土力学应用地基与基础
- 格式:ppt
- 大小:2.12 MB
- 文档页数:14
知识创造未来
土力学与地基基础
土力学是力学的一个分支,研究土体的力学行为和力学性质。
它主要研究土体的强度、变形特性、流变性和孔隙特性等。
土力学的研究内容包括土体的力学性质试验、土体强度理论、土体变形特性、土体的流变性和孔隙特性等。
地基基础是建筑工程中的一个重要组成部分,它是为建筑物提供稳定支撑和传递荷载的基于地面以下部分。
地基基础承受建筑物和荷载产生的重力荷载、水平荷载和地震荷载等,同时还要满足土壤的承载力和变形要求。
地基基础的设计和施工需要考虑土壤的力学性质和承载力,通过合理的设计和施工保证建筑物的安全和稳定。
土力学与地基基础密切相关,土力学的理论和方法为地基基础的设计和分析提供了重要的依据和指导。
通过研究土体的力学性质和力学行为,可以确定地基基础的荷载传递机理和承载力计算方法,以及地基基础的变形控制和稳定性分析等。
在地基基础工程中,土力学的知识和方法被广泛应用于基坑支护、地基处理、地基改良和基础设计等方面,可以提高工程的安全性和经济性。
1。
《土力学与地基基础》教案第一章:土的性质与分类1.1 教学目标了解土的组成、性质和分类,掌握土的三相指标及土的密度、含水率和塑性指数的概念。
学会使用土工试验仪器进行土的物理性质试验。
理解土的工程特性及其对地基基础的影响。
1.2 教学内容土壤的组成与结构土壤的物理性质:密度、含水率、塑性指数土壤的力学性质:抗剪强度、压缩性、渗透性土的分类与工程特性土工试验:密度试验、含水率试验、塑性指数试验1.3 教学方法课堂讲授:讲解土壤的性质、分类和工程特性。
实验教学:指导学生使用土工试验仪器进行土的物理性质试验。
案例分析:分析实际工程案例,理解土壤性质对地基基础的影响。
第二章:土力学基本理论2.1 教学目标掌握土力学的基本概念、原理和定律,包括剪切强度理论、压缩理论和小应变弹性理论。
学会运用土力学理论分析土壤的力学行为。
土力学的基本概念:应力、应变、应力路径剪切强度理论:抗剪强度、库仑定律、莫尔-库仑准则压缩理论:压缩性、压缩系数、压缩模量小应变弹性理论:弹性模量、泊松比、弹性应变2.3 教学方法课堂讲授:讲解土力学的基本概念、原理和定律。
数值分析:运用数值方法分析土壤的力学行为。
案例分析:分析实际工程案例,运用土力学理论解决问题。
第三章:地基基础设计原理3.1 教学目标掌握地基基础的设计原理和方法,包括浅基础、深基础和地下工程的设计。
学会运用土力学和结构力学的知识进行地基基础的设计。
3.2 教学内容浅基础设计原理:承载力计算、基础尺寸确定、沉降计算深基础设计原理:桩基础、沉井基础、地下连续墙地下工程设计原理:隧道、地铁、地下室3.3 教学方法课堂讲授:讲解地基基础的设计原理和方法。
数值分析:运用数值方法分析地基基础的设计问题。
案例分析:分析实际工程案例,运用土力学和结构力学的知识进行地基基础设计。
第四章:地基承载力与稳定性分析掌握地基承载力和稳定性的分析方法,包括极限平衡法、数值方法和实验方法。
学会运用地基承载力和稳定性分析方法解决实际工程问题。
土力学与地基基础总结土力学与地基基础总结土力学与地基基础总结一第1章绪论1、基本概念土力学:是用力学的观点研究土各种性能一门科学地基:直接承受建筑物荷载的那一部分土层基础:将上部结构的荷载传递到地基中的结构的一部分,通常称为下部结构持力层:直接与基础地面接触的土层下卧层:地基内持力层下面的土层软弱下卧层:地基承载力低于持力层的下卧层天然地基:未经人工处理就可满足设计要求的地基人工地基:地层承载力不能满足设计要求,需进行加固处理的地基基础埋深:从设计地面(一般从室外地面)到基础底面的垂直距离浅基础:埋深小于5m,只需挖槽、排水等普通施工程序即可建造的基础深基础:借助于特殊施工方法建造的基础。
