1.故当m =1时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.分析:分情况讨论,(1)a =b ,|a |=2;(2)b =0,|a |=1.首先根据一元一次方程的概念求得a ,b 的值,然后将其代入a +b 并求值,最后将a ,b 的值代入原方程,由一元一次方程的解法解方程.解:(1)a =b ,|a |=2,当a =2时,b =2,此时a +b =4,方程的解为x =2;当a =-2时,b =-2,此时a +b =-4,方程的解为x =2.(2)|a |=1,b =0,解得a =±1,b =0.当a =1时,原方程为x +x -2=0,解得x =1,a+b=1+0=1;当a=-1时,原方程为-x+x-2=0,不存在.24.分析:求出甲种货物和乙种货物的吨数,与载质量进行比较即可作出判断;设装甲种货物x t,乙种货物(480-x)t,通过理解题意可知本题存在等量关系:甲种货物所占的总体积+乙种货物所占的总体积=1 050 m3,根据这个等量关系列出方程求解即可.解:(1)不能.理由:甲种货物重4502.5=180(t),180+350=530>480,所以甲、乙两种货物不能都装上船.(2)设装甲种货物x t,则装乙种货物(480-x)t.依题意有2.5x+4800.5x=1 050,解得x=180.480-x=300.答:为了最大限度地利用船的载质量和容积,应装甲种货物180 t,乙种货物300 t.。
一、选择题1.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 2.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1 C .8x 2﹣5x+1 D .8x 2+13x ﹣1 3.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2 4.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣95.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020- 6.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -17.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、68.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个9.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个 C .4个 D .5个 10.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c11.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738 12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题13.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______. 14.a -b ,b -c ,c -a 三个多项式的和是____________15.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.16.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时17.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④18.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………19.在x y +,0,21>,2a b -,210x +=中,代数式有______个.20.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.三、解答题21.先化简,再求值 (1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -= 22.已知多项式22622452x mxyy xy x中不含xy 项,求代数式32322125m m m m mm 的值.23.列出下列代数式: (1)a 、b 两数差的平方; (2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积; (4)a 的相反数与b 的平方的和. 24.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+---⎪⎝⎭. 25.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%. (1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样? (3)你能总结出什么规律吗?26.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.2.A解析:A 【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案. 