二阶线性微分方程解的结构
- 格式:doc
- 大小:1.04 MB
- 文档页数:22
二阶线性微分方程解的结构\[ \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = f(x) \]其中,\(p(x)\)、\(q(x)\)和\(f(x)\)都是定义在一些区间上的函数。
解二阶线性微分方程可以分为齐次方程和非齐次方程两种情况。
齐次方程是指 \( f(x) = 0 \) 的情况,而非齐次方程则是 \( f(x) \neq 0 \) 的情况。
首先来看齐次方程。
对于齐次方程:\[ \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0 \]可以先求出其特征方程:\[ \lambda^2 + p(x)\lambda + q(x) = 0 \]然后根据特征方程的根来确定齐次方程的解的结构。
1.当特征方程的两个根 \( \lambda_1 \) 和 \( \lambda_2 \) 相异实根时,方程的通解可以表示为:\[ y(x) = C_1e^{\lambda_1x} + C_2e^{\lambda_2x} \]其中,\(C_1\)和\(C_2\)是任意常数。
2.当特征方程的两个根 \( \lambda_1 \) 和 \( \lambda_2 \) 相等实根时,方程的通解可以表示为:\[ y(x) = (C_1 + C_2x)e^{\lambda_1x} \]其中,\(C_1\)和\(C_2\)是任意常数。
3.当特征方程的两个根 \( \lambda_1 \) 和 \( \lambda_2 \) 为共轭复根 \( \alpha \pm \beta i \) 时,方程的通解可以表示为:\[ y(x) = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x)) \]其中,\(C_1\)和\(C_2\)是任意常数。
接下来看非齐次方程。
对于非齐次方程:\[ \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = f(x) \]其通解可以利用齐次方程的通解和一个特解的和来表示。
二阶微分方程解的结构定理咱们可以看看解的结构。
哎,结构这个词听起来可能有点严肃,其实就是在说,解到底长什么样,怎么组成。
简单来说,二阶微分方程的解有点像搭积木,里面有基础解和特解。
基础解就像是那些坚固的底座,得稳得住;而特解则是加上的各种花样,就像你在底座上加的那些好看又有趣的零件。
没错,基础解一般可以用公式求出来,而特解呢,通常是通过一些聪明的技巧找到的。
就好比你在找食谱,基础解是基本材料,特解是你的小创意。
然后,我们来聊聊线性组合。
线性组合听上去高大上,其实说白了,就是把几种基础解加在一起,像做沙拉一样,把生菜、西红柿和黄瓜混合在一起,最后调料一上,味道就出来了。
就算基础解再简单,混合后也能变得丰富多彩。
这个组合的过程,常常能让我们得到很多新的解,简直就像魔术一样!再说了,数学界的大神们经过研究发现,只要满足一定条件,二阶线性微分方程的解总能通过这样的线性组合来表示,简直是个“万金油”。
哦,对了,咱们还得提一提初始条件。
初始条件就像人生的起点,决定了你之后的旅程怎么走。
设定好初始条件,咱们就能找到一个唯一的解。
没错,数学的魅力就是在于它的精确性。
只要初始条件确定,解就不再是模糊的,而是有了明确的方向。
这就像你决定了目标后,沿着这条路走,就能找到属于你的风景。
说到这里,大家可能会觉得,哎呀,这些听起来真有点复杂,但当你慢慢深入,就会发现这其中的乐趣。
解方程的过程,就像解锁一扇扇门,每扇门后面都藏着新的世界。
就算是偶尔遇到一些难题,也不要气馁,耐心一点,兴许就能发现新的解法。
这就像生活,遇到困难时,咱们也得想办法突破,才能找到更好的自己。
咱们得二阶微分方程解的结构定理就像一块拼图,拼完了才能看到完整的画面。
无论是基础解、特解,还是线性组合和初始条件,都是这个拼图的重要组成部分。
每一个细节都不能忽视,缺一不可。
希望通过这个轻松的聊天,大家能对二阶微分方程有更深的了解。
就像一杯好茶,越品越有味,数学的世界也同样如此,值得咱们深入去探索。
版权所有翻版必究/浅析二阶线性微分方程解的结构定理一、二阶线性微分方程解的结构二阶线性微分方程解的一般形式是22d d ()()(),y y P x Q x y f x dx dx ++=1-1其中()P x ,()Q x 及()f x 是自变量x 的已知函数,函数()f x 称为该方程的自由项。
当()0f x =时,方程1-1成为22d d ()()0,y y P x Q x y dx dx++=1-2这个方程称为二阶齐次线性微分方程,相应地,方程1-1称为二阶非齐次线性微分方程。
定理1如果函数1()y x 与2()y x 是方程1-2的两个解,则1122()()y C y x C y x =+1-3也是方程1-2的解,其中1C ,2C 是任意常数。