如桩基、墩基、沉井和地下连续墙2、地基与基础设计的基本条件(1)作用于地基上的荷载效应不得超过地基容许承载力值。
(2)基础沉降不得超过地基变形容许值。
(3)具有足够防止失稳破坏的安全储备。
第2章土的物理性质和工程分类1、土的结构:(1)单粒结构;(2)蜂窝结构;(3)絮状结构2、土的构造(1)层状构造;(2)分散构造;(3)裂隙构造(4)结核状构造3、土的工程特性(1)压缩性高;(2)强度低;(3)透水性大4、土的颗粒级配(1)土的粒径: d60 —控制粒径d10 —有效粒径d30 —中值粒径(3)连续程度:Cc = d302 / (d60 ×d10 ) —曲率系数5、土的物理性质(1)土的物理性质指标1)土的密度、有效密度、饱和密度、干密度土的重度、有效重度、饱和重度、干重度2)土粒的比重3)土的饱和度4)土的含水量5)土的孔隙比和空隙率(2)无粘性土的密实度:Dremaxeemaxemin(3)粘性土的物理性质:(4)液性指数和塑性指数IpLpILpLp(5)粘性土的灵敏度(6)粘性土的触变性饱和粘性土受到扰动后,结构产生破坏,土的强度降低。
当扰动停止后,土的强度随时间又会逐渐恢复的现象,称为触变性。
土力学与地基基础心得报告引言土力学是土木工程学科中的一个重要分支,它研究土壤的物理力学性质,以及土壤与工程结构之间的相互作用关系。
地基基础是土木工程中最重要的一环,它承载着整个工程的荷载,直接影响工程的安全性和稳定性。
在本次学习过程中,我对土力学与地基基础有了更深入的了解,本文将就此进行总结和心得报告。
理论知识掌握在学习过程中,我通过课堂的学习、参考教材和学习资料的阅读,逐渐掌握了土力学与地基基础的基本理论知识。
其中包括土壤的物理力学性质、土壤中的水分与渗流、土壤的固结与沉降、土壤的承载力与变形性等方面的知识。
这些理论知识为我后续的实践操作提供了必要的基础。
实践操作技能通过课堂上的实践操作、实验室的模拟实验以及实地勘测与观察,我逐渐掌握了相关的实践操作技能。
例如,我学会了如何使用土壤试验仪器进行土壤的力学性质测试,如剪切强度试验、压缩试验等。
我还参与了地基基础的施工监测工作,学会了如何进行地基基础的测量与观测,并掌握了一些常用的地基加固与处理的方法。
实际案例分析在学习过程中,我们还对一些实际的工程案例进行了分析与讨论。
通过分析这些案例,我们可以更加深入地理解土力学与地基基础的理论知识在实际工程中的应用。
例如,我们分析了某一高层建筑工程中地基基础的设计与施工,以及在后续使用过程中的变形与沉降情况。
通过这些案例的分析,我们可以总结出一些规律和经验,为我们今后的工程实践提供借鉴和指导。
心得体会通过学习土力学与地基基础,我深刻体会到了土壤与工程结构之间的紧密联系。
地基基础是工程安全和稳定的基石,合理的设计和施工过程是确保工程质量的关键。
在未来的工程实践中,我将继续加强对土力学与地基基础的学习,在实践中不断提升自己的实践能力与技术水平。
结论通过本次学习,我对土力学与地基基础有了更全面、更深入的认识。
我掌握了相关的理论知识和实践技能,并通过实际案例的分析,深化了对土力学与地基基础的理解。
我相信在今后的工程实践中,我将能够更好地运用土力学与地基基础的知识,为工程建设贡献自己的力量。
绪论一、土力学、地基及基础1、土力学:土力学的研究对象是“工程土”。
土是岩石风化的产物,是岩石经风化、剥蚀、搬运、沉积而形成的松散堆积物,颗粒之间没有胶结或弱胶结。
土的形成经历了漫长的地质历史过程,其性质随着形成过程和自然环境的不同而有差异。