【详解】由题意得:5x 2+4x−1−(3x 2+9x), =5x 2+4x−1−3x 2−9x , =2x 2−5x−1. 故答案选A. 【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.3.B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义.4.D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.5.A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===--43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 6.D解析:D 【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1. 故答案为D . 【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.7.C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.8.B解析:B 【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断. 【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错;(3)单项式-x 3y 2的系数是-1,正确; (4)3x 2-y+5xy 2是3次3项式,故错误. 故选:B . 【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.9.C解析:C 【分析】根据单项式的定义逐一判断即可. 【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式, -2是单项式, 3b-是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C. 【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.10.B解析:B 【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c 故选B . 【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.B解析:B 【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数. 【详解】根据题中的数据可知: 左下角的数=上面的数的平方+1 ∴28165x =+=右下角的值=上面的数×左下角的数+上面的数 ∴888658528y x =+=⨯+= ∴65528593x y +=+= 故选:B. 【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.12.C解析:C 【解析】 【分析】根据长方形的周长公式列出算式后化简合并即可. 【详解】∵长方形一边长为2a +b ,另一边为a -b , ∴长方形周长为:2(2a +b +a -b )=6a. 故选C. 【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题13.【解析】试题 解析:50101【解析】试题1111++++133********⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-( =111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 14.0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0 【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0, 故答案为0.15.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7. 【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.16.3b 【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式a b a b a b+++--计算即可求解.()[()(2)]【详解】解:依题意有+++--()[()(2)]a b a b a b=+++-+[2]a b a b a b=+++-+a b a b a b2=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.17.加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b)+(5ab-3ab)=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b)+(5ab-3ab)=3a2b+2ab.第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.18.