定理2如果1()y x 与2()y x 是方程1-2的两个线性无关的特解,则1122()()y C y x C y x =+也是方程1-2的通解,其中1C ,2C 是任意常数。
定理3设*y 是方程1-1的一个特解,而Y 是其对应的齐次方程1-2的通解,则*y Y y =+1-4就是二阶非齐次线性微分方程1-1的通解。
定理4设1*y 与2*y 分别是方程1y ()()()P x y Q x y f x '''++=版权所有翻版必究/与2y ()()()P x y Q x y f x '''++=的特解,则12**y y +是方程12y ()()()()P x y Q x y f x f x '''++=+1-5的特解。
定理5设12y iy +是方程12y ()()()()P x y Q x y f x if x '''++=+1-6的解,其中()P x ,()Q x ,1()f x ,2()f x 为实值函数,i 为纯虚数。
则1y 与2y 分别是方程1y ()()()P x y Q x y f x '''++=2y ()()()P x y Q x y f x '''++=的解。
二阶线性微分方程解的结构()d ()d *()()d p x x p x x y x e e f x x -⎰⎰=⎰。
容易验证,*()y x 是方程(A.1)的一个特解。
这符合线性方程解的结构规律。
例1 求解一阶常微分方程'21y y -=解 此时()2()1p x f x =-=,,由(A.5)式,解为2222()1d 12x x x x y x Ce e e xCe -=+⋅=-⎰‘其中C 是任意常数。
A.2 二阶线性常微分方程将具有以下形式的方程"()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。
称"()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程.A .2.1 二阶线性微分方程解的结构首先讨论齐次方程(A.7)解的结构。
定理A.2 如果函数12()()y x y x 与是线性齐次方程(A.7)的两个解,则函数1122()()y c y x c y x =+仍为该方程的解,其中12,c c 是任意的常数。
定理1 说明齐次线性常微分方程(A.7)的解如果存在的话,一定有无穷多个。
为了说明齐次线性常微分方程(A.7)通解的结构,首先给出函数线性无关的定义。
定义A.1设函数12(),(),,()n y x y x y x 是定义在区间I 上的n 个函数,如果存在n 个不全为零的常数12,,n k k k ,,使得1122()()()0n n k y x k y x k y x ++=在区间I 上恒成立,则称函数12(),(),,()n y x y x y x 在区间上线性相关,否则称为线性无关。
例如函数221cos ,sin x x ,在整个数轴上是线性相关的,而函数x x e e -和在任何区间(,)a b 内是线性无关的。
二阶微分方程解的结构\[y''(x)+p(x)y'(x)+q(x)y(x)=0\]的微分方程,其中$p(x)$和$q(x)$是已知函数。
一般来说,二阶微分方程的解的结构通常包括以下几种情况:1.常数解:如果将$y(x)=c$代入方程中,其中$c$为常数,可以发现方程两边都为零,所以$y(x)=c$是方程的一个解。
这种情况通常对应于方程的齐次形式没有$x$的因子。
2.指数解:如果将$y(x)=e^{mx}$代入方程中,可以得到一个关于$m$的代数方程,称为特征方程。
解特征方程可以得到$m$的值,从而确定了指数解$y(x)=e^{mx}$的形式。
这种情况通常对应于方程的齐次形式有$x$的因子。
3.三角函数解:如果将$y(x)=\sin mx$或$y(x)=\cos mx$代入方程中,可以得到一个关于$m$的代数方程,称为特征方程。
解特征方程可以得到$m$的值,从而确定了三角函数解的形式。
这种情况通常对应于方程的齐次形式有$x$的因子。
4.线性组合解:如果已知方程的两个解$y_1(x)$和$y_2(x)$,那么它们的线性组合$y(x)=c_1y_1(x)+c_2y_2(x)$也是方程的解。
这是因为微分方程是线性的,满足叠加原理。
5.特解:对于非齐次形式为$y''(x)+p(x)y'(x)+q(x)y(x)=f(x)$的微分方程,如果能找到一个特解$y_p(x)$,使得特解满足$f(x)=y''_p(x)+p(x)y'_p(x)+q(x)y_p(x)$,那么$y(x)=y_h(x)+y_p(x)$就是方程的一个解,其中$y_h(x)$是齐次形式的解。
需要注意的是,在求解二阶微分方程时,常常需要先求解齐次方程的解,然后再通过特解的方法求得非齐次方程的解。
齐次方程的解的结构通常可以根据特征方程$m^2+pm+q=0$的根的情况来分类:1.当特征方程有两个不相等的实根$m_1$和$m_2$时,齐次方程的解为$y(x)=c_1e^{m_1x}+c_2e^{m_2x}$,其中$c_1$和$c_2$为常数。