因此,在建筑物设计前,必须对建筑场地土的成因、工程性质、不良地质现象、地下水状况和场地的工程地质等进行评判,密切结合土的工程性质进行设计和施工。
否则,会影响工程的经济效益和安全使用。
土力学是工程力学的一个分支,是利用力学原理研究土的应力、应变、强度和稳定性等力学问题的一门应用学科。
由于土的物理、化学和力学性质与一般刚体、弹性固体和流体有所不同,因此,土的工程性质必须通过土工测试技术进行研究。
2、地基:建筑物都是建造在土层或岩层上的,通常把直接承受建筑物荷载的土层或岩层称为地基。
未经人工处理就能满足设计要求的地基称为天然地基;需要对地基进行加固处理才能满足设计要求的地基称为人工地基。
3、基础:建筑物上部结构承受的各种荷载是通过基础传递给地基的,所谓基础是指承受建筑物各种荷载并传递给地基的下部结构。
通常情况下,建筑物基础应埋入地面以下一定深度进入持力层,即基础的埋置深度。
按照基础的埋置深度的不同,基础可分为浅基础和深基础。
在建筑物荷载作用下,地基、基础和上部结构三部分是彼此联系、相互影响和共同作用的,如图1所示。
设计时应根据场地的工程地质条件,综合考虑地基、基础和上部结构三部分的共同作用和施工条件,并通过经济、技术比较,选取安全可靠、经济合理、技术可行的地基基础方案。
二、土力学的发展简史生产的发展和生活的需要,使人类早就懂得了利用土进行建设。
西安半坡村新石器时代的遗址就发现了土台和石础;公元前两世纪修建的万里长城及随后修建的京杭大运河、黄河大堤等都有坚固的地基与基础。
这些都说明我国人民在长期的生产实践中积累了许多土力学方面的知识。
十八世纪产业革命以后,随着城市建设、水利工程及道路工程的兴建,推动了土力学的发展。
一、名词解释1. 土力学:是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。
为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。
主要用于土木、交通、水利等工程。
2.地基:地基是指建筑物下面支承基础的土体或岩体。
3.基础:是指建筑物地面以下的承重结构,如基坑、承台、框架柱、地梁等。
4.软弱下卧层:在持力层以下受力层范围内存在软土层,其承载力比持力层承载力小得多,该软土层称为软弱下卧层。
5. 土体:土体不是由单一而均匀的土组成的,而是由性质各异、厚薄不等的若干土层以特定的上下次序组合在一起。
因而土体不是简单的土层组合.而是与工程建筑的安全、经济和正常使用有关的土层组合体。
6.界限粒径:界限粒组的物理意义是划分粒组的分界尺寸7. 土的颗粒级配:又称(粒度)级配。
由不同粒度组成的散状物料中各级粒度所占的数量。
常以占总量的百分数来表示。
8.界限含水量:通常是指土的液限、塑限和缩限。
众所周知,液限和塑限是粘性土极为重要的指标,是粘性土工程分类的主要依据,和天然含水量一起,是估价土的工程特性的主要参数。
9. 土的灵敏度:是指原状土强度与扰动土强度之比ST=原状土强度/扰动土强度。
10.自重应力:是岩土体内由自身重量引起的应力。
11.基底压力:建筑物的荷载通过自身基础传给地基,在基础底面与地基之间便产生了荷载效应(接触应力)。
12.基底附加压力:是指建筑物建造后,基底接触压力与基底处土自重应力之差,一般将其作为作用于弹性半空间表面上的局部荷载,并根据弹性理论来求算地基中的附加应力。
13.地基附加应力:是指荷载在地基内引起的应力增量。
14. 土的压缩性:是指土受压时体积压缩变小的性质。
15. 土的固结:是指松散沉积物转变为固结岩石的过程。
16.压缩系数:是描述物体压缩性大小的物理量。