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n-解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.19.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.20.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.三、解答题21.(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.22.-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.23.(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.24.(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+---2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键. 25.(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 26.(1)22111222a ab b ++;(2)492 【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.。
人教版七年级数学上册第三章一元一次方程 单元测试题一、选择题1.下列方程是一元一次方程的是( )A .B .C .D .2.设x ,y ,c 是有理数,则下列结论正确的是( )A .若 ,则B .若 ,则C .若 ,则D .若,则 3.下列方程中,移项正确的是( )A .由 ,得B .由 ,得C .由 ,得D .由 ,得 4.解方程时,去分母、去括号后,正确的结果是( ) A .15x +3-2x -1=1B .15x +3-2x +1=6C .15x +3-2x +1=1D .15x +1-2x-1=65.某工厂要制造直径长为120mm ,高为20mm 的圆钢毛坯,现有的原料是直径长为60mm的圆钢若干米,则应取原料的长为( ) A .50mmB .60mmC .70mmD .80mm6.已知x =﹣2是方程2x+m ﹣4=0的解,则m 的值为( )A .8B .﹣8C .0D .27.下列方程变形正确的是( )A .由x+2=7,得x=7+2B .由5x=3,得C .由x-3=2,得x=-3-2D .由,得x=08.下列方程移项、系数化为1正确的是( )A .由3+x =5,得x =5+3B .由2x+3=x+7,得2x+x =7+3C .由7x =﹣4,得x =﹣D .由y =2,得y =41132x x -=231x x -=11x=29x y +=x y =x c y c +=-x y =xc yc =x y =x y c c =23x yc c=23x y =39x +=39x =+583x x =-583x x -=742x x =-742x x -=-3542x x -=+3245x x +=+5121126x x +--=53x =105x =74129.下列变形中正确的是( )A .方程,移项,得B .方程,去括号,得C .方程,未知数系数化为1,得D .方程化为10.某件商品,按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的成本价为( ) A .115元B .120元C .125元D .150元二、填空题11.若关于 的方程 是一元一次方程,则 .12.若关于x 的方程3x ﹣7=2x+a 的解与方程4x+3=﹣5的解互为倒数,则a 的值为 .13.设,若,则x 的值是 .14.某商品的进价是2000元,标价为2800元,该商品打多少折才能获得12%的利润率?设该商品需打x 折才能使利润率为12%,根据题意列出方程: .三、解答题15.小明在解关于x 的方程3a-2x=11时,误将-2x 看成了+2x 得到的解为x=-2,请你帮小明算一算,方程正确的解为多少?16.m 为何值时,关于x 的一元一次方程 的解与 的解相等?17.解方程18.某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同.其中,每个小书包的盈利率为,每个大书包的盈利率为,试求两种书包的进价.四、综合题19.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,3221x x -=+3212x x -=-+325(1)x x -=--3255x x -=--2332t =1t =1.4 2.110.70.2x x x ---=1421101072x x x ---=x 130m x -+=m =2233M x N x =-=+,21M N -=23x x =-4231x m x -=-()()1112533412x x -=--30%20%动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?20.历史上的数学巨人欧拉最先把关于 的多项式用记号 来表示,即,例如:当 时,多项式 的值记为 =1。
