27.2等可能情形下的概率计算(1)
- 格式:ppt
- 大小:403.50 KB
- 文档页数:12
26.2等可能情形下的概率计算(一)[教学目标]1.在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型.2.进一步理解等可能事件的意义,会列出一些类型的随机试验的所有等可能结果(基本事件),会把事件分解成等可能的结果(基本事件).3.理解等可能条件下的概率(一)即古典概型的两个基本特征,掌握等可能条件下的概率(一)即古典概型的概率计算公式.4.会用列举法(包括列表、画树状图)计算一些随机事件所含的可能结果(基本事件)数及事件发生的概率.[教学过程(第一课时)]1.情境创设课本创设的问题情境,采用了从特殊到一般的思路:提出问题一思考交流一抽象概括一等可能条件下的概率(一)(即古典概型).教学时,可多举几个随机试验,例如,掷一枚均匀的硬币、摸球、抽签等,通过分析,再抽象概括出等可能条件下的概率(一)(即古典概型). 2.探索活动根据课本中列举的活动进行探索交流.教学时要注意突出等可能条件下的概率(一)(即古典概型)的两个基本特征——试验结果的有限性和等可能性.并不是所有的试验都是古典概型,一个试验是否为古典概型,关键在于这个试验是否具备古典概型的两个特征.例如,一射手射击打靶,“中靶”与“脱靶”一般不是等可能的.又如,从规格直径为100mm±0.2mm 的一批合格产品中任意抽测1件,其直径可能是从99.8mm到100.2mm之间的任何一个值,所有可能的结果有无穷多个.这两个试验都不是古典概型.根据教学的实际情况,可结合上面提供的素材提出问题供学生思考交流,从而进一步丰富对等可能条件下的概率(一)(即古典概型)的认识.3.例题教学课本安排了两个例题,应鼓励学生先尝试、思考,再研究讨论和计算.4.小结问题一等可能条件下的概率(一)即古典概型的两个基本特征是什么?问题二如何计算等可能条件下的概率(一)即古典概型中事件的概率?[教学过程(第二课时)]1.情境创设课本提供的情境是掷一枚硬币2次,可以继续追问“掷一枚硬币3次都是正面朝上的概率是多少?”.除课本提供的试验素材外,还可以创设更能引起学生兴趣和思考的游戏活动情境.例如,两人掷一枚均匀的骰子,一人一次.在做游戏之前,每人说一个数,如果抛掷的骰子两次朝上的点数之和恰与某人的一样,那么该人获胜.要想取得胜利,你会说哪个数?让学生切实感受到,树状图和列表格既形象又直观,可以帮助我们既不重复也不遗漏地列出所有可能的结果(基本事件),从而计算古典概型中事件所含的可能结果(基本事件)数及事件发生的概率.2.探索活动根据课本中列举的活动进行探索交流.除课本提供的素材外,教师还可选择一些更能引起学生兴趣和思考的探索问题.例如,一辆汽车向东行驶(如图).当汽车驶到十字路口时,它可以自由选择向左或向右或向前行驶,当通过第二个十字路口后,求下列事件发生的概率:(1)汽车向东行驶,(2)汽车向北行驶,(3)汽车向西或向北行驶,(4)汽车不向南行驶.又如,如图,一个树叉,一绿毛虫要去吃树叶.如果绿毛虫选择叉枝是等可能的,求下列事件发生的概率:(1)绿毛虫吃到树叶S;(2)绿毛虫吃到树叶了;(3)绿毛虫吃到树叶B.3.例题教学课本安排了两个例题,应鼓励学生先尝试、思考,再研究讨论和计算. 4.小结问题一如何用树状图列出所有可能的结果(基本事件)?举例说明;问题二如何用表格列出所有可能的结果(基本事件)?举例说明.。
课题:等可能情形下的概率计算知识梳理等可能事件的概率:()mP An,其中n是试验中所有等可能出现的结果(基本事件)的个数,m是所研究事件A中所包含的等可能出现的结果(基本事件)个数。
注:正确区分并计算,m n的关键是抓住“等可能”,即n个基本事件及m个基本事件都必须是等可能的;1. 分类计数原理做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法。
无论通过哪一类的哪一种方法,都可以完成这件事,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
2 . 分步计数原理做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法。
必须经过每一个步骤,才能完成这件事,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
随机试验具有下述两个特征:⑴有限性:只有有限个不同的基本事件;⑵等可能性:每个基本事件出现的机会是等可能的。
等可能事件的概率的方法:(1)画树状图(2)直接分类列举(3)列表例:从1 , 2 , 3这三个数字中,取出两个组成没有重复数字的两位数,其结果只有哪几种可能,哪个数被组成的可能性大些?(1)画树状图开始1 2 32 3 1 3 1 2(2)列表法第1次第2次 1 2 31 无21 312 12 无323 13 23 无中考在线1、有2n个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两个数之和为偶数的概率为(C)()A 12()B12n()C121nn--()D121nn++2、在10张奖券中,有4张有奖,从中任抽两张,能中奖的概率为(C)()A 12()B13()C23()D453、(11·天水)在a2□4a□4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是4、(2011?北京)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为()A.B.C.D.5、(2011?德州)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是.6、(11·贺州)在4张完全相同的卡片上分别画上图①、②、③、④.在看不见图形的情况下随机抽取一张,卡片上的图形是中心对称图形的概率是_ ▲.常见题型课堂演练1、在1,2,3,-4这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是()A.B.C.D.2、在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数图象上的概率是()A.B.C.D.3、在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为()(注:π取3)4、在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.5、“一方有难,八方支援”.今年11月2日,某县出现洪涝灾害,牵动着全县人民的心,县人民医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援防汛救灾工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.6、一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.(1)请用树状图或者列表法,表示事件发生的所有可能情况;(2)求关于x的方程有两个不相等实数根的概率.7、“校园手机”现象越来越受到社会的关注.