17.压缩模量Es:是指在侧限条件下受压时压应力6与相应应变qz之比值。
土力学与地基基础知识点总结土力学与地基基础知识点总结1. 引言土力学(soil mechanics)是研究土体力学性质和力学行为的学科,它在土木工程中具有重要的地位。
地基基础则是土力学应用的一个重要领域,它关乎着建筑物的稳定性和安全性。
本文将从土力学的基础概念、土体性质、土力学参数和地基基础设计等方面,对土力学与地基基础的关键知识点进行总结。
2. 土力学的基础概念(1)土体:土力学研究的对象是由固体颗粒、空隙和水分组成的土体。
土体可以分为粘性土和非粘性土两大类。
(2)土力学三性:土体的强度、变形和渗透性是土力学研究的三个基本性质。
(3)边界条件:土体的力学行为与边界条件密切相关,包括自由边界、刚性边界和过渡边界。
(4)固结与压缩:土体在受到外力作用的过程中,会发生固结与压缩现象。
固结是指土体体积的减小,而压缩则是指土体产生的应力与应变的变化。
3. 土体性质(1)颗粒组成:土体的颗粒组成对其力学性质有很大影响,不同颗粒组成的土体具有不同的工程特性。
(2)粒径分布:土体中颗粒的粒径大小分布对土体的密实度、渗透性和抗剪强度等性质有影响。
(3)含水量:土体中水分的含量决定了土体的湿度状态,并影响其强度和固结性质。
(4)比表面积:土体颗粒的比表面积对水分和颗粒间的黏聚力有影响,是研究土体吸力和渗透性的重要参数。
4. 土力学参数(1)有效应力和孔隙水压力:有效应力是指实际应力减去孔隙水压力,对土体的强度和变形特性有重要影响。
(2)孔隙比和孔隙比因子:孔隙比是指土体的孔隙体积与固相体积的比值,是研究土体压缩性和渗透性的重要参数。
(3)剪切强度和摩擦角:土体的剪切强度与颗粒间的黏聚力和内摩擦角有关,是研究土体稳定性的重要指标。
(4)压缩指数和压缩预应力:土体的压缩指数和压缩预应力是研究土体固结性质的重要参数,对土体的固结行为有影响。
5. 地基基础设计(1)承载力计算:地基基础的主要设计目标是保证建筑物的稳定和安全,需要进行承载力计算来确定地基基础的尺寸和形式。
绪 论一、土力学、地基与基础的概念:1.地基——位于建筑物基础的下方,支承建筑物荷载的那部分地层。
⎩⎨⎧⎩⎨⎧人工地基天然地基地基岩石土地基的组成 土——地球表面的大块岩石经风化、搬运、沉积而形成的松散堆积物,称为土。
⎪⎪⎪⎩⎪⎪⎪⎨⎧残余变形变形包括了单性变形变形需一定的时间变形性较大透水性孔隙性液三相组成气由固土的主要特征..5.4.3..2 (1)2.土力学:土力学——利用力学的一般原理,研究土的应力、应变、强度、稳定和渗透等特性及其随时间变化规律的学科,称为土力学。
3.基础:基础——建筑物的一部分,位于地面以下,承受上部结构传来的荷载,形状是扩大的那部分下部结构,称为基础。
⎩⎨⎧><特殊的施工方法深基础施工方法简单浅基础基础分类)m 5()m 5(4.地基与基础设计的原则:安全、经济综合考虑地基、基础和上部结构三者之间的相互关系。
1.要求作用于地基的荷载不超过地基的承载能力,保证地基。
在防止整体破坏方面有足够的安全储备。
(安全系数)2.控制基础沉降使之不超过允许值,保证建筑物不因地基沉降而损坏或者影响其正常使用。
二、本课程的特点和学习要求:⎪⎩⎪⎨⎧⎩⎨⎧剪切性压缩性土的力学性质土的物理性质本课程的内容.1土力学的基本原理:①应力——应变关系②强度理论③地基的计算如遇相关课程的内容,本课程只是引用,而重点是要求理解其意义及应用条件,切不可把注意力放在相关课程公式的推导上。
3.本课程的学习要求:运用基本原理,具体问题具体分析。
因此,最重要的是理论联系实际,提高分析问题解决问题的能力。
结合实验了解土力学常规参数的获取方法。