人教版七年级上册数学第三章一元一次方程单元测试卷一、单选题(本大题共12小题,每小题3分,共36分)1.根据等式的性质,下列变形错误的是( )A .由x+7=5得x+7-7=5-7B .由3x=2x+1得3x -2x=1C .由4-3x=4x 一3得4+3=4x+3xD .由4x=2得x=2A .①①B .①①C .①①D .①①3.下列等式变形中,错误的是( )6.定义新运算:a ①b =a 2﹣b .例如3①2=32﹣2=7,已知4①x =10,则x =( )A .﹣6B .6C .4D .﹣4 7.已知关于x 的方程2(1)10m m x -+=是一元一次方程,则m 的取值是( )A .1±B .1-C .1D .以上答案都不对8.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场.10.某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生()名.A.20B.21C.22D.2311.小明用长16cm的铁丝围成一个长方形,并且长方形的长比宽多2cm,设这个长方形的长为xcm,则x的值为()A.9B.5C.7D.1012.数轴上点A,O,B,C分别表示实数4-,0,2,3,点M,N分别从A,O出发,沿数轴正方向移动,点P从B出发,在线段BC上往返运动(P在B,C处掉头的时间忽略不计),三个点同时出发,点M,N,P的速二、填空题(本大题共8小题,每小题3分,共24分)13.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%19.关于x的方程﹣5x3m﹣2+2m=0是关于x的一元一次方程,那么这个方程的解为.三、解答题(本大题共5小题,每小题8分,共40分)(1)八年级学生进校时开通了A、B两通道,经过6分钟,八年级全部学生进校,已知A通道每分钟通过的人数是B 通道每分钟通过人数的2倍,求A、B通道每分钟通过的人数是多少人?(2)考虑到七年级人数更多的原因,为节约学生进校时间,学校决定在A通道旁边增开C通道,在B通道旁边增开D 通道,已知C通道每分钟通过的人数比A通道每分钟通过的人数多20%,求七年级全部学生进校所需时间是多少分钟?25.如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B的速度为2米/秒(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M出发,A出发后经过秒与B第一次重合;(2)已知MN=100米,若A、B同时从点M出发,经过秒A与B第一次重合;(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.参考答案:(2)4分钟.25.(1)A出发后经过5秒与B第一次重合;(2)经过40秒A与B第一次重合;(3)s=50米。
人教版七年级数学上册第三章《一元一次方程》单元检测试题满分120分时间90分钟班级________姓名________学号________成绩________一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元一次方程的是()A.x2=4x B.=2C.x+2y=1D.=12.x=4是方程()的解.A.3x=9B.(x﹣4)(x﹣2)=0C.x(x﹣2)=4D.x+4=03.下列说法不一定成立的是()A.若a=b,则a﹣3=b﹣3B.若a=3,则a2=3aC.若3a=2b,则=D.若a=b,则=4.若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7B.4C.7D.55.把方程﹣x=2变形成x=﹣2,我们通常称之为“系数化为1”,其方法是()A.方程两边都乘以1B.方程两边都乘以﹣1C.方程两边都乘以2D.方程两边都乘以﹣26.解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2B.5x+2x=3+2C.5x﹣2x=2﹣3D.5x+2x=2﹣3 7.2x﹣3与互为倒数,则x的值为()A.2B.3C.4D.58.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元9.丽宏幼儿园王阿姨给小朋友分苹果,如果每人分3个.则剩余1个;如果每人分4个,则还缺2个.问有多少个苹果?设幼儿园有x个小朋友,则可列方程为()A.3x﹣1=4x+2B.3x+1=4x﹣2C.D.10.一元一次方程+++=4的解为()A.30B.24C.21D.12二.填空题(共5小题,满分20分,每小题4分)11.已知(k2﹣1)x2﹣(k+1)x+10=0是关于x的一元一次方程,则k的值为.12.若5与a﹣3互为相反数,则a的值.13.如果代数式3x+5的值与﹣1互为倒数,那么x的值是.14.下面的框图表示小明解方程3(x﹣2)=1+x的流程:其中步骤“④”所用依据是.15.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:.三.解答题(共9小题,满分70分)16.(6分)解方程:5(x+2)=2(5x﹣1)﹣3.17.(6分)解方程:=1﹣.18.(6分)甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.19.(8分)20.(8分)已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.21.(8分)据气象局预测2020年将迎来一个寒冬,某商店根据此商机购进一批优质手套,按进价提高40%后标价,为了增加销量,该商店决定打八折出售,即每副手套以28元售出.