二阶线性微分方程解的结构————————————————————————————————作者: ————————————————————————————————日期:ﻩ附录A 线性常微分方程本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。
把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。
线性常微分方程的标准形式()(1)110()()'()()n n n yp x y p x y p x y f x --++++=(A.1)其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。
可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。
,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。
一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。
在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。
A.1 一阶线性常微分方程一阶线性常微分方程表示为'()()y p x y f x x I +=∈,.(A.2)当()0f x ≡,方程退化为'()0y p x y +=,(A.3)假设()y x 不恒等于零,则上式等价于'()y p x y=- 而()'ln 'y y y=,从而(A.3)的通解为 ()d ()p x xy x Ce -⎰=( A.4)对于非齐次一阶线性常微分方程(A .2),在其两端同乘以函数()d p x x e ⎰()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ⎰⎰⎰+=注意到上面等式的左端()d ()d ()d ''()p x x p x x p x x e y p x e y e y ⎛⎫⎰⎰⎰+= ⎪⎝⎭‘因此有()d ()d '()p x x p x x e y ef x ⎛⎫⎰⎰= ⎪⎝⎭‘ 两端积分()d ()d ()d p x xp x xe y C ef x x ⎰⎰=+⎰‘其中C 是任意常数。
进一步有()d ()d ()d p x x p x x y e C e f x x -⎛⎫⎰⎰=+ ⎪⎝⎭⎰‘ 综上有如下结论定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式()d ()d ()d ()()d p x xp x xp x x y x Ce e ef x x --⎰⎰⎰=+⎰‘(A.5)其中C 是任意常数。
观察(A .4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于一阶线性齐次常微分方程(A.2)的通解()d p x xCe -⎰加上函数()d ()d *()()d p x xp x x y x e e f x x -⎰⎰=⎰。
容易验证,*()y x 是方程(A.1)的一个特解。
这符合线性方程解的结构规律。
例1 求解一阶常微分方程'21y y -=解 此时()2()1p x f x =-=,,由(A.5)式,解为2222()1d 12x x x x y x Ce e e xCe -=+⋅=-⎰‘其中C是任意常数。
A .2 二阶线性常微分方程将具有以下形式的方程"()'()()y p x y q x y f x x I ++=∈,,(A.6)称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x的已知连续函数。
称"()'()0y p x y q x y x I ++=∈,,(A.7)为与(A.6)相伴的齐次方程.A.2.1 二阶线性微分方程解的结构首先讨论齐次方程(A.7)解的结构。
定理A.2 如果函数12()()y x y x 与是线性齐次方程(A.7)的两个解,则函数1122()()y c y x c y x =+仍为该方程的解,其中12,c c 是任意的常数。
定理1 说明齐次线性常微分方程(A.7)的解如果存在的话,一定有无穷多个。
为了说明齐次线性常微分方程(A.7)通解的结构,首先给出函数线性无关的定义。
定义A.1设函数12(),(),,()n y x y x y x 是定义在区间I 上的n 个函数,如果存在n个不全为零的常数12,,nk k k ,,使得1122()()()0n n k y x k y x k y x ++=在区间I 上恒成立,则称函数12(),(),,()n y x y x y x 在区间上线性相关,否则称为线性无关。
例如函数221cos ,sin x x ,在整个数轴上是线性相关的,而函数xxe e -和在任何区间(,)a b 内是线性无关的。
特别的,对于两个函数的情形,它们线性相关与否,只需要看它们的比值是否为常数即可,比值为常数,那么它们线性相关,否则线性无关。
有了函数线性无关的概念,就有如下二阶线性齐次微分方程(A.7)通解结构的定理。
