高中物理知识点总结和知识网络图(大全)
- 格式:doc
- 大小:301.50 KB
- 文档页数:6
高中物理从必修一到选修,物理全高中考纲基础思维导图知识
点大全
高中最让人头疼的学科莫过于物理了!很多学生都怕物理!但,物理老师坦言:其实物理考得简单,主要是多练,多总结好基础点就很好突破了!
曾辅导过的一个理科学霸,他的物理原本也总是70来分,但综合评估下来,其实他学得很快,只要稍微去认真吃透好物理基础点,物理成绩就很快提升上来!后来,我们物理老师整理了高一到高三物理全面基础知识点的突破复习点给他,让他每天吃透一个点,把其中的知识点,从知识例题,到考点典型题型的全面突破!并从中归纳好每个解题的技巧点,从而不断的提升好基础!后来,今年的高考,他的物理考到了94分!
万层高楼都是从基础开始!只有基础吃透了,物理的各个考点才能真正的打通!也只要认真吃透好物理的基础点,物理80%的考题都很容易得分的!
下面是洪老师高考必备资料库,高中物理从必修一到选修物理全考纲基础复习汇总!
完整的物理全考纲基础复习汇总,可关注一下后呢,然后呢看看到找下私信,那里复下:005。
力学知识结构图匀变速直线运动基本公式:V t =V 0+atS=V 0t+21at 2as V V t2202+=20tV V V +=运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。
运动的合成与分解遵守平行四边形定则平抛物体的运动特点:初速度水平,只受重力。
分析:水平匀速直线运动与竖直方向自由落体的合运动。
规律:水平方向 Vx = V 0,X=V 0t竖直方向 Vy = gt ,y =221gt 合 速 度 V t =,22y x V V +与x 正向夹角tg θ=xy V v匀速率圆周运动特点:合外力总指向圆心(又称向心力)。
描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。
规律:F= mr V2=m ω2r = mr T 224π物体 的 运 动A 0 t/sX/cm T λx/cm y/cmA 0V天体运动问题分析1、行星与卫星的运动近似看作匀速圆周运动遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即 =mg,整理得GM=gR 2。
3、考虑天体自传时:(1)两极 (2)赤道平均位移:02tv v s vt t +==模型题2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失.非弹性碰撞遵守动量守恒,能量关系为:12m 1v 21+12m 2v 22>12m 1v 1′2+12m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12(m 1+m 2)v 21.弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,12m 1v 21=12m 1v 1′2+12m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1动量碰撞如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。
高中物理思维导图图解1:运动的描述高中物理思维导图图解2:相互作用高中物理思维导图图解3:重力基本相互作用高中物理思维导图图解4:力的合成与分解高中物理思维导图图解5:牛顿第一、三定律高中物理思维导图图解6:牛顿运动定律高中物理思维导图图解7:摩擦力高中物理思维导图图解8:圆周运动高中物理思维导图图解9:运动的合成与分解等高中物理思维导图图解10:弹力高中物理思维导图图解11:万有引力与航天高中物理思维导图图解12:牛顿第二定律及其应用高中物理思维导图图解13:曲线运动高中物理思维导图图解14:静电场高中物理思维导图图解15:机械能守恒定律能量守恒定律高中物理思维导图图解16:电势能电势电势差高中物理思维导图图解17:电荷守恒定律库仑定律高中物理思维导图图解18:宇宙航行高中物理思维导图图解19:机械能守恒定律高中物理思维导图图解20:功功率高中物理思维导图图解21:势能动能及动能定理高中物理思维导图图解22:电场电场强度高中物理思维导图图解23:静电场中的导体电容器电容高中物理思维导图图解24:气体高中物理思维导图图解25:磁场高中物理思维导图图解26:交变电流高中物理思维导图图解27:电磁感应现象楞次定律高中物理思维导图图解28:法拉第电磁感应定律及其应用高中物理思维导图图解29:带电粒子在电场中的运动高中物理思维导图图解30:磁场磁感应强度高中物理思维导图图解31:电磁感应高中物理思维导图图解32:电磁感应与现代生活高中物理思维导图图解33:恒定电流高中物理思维导图图解34:焦耳定律闭合电路的欧姆定律高中物理思维导图图解35:欧姆定律电阻定律高中物理思维导图图解36:安培力洛伦兹力等高中物理思维导图图解37:分子动理论高中物理思维导图图解38:力与机械高中物理思维导图图解39:动量守恒定律高中物理思维导图图解40:热力学定律。