(1)求这批手套的进价是每副多少元.(2)该商店当售出这批手套一半数量后,正好赶上双十一活动,所以决定改变促销方式,该商店决定将剩下的手套以每3副80元的价格销售,很快全部售完,这批手套该商店共获利2800元,求该商店共购进多少副手套.22.(8分)我们可以用下面的方法把循环小数0.化成分数.设x=0.666….则10x=6.666…,可得方程10x﹣x=6,解得x=.即0.=.用上面的方法解决下列问题:(1)把0.化成分数;(2)计算:0.+.23.(10分)在“清洁乡村”活动中,某村长提出了两种购买垃圾桶方案.方案一:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案二:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设交费时间为x个月,方案一的购买费和垃圾处理费共为M元,方案二的购买费和垃圾处理费共为N元.(1)分别用x表示M,N;(2)若交费时间为12个月,哪种方案更合适,并说明理由.(3)交费时间为多少个月时,两种方案费用相同?24.(10分)已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,则点P对应的数为.(2)利用数轴探究:找出满足|x﹣3|+|x+1|=8的x的所有值是.(3)当点P以每秒6个单位长的速度从O点向右运动时,点A以每秒6个单位长的速度向右运动,点B以每秒钟5个单位长的速度向右运动,问它们同时出发,几秒后P点到点A、点B的距离相等?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、未知项的最高次数为2,不是一元一次方程;B、符合一元一次方程的定义;C、含有两个未知数,不是一元一次方程;D、分母中含有未知数,不是一元一次方程.故选:B.2.解:A、方程3x=9,解得:x=3,不符合题意;B、方程(x﹣4)(x﹣2)=0,可得x﹣4=0或x﹣2=0,解得:x=4或x=2,符合题意;C、方程x(x﹣2)=4,即x2﹣2x+1=5,变形得:(x﹣1)2=5,开方得:x﹣1=±,解得:x=1+或x=1﹣,不符合题意;D、方程x+4=0,解得:x=﹣4,不符合题意,故选:B.3.解:A.若a=b,则a﹣3=b﹣3,成立;B.若a=3,则a2=3a,成立;C.若3a=2b,则,成立;D.当a=b=0时,不成立.故选:D.4.解:将x=3代入2x﹣k+1=0,∴6﹣k+1=0,∴k=7,故选:C.5.解:根据等式的性质,方程两边同时乘以﹣1,得到x=﹣2,故选:B.6.解:移项得:5x﹣2x=2+3,故选:A.7.解:根据题意得:(2x﹣3)=1,整理得:2x﹣3=5,移项合并得:2x=8,解得:x=4,故选:C.8.解:设两件商品以x元出售,由题意可知:×100%=20%,解得:x=96,设乙商品的成本价为y元,∴96﹣y=﹣20%×y,解得:y=120,故选:C.9.解:设幼儿园有x个小朋友,由题意,得3x+1=4x﹣2.故选:B.10.解:+++=4,﹣+﹣+﹣+﹣=4,﹣=4,4x=4×21,x=21,故选:C.二.填空题(共5小题,满分20分,每小题4分)11.解:根据题意得:k2﹣1=0,解得:k=1或k=﹣1,k+1≠0,解得:k≠﹣1,综上可知:k=1,即参数k的值为1.故答案为:1.12.解:根据题意列得:5+a﹣3=0,移项得:a=3﹣5,解得:a=﹣2.故答案为:﹣2.13.解:∵代数式3x+5的值与﹣1互为倒数,∴﹣3x﹣5=1,解得:x=﹣2.故答案为:﹣2.14.解:由2x=7,方程的两边同时除以2,可得:x=,步骤“④”所用依据是:等式两边乘同一个数或除以同一个不为0的数,结果仍相等.故答案为:等式两边乘同一个数或除以同一个不为0的数,结果仍相等.15.解:方程+=1的解为x=2018.故答案为+=1.三.解答题(共9小题,满分70分)16.解:去括号得:5x+10=10x﹣2﹣3,移项合并得:﹣5x=﹣15,解得:x=3.17.解:去分母得:2(x﹣1)=6﹣(3x+1),去括号得:2x﹣2=6﹣3x﹣1,移项得:2x+3x=6﹣1+2,合并得:5x=7,解得:x=.18.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.19.解:设全班人数为x人,由题意得:x=18,解得:x=54,54×=12(人),答:参加英语兴趣班的同学有12名.20.解:(1)由题意得:6﹣x=2(2+7x).∴x=.(2)由题意得:2+7x﹣(6﹣x)=﹣3,∴x=.21.解:(1)设手套的进价是x元.依题意得:(1+40%)x×0.8=28,解得x=25.答:这批手套的进价是25元;(2)设该商店共购进2y副手套,依题意得:(﹣25)y+(28﹣25)y=2800,解得y=600.则2y=1200.答:该超市共购进这批手套1200副.22.解:(1)设x=0.,则10x=5.,可得10x﹣x=5.﹣0.=5,解得:x=;(2)设y=0.,则100y=45.,可得100y﹣y=45,解得:y=,则原式=+=.23.解:(1)依题意,得M=250x+3000;N=500x+1000.(2)当x=12时,M=250×12+3000=6000;当x=12时,N=500×12+1000=7000.∵6000<7000,∴若交费时间为12个月,选择方案一更合适.