定理A.3假设线性齐次方程(A.7)中,函数()()p x q x 与在区间I 上连续,则方程(A.7)一定存在两个线性无关的解。
类似于代数学中齐次线性方程组,二阶线性齐次常微分方程的解集合也存在基础解系。
定理 A.4 若12()()y x y x 与是二阶线性齐次常微分方程(A.7)的两个线性无关的特解,则1122()()y c y x c y x =+是该方程的通解,其中12,c c 是任意的常数。
从定理A .4可以看出二阶线性齐次常微分方程(A.7)的任何两个线性无关的特解构成其基础解系。
关于二阶线性非齐次常微分方程(A .6)的通解,有如下结论定理A .5 若函*()y x 是方程(A.6)的一个特解,()Y x 是方程(A.6)相伴的齐次方程的通解,则()()*()y x y x Y x =+是二阶线性非齐次常微分方程(A.6)的通解。
从定理A.4,A.5可以得到求解二阶线性非齐次常微分方程(A.6)的通解的一般步骤:(1)求解与(A.6)相伴的齐次方程(A.7)的线性无关的两个特解12()()y x y x 与,得该齐次方程的通解1122()()()Y x c y x c y x =+;(2)求二阶线性非齐次常微分方程(A.6)的一个特解*()y x ,那么方程(A.6)的通解为()()*()y x y x Y x =+对于一些相对复杂的问题,如下的线性微分方程的叠加原理是非常有用的。
定理A .6 设二阶线性非齐次常微分方程为12"()'()()()y p x y q x y f x f x ++=+, (A.8)且12*()*()y x y x 与分别是1"()'()()y p x y q x y f x ++=和2"()'()()y p x y q x y f x ++=的特解,则12*()*()y x y x +是方程(A.8)的特解。
A.2.1 二阶常系数线性常微分方程的解法如果二阶线性常微分方程为"'()y py qy f x ++=, (A.9)其中,p q 均为常数,则称为二阶常系数线性常微分方程。
以下分两种情形讨论方程(A.9)的解法。
一、二阶常系数线性齐次方程的解法 此时问题为"'0y py qy ++=,(A.10)考虑到方程中的系数,p q 均为常数,可以猜想该方程具有形如rxy e =的解,其中r 为待定常数,将'rxy re =和2"rxy r e =‘及rxy e =代入方程"'0y py qy ++=得,2()0rx e r pr q ++=,由于0rxe≠,因此,只要r 满足方程20r pr q ++=,(A.11)即只要r 是上述一元二次方程的根时,rxy e =就是(A.10)的解,方程(A .11)称为方程(A .10)的特征方程,它的根称为特征根。
关于特征方程(A.11)的根与微分方程(A .10)的解的关系有如下结论。
1. 特征方程具有两个不相等的实根12r r 与,即12r r ≠。
此时函数1212()()r xr xy x e y x e ==和都是微分方程(A .10)的解,且因1212r r xy e y -=≠()常数,所以12()()y x y x ,线性无关,因而常微分方程的通解为 1212()r x r x y x c e c e =+.2. 特征方程具有两个相等的实根,即122p r r ==-。
这时函数11()r xy x e =是微分方程(A.11)的一个特解,还需另找一个与之线性无关的特解2()y x 。
为此设21()()()y x u x y x =,其中()u x 为待定的函数,将2()y x 及其一、二阶导数代入方程(A.10)得,12111["(2)'()]0r x e u r p u r pr q u +++++=,注意到12p r =-是特征方程的根,且10r xe ≠,因此只要()u x 满足"()0u x =“,则12()()r x y x u x e =就是微分方程(A.10)的解。
特别地取12()r x y x xe =,此时微分方程(A.11)的通解为1111212()()r x r x r x y x c e c xe c c x e =+=+.3. 特征方程具有一对共轭复根,12r i r i αβαβ=+=-与。
这时两个线性无关的特解()()12i xi x y ey e αβαβ+-==与是两个复数解。
为了便于在实数范围内讨论问题,我们再构造两个线性无关的实数解。
由欧拉公式cos sin ix e x i x =+,可得1(cos sin )x y e x x αββ=+,2(cos sin )x y e x x αββ=-,于是由定理1知,函数121cos 2x e x y y αβ=+(),121sin 2xe x y y αβ=-()是微分方程(A.10)的解,容易验证它们线性无关,所以这时方程的通解可以表示为12()(cos sin )x y x e c x c x αββ=+ .上述求解二阶常系数线性齐次方程的方法称为特征根法,其具体步骤可总结如下(1)写出所给微分方程的特征方程;(2)求出特征根;(3)根据特征根的三种不同情况求得对应的特解,并写出其通解。