图2-6 点的平移变换
第2章 工业机器人运动学
(2.8)
记为: a′=Trans(Δx, Δy, Δz)a 其中,Trans(Δx, Δy,Δz)称为平移算子,Δx、Δy、Δz分别 表示沿X、Y、Z轴的移动量。 即:
(2.9)
第2章 工业机器人运动学
注: ① 算子左乘: 表示点的平移是相对固定坐标系进行的坐 标变换。 ② 算子右乘: 表示点的平移是相对动坐标系进行的坐标 变换。 ③ 该公式亦适用于坐标系的平移变换、 物体的平移变换, 如机器人手部的平移变换。
图 2-11 连杆的关系参数连杆可以由四个参数来描述,其中两个是连杆 尺寸, 两个表示连杆与相邻连杆的连接关系。
确定连杆的运动类型, 同时根据关节变量即可设计关节 运动副,从而进行整个机器人的结构设计。
已知各个关节变量的值, 便可从基座固定坐标系通过连 杆坐标系的传递, 推导出手部坐标系的位姿形态。
图 2-12 SCARA装配机器人的坐标系
第2章 工业机器人运动学
该机器人的参数如表2.2所示。
连杆 连杆1 连杆2 连杆3
表2.2 SCARA装配机器人连杆参数
转角(变量)θ θ1
两连杆间距离d 连杆长度a
d1=0
a1=l1=100
当α=60°, β=60°, γ=45°时, 矢量为
第2章 工业机器人运动学
4. 动坐标系位姿的描述就是用位姿矩阵对动坐标系原点位
置和坐标系各坐标轴方向的描述。该位姿矩阵为(4×4)的方 阵。如上述直角坐标系可描述为:
(2.4)
第2章 工业机器人运动学
5. 机器人的每一个连杆均可视为一个刚体, 若给定了刚体
αn
扭角
连杆n两关节轴线之间的扭 角,尺寸参数