(3)依题意,得M=N,即250x+3000=500x+1000,解得x=8.答:交费时间为8个月时,两种方案费用相同.24.解:(1)∵点P到点A、点B的距离相等,∴P点只能在A、B之间,∴P A=PB=AB=4=2,则P点对应的数为1.故答案为:1.(2)|x﹣3|和|x+1|=8表示P点到数轴表示3和﹣1的点的距离之和为8,①当P在A点左侧时,P A+PB=8,即P A+P A+4=8,∴P A=2,∴x=﹣3;②当P在B点右侧时,P A+PB=8,即PB+4+PB=8,∴PB=2,∴x=5;③当P在点A、B之间时,x不存在.∴x的值为﹣3或5.故答案为:﹣3和5.(3)设t秒后P点到点A、点B的距离相等,当P点在点B左侧时,5t+3﹣6t=1,∴t=2当P点在点B右侧时,6t﹣(5t+3)=1,∴t=4,∴它们出发2秒或4秒后P到A、B点的距离相等.。
七年级数学(上册)第三章《一元一次方程》测试卷(含答案)一、选择题(30 分)1、下列方程属于一元一次方程的是( ) 1 A. -1 = 0 ; B. x6x + 1 = 3y ; C. 3m =2; D. 2 y 2 - 4 y + 1 = 0 2、下列说法正确的是( ) A. 若 ac=bc ,则 a=b ; B. 若 a = b ,则 a=b ;c c C. 若a 2 = b 2 ,则 a=b ; D. 若- 1 x = 6 ,则 x =-233、方程-4x =1 的解是( ) A. x = - 1 ; B. x =-4; C. 4 x = 1 4 ; D. x =44、方程 2x - 1 - 1 + 3x = -4 去分母,得到的方程时( )2 4A. 2(2x -1)-1+3x =4 ;B. 2(2x -1)-1+3x =-16 ;C. 2(2x -1)-(1+3x )=-4 ;D. 2(2x -1)-(1+3x )=-165、若 m - 3 的值比 2m - 1 的值大 1,则 m 的值是( )2 3 A. 15; B. 13; C. -13; D. -15;6、已知关于 x 的方程 2x +a -9=0 的解是 x =2,则 a 的值为( )A. 2;B. 3;C. 4;D. 5;7、轮船在河流中来往航行于 A 、B 两码头之间,顺流航行全程需 7 小时,逆流航行全程需 9 小时,已知水流速度为每小时 3km ,求 A 、B 两码头间的距离,若设 A 、B 两码头间距离为 x ,则所列方程为( ) A. x - 3 = x +3 ; B. x = x + 9 ; C. x + 3 = x ; D. x + 3 = x - 3 ;7 9 7 9 7 9 7 98、某种商品的进价为 800 元,出售标价为 1200 元,后来由于该商品积压,商店准备打折出售,但要保证利润不低于 5﹪,则最多打( )A. 6 折;B. 7 折;C. 8 折;D. 9 折;9、2015 年的 5 月份中有 5 个星期五,它们的日期之和为 75,则 5 月 3 日是()A. 星期六;B. 星期四;C. 星期五;D. 星期日;10、某商场出售某种高端品牌家电,若按标价打八折销售该家电一件,则可获利润 500 元,其利润率为 20﹪,现在如果按同一标价打九折销售该家电一件,那么获得的利润为( )A. 562.5 元;B. 875 元 ;C. 550 元;D. 750 元;二、填空题(24 分)11、如果 7x=5x+4,那么 7x - =4. 12、若方程2x - 5 = 1和方程1 - 3a - x = 0 的解相同,则 a = . 3()---= 解方程:4x-3=3x 3小丽:添上负号得:4x-3=3x-3两边都加上34x=3x两边都除以x得4=3所以原方程无解小强:添上正号得:4x-3=3x+3由等式性质得4x=3x两边减去3x得4x-3x=3x-3x依据分配律(4-3)x=(3-3)x所以x=013、小明在做解方程的作业时,不小心将方程中的一个常数污染了看不清,被污染的方程是:2 y -1=1y -,怎么办?小明想了想,便看了书后答案,2 2此方程的解是:y= -3,很快补好了这个常数,这个常数应是。
人教版初中数学七年级(上)《第3章,一元一次方程》单元测试题通过整理的人教版初中数学七年级(上)《第3章,一元一次方程》单元测试题相关文档,渴望对大家有所扶植,感谢观看!《第3章一元一次方程》单元测试题一.选择题(共12小题)1.下列方程中,是一元一次方程的是()A.2x+3y =7 B.C.x2+x=1 D.3x+2=1 2.若3x+4=6,则6x+16的值为()A.17 B.18 C.19 D.20 3.下列说法中,正确的是()A.若ca=cb,则a=bB.若=,则a=bC.若a2=b2,则a=bD.由4x﹣5=3x+2,得到4x﹣3x=﹣5+2 4.下列方程中,解为x =2的方程是()A.x﹣3=﹣1 B.C.D.5.假如式子5x﹣4的值与10x互为相反数,则x的值是()A.B.C.D.﹣6.解方程﹣=3时,去分母正确的是()A.2(2x﹣1)﹣10x﹣1=3 B.2(2x﹣1)﹣10x+1=3C.2(2x﹣1)﹣10x﹣1=12 D.2(2x﹣1)﹣10x+1=12 7.方程2021x﹣2021=2021的解为()A.x=1 B.x=0 C.x=﹣1 D.x =2 8.对于方程﹣1=,去分母后得到的方程是()A.x﹣1=1+2x B.x﹣6=3(1+2x)C.2x﹣3=3(1+2x)D.2x﹣6=3(1+2x)9.