“春节”期间,小记者刘凯随机调查了我区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:图①图②(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?8、某学校七年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明.(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规完:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?课后练习1、如图所示,电路图上有A、B、C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A、B,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于A.B.C.D.2、盒中装有3个外形相同的球,其中白球2个,黑球1个,从盒中随机抽取2个球,就下列三种不同的抽法,分别计算出其中一个是白球,一个是黑球的概率。
27.2等可能情形下的概率计算讲学案执笔:李新丰审核:焦道胜金峰教学目标:知识与技能:1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
过程与方法:通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。
情感态度与价值观:1、通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。
2、在活动中进一步发展合作交流的意识和能力。
教学重点:理解当试验次数较大时,试验频率稳定于理论概率。
教学难点:对概率的理解。
教学过程:一、问题情境:妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由!二、合作游戏:1、实验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格一的填写和有关结论的得出。
表格一:问题:(1)你认为哪种情况的概率最大?_红色__.(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论?当试验次数较小时,统计出的频率不能估计概率.2、累计收集数据:二人一组,任选自己喜欢的颜色分别汇总其中前两组(60次)、前三组(90次)、前四组(120次)、五组(150次)。
的试验数据,完成表格二的填写,并绘制出相应的折线统计图和有关结论的得出。
表格二:试验30 60 90 120 150 180 210 240 ……次频率试验次数30 60 90 120 150 180……问题:当试验次数较大时,比较数字色的频率与其相应的概率,你能得到什么结论?_________________________________________________.4、得出试验结论。
课题:等可能情形下的概率计算(一)学习目标:1. 能记住等可能情形下的概率计算方法.2.能利用列举的方法分析出等可能情形下的各种结果.学习过程:一.知识回顾一般地,表示一个随机事件A_______________的数,叫做这个事件A发生的概率,它可以记作____.二.学习探究:(一)学习新知:1.抛掷一枚均匀的硬币,向上一面的结果有___________,共___种.2.抛掷一枚均匀的骰子,向上一面的结果有___________,共___种.在以上两个试验中,具有如下两个共同特点(1)所有可能出现的不同结果都只有______;(2)各种不同结果出现的可能性____.练习: (1)袋中有3个球,2红1白,除颜色外,其余均相同,随意从中取出一个球,可能的结果有___________________(2)抛掷两枚均匀的硬币,若第一枚向上一面为正面,第二枚向上一面为正面可记作(正1,正2),则其它等可能的结果还有__________________________________________.(3)将分别标有数字1,2,3的三张卡片洗匀后,背面向上,随机从中抽一张作为十位数字,再从剩下的两张中抽一张作为个位数字,能组成的两位数有______________________.一般地,如果在一次试验中,有n种可能的结果,并且这些结果发生的可能性相等,其中使事件A发生的结果共有m(m≤n)种,那么事件A发生的概率为___________.注意:当A是必然事件时,P(A)=____;当A是不可能事件时,P(A)=_对于任何随机事件A,它的概率的取值范围是_______________三.学以致用:1.阅读P.90例1,并思考:在这个事件中,可能的结果有____________,有___种,其中我们所关注的事件是_________,有__种.2.例2.抛掷两枚均匀的硬币,求两枚硬币正面都向上的概率.分析:在这个事件中,可能的结果有________________________有___种,我们所关注的事件是_______,有___种.因此,若设两枚硬币正面都向上的事件为A,则P(A)=_____3.例3.某人密码箱的密码由三个数字组成,每个数字都是从0~9中任选的.如果他忘记了自己设定的密码,求在一次随机试验中他能打开箱子的概率.分析:在一次试验中,可能出现的结果共有___种,我们所关注的结果有___种.因此,若设在一次随机试验中他能打开箱子的概率为A,则P(A)=______反思:在计算某一事件的概率时,我们必须首先列举出各种等可能发生的结果,并明确我们所关注事件的结果有几种,从而利用概率公式计算出结果.四、.检查反馈:1.在不透明的袋子里,装有五个形状大小完全一样的球,其中3个红球,2个白球,现从中任取一个球,则取到红球的概率是_____2.从一副扑克牌中随机抽一张,则抽到红桃A的概率是_____,抽到红桃的概率是____,抽到A的概率是_______.3.密码箱的密码有五位,每位上的数字是0~9中的任一个,在开锁时,若某人忘了最后一位数字,他随机拨动最后一位数字,恰好打开锁的概率是_____;若他忘了最后两位数字,随机拨动最后两位数字,恰好打开锁的概率是__________.4.某班有1名男生、1名女生获数学竞赛奖,另外有1名男生、2名女生获英语竞赛奖,现从这两种奖项的获奖者中各选一名同学去领奖,求两人都是男生的概率.五.巩固延伸:1.口袋中放有两个红球和十个黄球,这两种球除颜色外没有任何区别,随机从口袋里任取一个球,取到红球的概率是____,取到黄球的概率是____,它们的概率之和是____.2.一间宿舍有4张分上下铺的单人床,可安排八名同学住宿.小明和小亮住同一间宿舍,因为小亮最小,大家一致同意他睡下铺,其余同学通过抽签决定自己的床位,那么小明睡到上铺的概率是多少?小明恰好睡到小亮上铺的概率是多少?3.杜集区实验初中共有学生824名,其中男生456名,若随机抽取一名学生进行采访,则抽到女生的概率是多少?4.十月份家电商场售出的彩电中,国外品牌与国内品牌的比例是5:11,预计11月份将售出400台彩电.假设顾客选择品牌是随机的,估计有多少台是国外品牌?如果有一位顾客来购买彩电,你认为他购买国内品牌的概率是多少?。