三、本学科的发展概况(简要介绍)第一章 土的物理性质及分类1. 土力学的研究对象:土土——土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不同的搬运方式,在各种自然环境中生成的沉积物。
2.土的组成⎪⎩⎪⎨⎧孔隙中的水液气体气冰土颗粒固:::土中颗粒的大小、成分及三相之间的比例关系反映出土的不同性质,如干湿、轻重、松紧、软硬等。
《土力学与地基基础》教案一、教学目标1. 了解土力学的基本概念、研究对象和任务。
2. 掌握土的物理性质、力学性质及其指标的测定方法。
3. 理解地基与基础的概念、分类及作用。
4. 掌握地基承载力、地基变形和地基稳定性分析的方法。
二、教学内容1. 土力学的基本概念和研究对象1.1 土力学的定义和发展历程1.2 土力学的研究对象和任务2. 土的物理性质2.1 土的组成和结构2.2 土的密度和湿度2.3 土的粒径分布和级配3. 土的力学性质3.1 土的剪切强度3.2 土的压缩性3.3 土的弹性模量和泊松比4. 地基与基础的概念及分类4.1 地基的定义和作用4.2 基础的分类和特点5. 地基承载力分析5.1 地基承载力概念及其影响因素5.2 地基承载力计算方法三、教学方法1. 采用讲授法,系统讲解土力学与地基基础的基本概念、理论和方法。
2. 结合案例分析,使学生更好地理解和掌握土力学与地基基础的知识。
3. 利用实验和实践环节,培养学生的动手能力和实际问题解决能力。
四、教学环境1. 教室环境:宽敞、明亮,配备多媒体教学设备。
2. 实验场地:具备土力学实验所需的仪器和设备。
五、教学评价1. 平时成绩:包括课堂表现、作业完成情况、实验报告等。
2. 期末考试:采用闭卷考试,测试学生对土力学与地基基础知识的掌握程度。
六、教学步骤与计划1. 教学步骤:1.1 土力学的基本概念和研究对象:讲解土力学的定义、发展历程和研究对象,引导学生了解土力学的重要性。
1.2 土的物理性质:介绍土的组成、结构和密度,讲解湿度、粒径分布和级配的概念。
1.3 土的力学性质:讲解剪切强度、压缩性和弹性模量的概念,并通过实例分析其工程应用。
1.4 地基与基础的概念及分类:阐述地基的定义、作用和基础的分类,引导学生理解地基与基础的关系。
1.5 地基承载力分析:介绍地基承载力的概念、影响因素和计算方法,分析实际工程中的地基承载力问题。
2. 教学计划:第1周:土力学的基本概念和研究对象第2周:土的物理性质第3周:土的力学性质第4周:地基与基础的概念及分类第5周:地基承载力分析七、案例分析1. 案例一:某建筑物地基承载力不足,导致地基下沉。
土力学与地基基础2篇1. 土力学土力学是研究土壤力学性质及其在土木工程中应用的学科。
它通过研究土壤力学特性,预测和分析土壤的力学行为,以便优化土木工程的设计和施工过程。
本文将进一步探讨土力学的重要性以及其在地基基础工程中的应用。
土力学对土壤的力学行为进行研究,其中关键的参数包括土壤的粒度分布、密实度、压缩性和剪切强度等。
通过对这些参数的分析,可以预测土壤的承载能力、变形特性和稳定性。
这些预测结果对于土木工程的设计和施工至关重要。
在土木工程项目中,地基基础是最重要的一环。
地基的良好设计和施工对建筑物的稳定性和安全性起着至关重要的作用。
通过土力学的研究,工程师可以确定土壤的承载能力,为建筑物提供足够的支撑。
此外,土力学还可以帮助工程师设计修筑地基的方法和材料选择,以保证工程的长期稳定性。
土力学在地基基础工程中的应用还包括土壤加固和地下结构设计。
当土地条件不理想或工程要求特殊时,土力学可以提供一系列的土壤加固方法,如挤密、灌浆和土体置换等。
这些方法可以增加土壤的承载能力,从而满足工程的需求。