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为()A.九折B.八五折C.八折D.七五折10.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少()A.80元B.200元C.120元D.160元11.用一根绳子环绕一棵大树,若环绕大树3周绳子还多4米,若环绕4周又少了3米,则环绕大树一周须要绳子长()A.5米B.6米C.7米D.8米12.一条铁路途ABC三个车站的位置如图所示,已知B,C两站之间相距500千米,火车从B站动身,向C站方向行驶,经过30分钟,距A站130千米;经过2小时,距A站280米,火车从B 站开出多少时间后可到达C站?()A.4小时B.5小时C.6小时D.7小时二.填空题(共6小题)13.若关于x的方程(m﹣3)x|m|﹣2+5=0是一元一次方程,则m=.14.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,则m的值为.15.假如代数式5x+4的值与﹣1互为倒数,那么x的值是16.若4a﹣7与3a互为相反数,则a2﹣2a+1的值为17.一条长400米的环形跑道,甲乙两人同时同地反向动身,动身后40秒第1次相遇,则再经过秒后第2次相遇.18.小华爸爸现在比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,则小华现在的年龄是.三.解答题(共7小题)19.解方程:(1)2x+5=5x﹣7(2)3(x﹣2)=2﹣5(x+2)(3)+=2(4)20.已知x=3是方程的解,求m的值.21.某同学在解方程时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.22.A、B两地相距1000千米,甲列车从A地开往B地;2小时后,乙列车从B地开往A地,经过4小时与甲列车相遇.已知甲列车比乙列车每小时多行50千米.甲列车每小时行多少千米?23.一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,假如水流速度是3千米/时,求:(1)汽艇在静水中的速度;(2)A、B两地之间的距离.24.某市上网有两种收费方案,用户可任选其一,A为计时制0.8元/时;B为包月制60元/月,此外每种上网方式都附加通讯费0.2元/时.(1)某用户每月上网50小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)当每月上网多少小时时,A、B两种方案上网费用一样多?人教版初中数学七年级(上)《第3章一元一次方程》单元测试题2021学年参考答案与试题解析一.选择题(共12小题)1.【解答】解:A、是二元一次方程,不是一元一次方程,故本选项不符合题意;B、是分式方程,不是一元一次方程,故本选项不符合题意;C、是一元二次方程,不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.2.【解答】解:∵3x+4=6,∴6x+8=12,∴6x+16=12+8=20,故选:D.3.【解答】解:A、若ca=cb,(c≠0),则a=b,故此选项不符合题意;B、若=,则a=b,故此选项符合题意;C、若a2=b2(a,b同号)则a=b,故此选项不符合题意;D、由4x﹣5=3x+2,得到4x﹣3x=5+2,故此选项不符合题意.故选:B.4.【解答】解:(A)将x =2代入x﹣3=﹣1,左边=2﹣3=﹣1=右边,故x=2是选项A的解;(B)将x=2代入=2x﹣4,左边=≠0=右边,故x=2不是选项B的解;(C)将x=2代入x+3=7,左边=1+3=4≠7=右边,故x=2不是选项C的解;(D)将x=2代入6﹣=x,左边=5≠2=右边,故x=2不是选项D的解;故选:A.5.【解答】解:依据题意得:5x﹣4+10x=0,移项合并得:15x=4,解得:x=,故选:A.6.【解答】解:解方程﹣=3时,去分母得:2(2x﹣1)﹣10x﹣1=12,故选:C.7.【解答】解:移项合并得:2021x=4038,解得:x=2,故选:D.8.【解答】解:方程两边同时乘以6得:6×﹣6×1=6×,整理得:2x﹣6=3(1+2x),故选:D.9.【解答】解:设该商品的打x折出售,依据题意得,3200×=2400(1+20%),解得:x=9.答:该商品的打9折出售.故选:A.10.【解答】解:设这件商品的进价为x,可得:360﹣x=80%x 解得:x=200,故选:B.11.【解答】解:方法一:设环绕大树一周须要绳子长x米.依据题意,得3x+4=4x﹣3 解得x=7.答:环绕大树一周须要绳子长7米.故选C.方法二:设围绕大树一周形成圆的半径为x米,则围绕大树一周须要绳子长为2πx米.依据题意列方程,得3×2πx+4=4×2πx﹣3 解得x=,∴2πx=7.∴围绕大树一周须要绳子长为7米.故选:C.12.【解答】解:设火车的速度为x千米/小时,依据题意得:(2﹣)x=280﹣130,解得:x=100,所以500÷100=5(小时).故选:B.二.填空题(共6小题)13.【解答】解:依题意得:|m|﹣2=1且m﹣3≠0,解得m=﹣3.故答案是:﹣3.14.【解答】解:由题意可知:|m+4|=1,∴m=﹣3或﹣5,∵m+3≠0,∴m≠﹣3,∴m=﹣5,故答案为:﹣5 15.【解答】解:依据题意可得:5x+4=﹣1,解得:x =﹣1,故答案为:﹣1 16.