习题课一:剪力图与弯矩图的绘制
- 格式:ppt
- 大小:1.37 MB
- 文档页数:28
剪力图和弯矩图:悬臂梁的剪力图和弯矩图具体画法如下:内力图的规律:1、在无荷载作用区,当剪力图平行于x轴时,弯矩图为斜直线。
当剪力图为正时,弯矩图斜向右下;当剪力图为负时,弯矩图斜向右上。
2在均布荷载作用下的规律是:荷载朝下方,剪力往右降,弯矩凹朝上。
3、在集中力作用处,剪力图发生突变,突变的绝对值等于集中力的大小;弯矩图发生转折。
4、在集中力偶作用处弯矩图发生突变,突变的绝对值等于该集中力偶的力偶矩;剪力图无变化。
5、在剪力为零处有弯矩的极值弯矩图总结规律如下:1、在梁的某一段内,若无分布载荷作用,即q(x)=0,由d²M(x)/dx²=q(x)=0可知,M(x)是x的一次函数,弯矩图是斜直线。
2、在梁的某一段内,若作用分布载荷作用,即q(x)=常数,则d²M(x)/dx²=q(x)=常数,可以得到M(x)是x的二次函数。
弯矩图是抛物线。
3、在梁的某一截面内,若Fs(x)=dM(x)/dx=0,则在这一截面上弯矩有一极值(极大或极小)。
即弯矩的极值发生在剪力为零的截面上。
根据上述绘图规律可以准确画出悬臂梁在集中荷载下、均布荷载下的剪力图和弯矩图。
弯矩的叠加原理同一根粱AB受q、M0两种载荷作用、q单独作用及M0单独作用的三种受力情况。
在q、M0共同作用时:VA=ql/2+M0/l VS=ql/2+M0/l从计算结果中可以看到,梁的支座反力和弯矩都是荷载(q、M0)的一次函数,即反力或弯矩与荷载成线性关系。
这时,g、M0共同作用F所产生的反力或弯矩等于g与M0单独作用时所产生的反力或弯矩的代数和。
这种关系不仅在本例中存在,而且在其他力学计算中普遍存在,即只要反力、弯矩(或其他量)与载荷成线性关系,则若干个载荷共同引起的反力、弯矩(或其他量)等于各个载荷单独引起的反力、弯矩(或其他量)相叠加。
这种关系称为叠加原理。
应用叠加原理的前提是构件处在小变形情况下,这时各荷载对构件的影响各自独立。
作为一名土木工程师,在实际工作中,有时候要对软件(midas、sap2000、pkpm的计算结果有个判断)就要对结构的弯矩和剪力图有个大概的判断。
下面总结各种结构弯矩图的绘制及图例:
一、方法步骤
1、确定支反力的大小和方向(一般情况心算即可计算出支反力)
●悬臂式刚架不必先求支反力;
●简支式刚架取整体为分离体求反力;
●求三铰式刚架的水平反力以中间铰C的某一边为分离体;
●对于主从结构的复杂式刚架,注意“先从后主”的计算顺序;
●对于复杂的组合结构,注意寻找求出支反力的突破口。
2、对于悬臂式刚架,从自由端开始,按照分段叠加法,逐段求作M图(M图画在受拉一侧);对于其它形式的刚架,从支座端开始,按照分段叠加法,逐段求作M图(M图画在受拉一侧)。
二、观察检验M图的正确性
1、观察各个关键点和梁段的M图特点是否相符
●铰心的弯矩一定为零;
●集中力偶作用点的弯矩有突变,突变值与集中力偶相等;
●集中力作用点的弯矩有折角;
●均布荷载作用段的M图是抛物线,其凹凸方向与荷载方向要符合“弓箭法则”;
2、结构中的链杆(二力杆)没有弯矩;
3、结构中所有结点的杆端弯矩必须符合平衡特点。
各种结构弯矩图例如下:。