另外,土力学也为地下结构的设计提供了重要的依据。
地下结构包括地下室、地下管道和隧道等。
这些结构在地下环境中承受着巨大的压力和荷载。
通过土力学的研究,工程师可以预测土壤对地下结构的影响,并采取相应的设计和施工措施,保证这些结构的安全性和持久性。
综上所述,土力学作为土木工程的重要学科,在地基基础工程中起着举足轻重的作用。
通过对土壤力学性质的研究,可以预测土壤的力学行为,为工程提供可靠的设计和施工方案。
因此,对土力学的深入了解和应用有助于确保土木工程的稳定性和长期可持续发展。
2. 地基基础地基基础是土木工程中的重要部分,它为建筑物提供了稳定的支撑和承重能力。
本文将介绍地基基础的定义、类型以及在建筑工程中的重要性。
地基基础是指建筑物或其他结构直接安放在土壤上的部分。
它的主要作用是将建筑物的重力通过合理的转移和分布,传递到地下土壤中,以保证建筑物的稳定性和安全性。
一、教案基本信息教案名称:土力学与地基基础教案课时安排:本章共需4课时,每课时45分钟教学目标:1. 让学生了解土力学与地基基础的基本概念和重要性。
2. 让学生掌握土的分类和性质。
3. 让学生了解地基与基础的设计原则和计算方法。
教学内容:1. 土力学与地基基础的基本概念。
2. 土的分类及其性质。
3. 地基与基础的设计原则。
4. 地基与基础的计算方法。
教学方法:1. 采用讲授法,讲解土力学与地基基础的基本概念、土的分类及其性质。
2. 采用案例分析法,分析地基与基础的设计原则和计算方法。
3. 采用互动讨论法,引导学生思考和提问。
教学准备:1. 教案、教材、课件等教学资料。
2. 相关案例资料。
二、教学过程第一课时:1. 导入新课:介绍土力学与地基基础的基本概念及其重要性。
2. 讲解土的分类及其性质。
3. 课堂互动:学生提问,教师解答。
第二课时:1. 讲解地基与基础的设计原则。
2. 案例分析:分析实际工程中的地基与基础设计案例。
3. 课堂互动:学生提问,教师解答。
第三课时:1. 讲解地基与基础的计算方法。
2. 案例分析:分析实际工程中的地基与基础计算案例。
3. 课堂互动:学生提问,教师解答。
第四课时:1. 总结本章内容。
2. 布置作业:让学生复习本章内容,完成相关练习题。
三、教学评价评价方式:课堂互动、作业完成情况、课后调查。
评价指标:1. 学生对土力学与地基基础基本概念的理解程度。
2. 学生对土的分类及其性质的掌握程度。
3. 学生对地基与基础设计原则的掌握程度。
4. 学生对地基与基础计算方法的掌握程度。
四、教学反思在教学过程中,教师应关注学生的学习反馈,根据实际情况调整教学内容和教学方法。
结合实际工程案例,让学生更好地理解和掌握土力学与地基基础的知识。
五、课后作业1. 复习本章内容,整理学习笔记。
2. 完成教材后的练习题。
3. 搜索相关土力学与地基基础的工程案例,了解其设计原理和计算方法。
六、教案基本信息教案名称:土力学与地基基础教案课时安排:本章共需4课时,每课时45分钟教学目标:1. 让学生了解土的力学性质,包括抗剪强度、压缩性和渗透性。
土力学与地基基础复习资料P41、什么是地基,基础受建筑物影响在土层中产生附加应力和变形所不能忽略的那部分土层称为地基。
将埋入土层一定深度的建筑物下部承重结构称为基础。
2、什么是天然地基,人工基础对地基进行人工加固处理后才能作为建筑物地基的称为人工基础。
未经加固处理直接利用天然土层作为地基的称为天然基础。
3、简述地基与基础设计的基本要求地基承载力要求:应使地基具有足够的承载力,在荷载作用下地基不发生剪切破坏或失稳。
地基变形要求:不使地基产生过大的沉降和不均匀沉降,保证建筑的正常使用。