【解答】解:∵4a﹣7与3a互为相反数,∴4a﹣7+3a=0,∴a=1,∴a2﹣2a+1=12﹣2×1+1=0,故答案为:0.17.【解答】解:设再经过x秒后第2次相遇,依题意有2x =40×2﹣40,解得x=40.故再经过40秒后第2次相遇.故答案为:40.18.【解答】解:3x+5=x+25,2x=20,x=10,10﹣8=2(岁),答:小华现在2岁.故答案是:2岁.三.解答题(共7小题)19.【解答】解:(1)2x+5=5x﹣7,2x﹣5x=﹣7﹣5,﹣3x=﹣12,x=4;(2)3(x﹣2)=2﹣5(x+2),3x﹣6=2﹣5x﹣10,3x+5x=2﹣10+6,8x=﹣2,x=﹣0.25;(3)+=2,3(x+1)+2(x﹣4)=12,3x+3+2x﹣8=12,3x+2x =12﹣3+8,5x=17,x=3.4;(4)去分母得:3(x﹣1)﹣12=2(2x+3)+4(x+1),3x﹣3﹣12=4x+6+4x+4,3x﹣4x﹣4x=6+4+3+12,﹣5x=25,x=﹣5.20.【解答】解:∵x=3是方程的解,∴代入得:3[(+1)+]=2,解得:m=﹣.21.【解答】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入2x﹣1=x+a﹣6得:2x﹣1=x+2﹣6.解得:x=﹣3.22.【解答】解:设甲列车每小时行x千米,可得:4(x﹣50+x)+2x=1000.4x﹣200+4x+2x=1000,10x=1200,x=120.答:甲车每小时行120千米23.【解答】解:(1)设汽艇在静水中的速度为xkm/h.由题意,得2(x+3)=2.5(x﹣3)﹣0.5x=﹣13.5 x=27.答:汽艇在静水中的平均速度是27千米/小时;(2)由题意,得2(x+3)=2(27+3)=60(千米)答:A、B 两地之间的距离是60千米.24.【解答】解:(1)A方案收费:50×(0.8+0.2)=50,B方案收费:60+50×0.2=70.答:每月上网50小时,选A方案合算.(2)设每月100元上网x小时.依据题意,得A方案上网:0.8x+0.2x=100,解得x=100 B方案上网:60+0.2x =100,解得x=200 答:每月100元上网B方案比较合算.(3)设每月上网x小时,A、B两种方案上网费用一样多.依据题意,得0.8x+0.2x=60+0.2x 解得x=75.答:每月上网75小时,A、B两种方案上网费用一样多.25.【解答】解:(1)∵|a|=20 ∴a=20或﹣20 ∵ab<0,∴a,b异号,当a=20时,b=80,不合题意,舍去.当a=﹣20时,b=120,符合题意.答:a=﹣20,b=120.(2)①方法一:120﹣(﹣20)=140 140﹣3×5=125 125÷(3+2)=25 120﹣25×2=70.∴点C对应的数是120﹣2t=70.方法二:设Q 从B动身t秒在点C处与P相遇.依据题意,得15+3t+2t=140,解得t=25,∴点C对应的数是120﹣2t=70 答:点C对应的数是70.②方法一:(1)相遇前相距120﹣(﹣20)=140 140﹣3×5=125 125﹣20=105 105÷(3+2)=21 21+5=26 (2)相遇后相距120﹣(﹣20)=140 140﹣3×5=125 (125+20)÷(3+2)=29 29+5=34 ∴蚂蚁P动身26秒或者34秒后,两只蚂蚁在数轴上相距20个单位长度.方法二:依据题意,得相遇前:15+3t+20+2t=140,解得t=21,∴21+5=26;相遇后:15+3t+2t﹣20=140,解得t=29,∴29+5=34.答:蚂蚁P动身26秒或者34秒后,两只蚂蚁在数轴上相距20个单位长度.。
七年级数学3.1~3.3检测题
班级 姓名 得分
一、填空题:(9×5=45分)
1.已知2426n x +=是关于x 的一元一次方程,则n=_______。
2.若x =-1是方程2x-3a=4的解,则a=_______。
3.方程2m+x=1和3x-1=2x+1有相同的解,则m 的值为_______。
4.现有一个三位数,其个位数为a ,十位上的数字为b ,百位数上的数字为c ,则这个三位数应表示为__________________。
5.某数的3倍比它的一半大2,若设某数为x ,则列方程为__________________。
6.当=x _________时,代数式24+x 与93-x 的值互为相反数。
7.请写出一个与方程216x +=有相同解的一元一次方程:________________。
8.在公式()h b a s +=
2
1中,已知4,3,16===h a s
,则=b _______。
9.右图是今年某月份的日历,现用一长方形在日历中任意框出4个数: 请用一个等式表示d c b a ,,,之间的关系________________。
二、计算题:解下列方程。
(6×6=36分)
(1)
55257.52
x x -=⨯- (2)
x
x 41324
3-
=+
(3)()()x x 2152831--=-- (4)2
6
31x x =
+-
(5)16
)
1(53
)
1(2-+=
+x x (6)
x x x =+-
-5
.012
.02
.01.0
三、解答题:(9+10=19分)
1.小明今年12岁,他爸爸今年36岁,问再过多少年他爸爸的年龄是他的2倍?
2.中国民航规定乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了35千克行李,机票连同行李费共付1323元,求该旅客的机票价。