基础结构本身应具有足够的强度和刚度,在地基反作用力下不会发生强度破坏,并且具有改善地基沉降与不均匀沉降的能力。
4、什么是浅基础,审深基础若土质较好,埋深不大(d<=5m),采用一般方法与设备施工的基础称为浅基础如建筑物荷载较大或下部分土层较软弱,需要将基础埋置于较深处(d>5m)的好土层上,并需采用特殊的施工方法和机械设备施工的基础称为深基础。
P391、土的组成部分,土中水分类,其特征如何,对土的工程性质影响如何土是由构成土骨架的固体颗粒以及土骨架空隙中的水和气体组成液态水固态水,当气温降至0度以下时,液态的自由水结冰为固态水。
水在结冰后悔发生膨胀,体积增大,使土体产生冻胀,破坏土的结构,冻土非常坚硬,但溶化后强度大大降低。
寒冷地区基础的埋置深度要考虑冻胀问题。
气态水,即水蒸气,对土的性质影响不大。
2、土的不均匀系数Cu及曲率系数Cc的定义,如何从土的颗粒级配曲线形态上,Cu和Cc数值上评价土的工程性质。
Cu表示颗粒级配曲线的倾斜度,反映不同粒组的分布情况及土颗粒大小的均匀程度。
Cu越大,表示土颗粒粒径的分布范围越广,土粒越不均匀,其级配良好。
作为填方工程的土料时,比较容易获得较大的密实度。
工程上一般把Cu<=5的土称为均匀土,属级配不良,Cu>10的土称为级配良好的土。
Cc表示反映颗粒级配曲线的平滑度。
土力学于地基基础作业一名词解释1. 土力学答:土力学(Soil mechanics)是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。
为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。
主要用于土木、交通、水利等工程。
2. 地基答:地基是指建筑物下面支承基础的土体或岩体。
作为建筑地基的土层分为岩石、碎石土、砂土、粉土、黏性土和人工填土。
地基有天然地基和人工地基(复合地基)两类。
天然地基是不需要人加固的天然土层。
人工地基需要人加固处理,常见有石屑垫层、砂垫层、混合灰土回填再夯实等。
3. 基础答:基础是指建筑物地面以下的承重结构,如基坑、承台、框架柱、地梁等。
是建筑物的墙或柱子在地下的扩大部分,其作用是承受建筑物上部结构传下来的荷载,并把它们连同自重一起传给地基4. 软弱下卧层答:一般来说,地基由多层土组成时,持力层以下存在容许承载力小于持力层容许承载力的土层时,这样的土层叫做软弱下卧层。
5. 土体答:土体不是由单一而均匀的土组成的,而是由性质各异、厚薄不等的若干土层以特定的上下次序组合在一起。
因而土体不是简单的土层组合.而是与工程建筑的安全、经济和正常使用有关的土层组合体。
6. 界限粒径答:1、粗粒土为粒径d:>d>;2、细粒土为粒径d:d<3、据此判断为临界粒径为7. 土的颗粒级配答:土的颗粒级配:土中所含各粒组的相对含量,以土粒总重的百分数表示。
土的颗粒级配曲线:纵坐标表示小于某土粒的累计质量百分比,横坐标则是用对数值表示的土的粒径。
颗粒级配又称(粒度)级配。
由不同粒度组成的散状物料中各级粒度所占的数量。
常以占总量的百分数来表示。
由不间断的各级粒度所组成的称连续级配;只由某几级粒度所组成的称间断级配。
合理的颗粒级配是使配料获得低气孔率的重要途径。
8. 界限含水量答:界限含水量通常是指土的液限、塑限和缩限。
众所周知,液限和塑限是粘性土极为重要的指标,是粘性土工程分类的主要依据,和天然含水量一起,是估价土的工程特性的主要参数9. 土的灵敏度答:土的灵敏度,是指原状土与其重塑后立即进行试验的无侧限抗压强度之比值,工程上常用灵敏度St来衡量粘性土结构性对强度的影响,土的灵敏度越高,结构性越强,受扰动后土的强度降低愈多。