梯子分类之直线运动zx01:对概念的理解zx01A:质点zx01B:时间和时刻zx01C:位移与路程zx01D:速度和加速度zx01E:平均速度和瞬时速度zx01F:自由落体运动和竖直上抛运动zx02:平均速度zx02A:平均速度的定义zx02B:一段的平均速度zx02C:多段的平均速度zx03:S—t图、V—t图及其他图像zx03A:对S—t图像的理解zx03B:对V—t图像的理解zx03C:给定物理过程的V—t图zx03D:用V—t图像解题zx03E:S—t图、V—t图及其他图像综合zx04:多段匀变----△S=at2zx05:不涉及t----Vt2–Vo2=2aszx06:单体直线运动----Vt、Vo、a、t、s知三求二Vt=Vo+at s=Vot+at2/2 Vt2-Vo2=2aszx07:相遇与相碰zx07A:竖直方向相遇与相碰zx07B:水平方向相遇与相碰zx08:变换参照系,解题更容易zx08A:水平方向的变换参照系zx08B:竖直方向的变换参照系梯子分类之力的合成、分解与平衡ld01:对概念的理解ld01A:力的基础ld01B:重力和重心ld01C:弹力ld01D:摩擦力ld01E:力的合成与分解ld01F:力概念的综合练习ld02:给情景,受力分析ld02A:斜面上的小球ld02B:斜面上的物块ld02C:梯子与杆的受力ld02D:受力分析综合练习ld03:共点力及其合力ld03A:两个力的合力ld03B:三个力的合力ld03C:多个力的合力ld04:摩擦力ld04A:水平面单体摩擦ld04B:水平面叠放体摩擦ld04C:竖直面单体、叠放体摩擦ld04D:斜面单体摩擦ld04E:斜面叠放体摩擦ld04F:传送带上物体的摩擦ld04G:滑轮联接体摩擦ld04H:摩擦综合练习ld05:单体静态平衡ld05A:墙或斜面上的物体ld05B:绳上的物体ld05C:圆弧上的物体ld05D:三角形结构ld05E:单体静态平衡综合练习ld06:单体动态平衡ld06A:匀直的受力分析ld06B:力三角形与几何三角形的相似ld06C:力三角形的变化ld07:多体动态分析——隔离法与整体法ld07A:隔离法ld07B:整体法ld07C:隔离法与整体法综合练习ld08:绳习题模块ld08A:绳的最大力ld08B:滑轮轴的力ld08C:绳上滑轮问题梯子分类之牛顿运动定律nd01:对概念的理解nd01A:惯性和牛一nd01B:力和运动nd01C:作用力和反作用力nd01D:牛二nd01E:F=ma简单计算nd01F:综合练习nd02:超重与失重nd03:连接体问题nd03A:水平物块类nd03B:木板木块类nd03C:弹簧类nd03D:水平小车类nd03E:滑轮类nd03F:综合练习nd04:地面摩擦类nd04A:外力水平nd04B:外力倾斜nd04C:图像、表格相关nd05:空气阻力浮力类nd06:弹簧类nd06A:竖直方向nd06B:水平方向nd06C:重弹簧与轻弹簧nd06D:剪绳类问题nd07:斜面绳杆类nd07A:斜面角度固定nd07B:斜面角度改变nd07C:等时圆问题nd07D:斜面叠放体nd07E:物块受外力及综合题nd08:支架与绳类nd09:木板木块类nd09A:块动力方程nd09B:板动力方程nd09C:块板动力方程综合nd09D:斜面上的块与板nd10:传送带类nd10A:传送带水平nd10B:传送带倾斜nd10C:传送带水平与倾斜综合nd11:系统牛二律nd11A:水平方向nd11B:竖直方向nd11C:系统牛二律综合练习nd12:牛顿运动定律综合练习梯子分类之曲线运动qx01:对概念的理解qx01A:曲线运动的速度和加速度qx01B:曲线运动的受力情况qx01C:运动的合成与分解qx01D:平抛运动qx01E:圆周运动qx01F:综合练习qx02:运动合成与分解实例qx02A:渡河问题qx02B:联接体速度qx03:平抛运动qx03A:平抛的初步认识qx03B:平抛的运动时间qx03C:平抛的速度三角形qx03D:X(t)与Y(t)qx03E:水平竖直,运动等时qx03F:挡板平抛qx03G:斜面上的平抛qx03H:台阶平抛qx03I:排球轨迹qx03J:多体平抛qx03K:平抛综合练习qx04:圆周运动qx04A:皮带转轮qx04B:水平转台qx04C:竖直面绳杆轨道qx04D:两钉问题qx04E:圆锥摆及类圆锥摆qx04F:火车转弯qx05:其他典型题qx05A:平抛、匀圆等效重力场qx05B:子弹圆筒类qx05C:两小球类梯子分类之万有引力wy01:对概念的理解wy01A:万有引力wy01B:开普勒三定律wy01C:卫星里的超重和失重wy02:星体表面g与高空等效g wy02A:星体表面gwy02B:高空等效gwy03:卫星环绕wy03A:近地卫星。
力学部分
运动学:
位移、速度、加速度等基本概念
匀速直线运动、匀变速直线运动、自由落体运动等运动规律
抛体运动、圆周运动等复杂运动
动力学:
牛顿三定律
力的合成与分解
动能定理、动量定理
动能守恒定律、机械能守恒定律
静力学:
平衡条件
重力、弹力、摩擦力等常见力
简单机械
流体力学:
流体压强
伯努利方程
流体阻力
热学部分
分子动理论:
分子运动
理想气体状态方程
热力学第一定律、第二定律
热力学过程
热机效率
物态变化:
熔化、凝固、汽化、液化、升华、凝华
相图
电磁学部分
静电场:
库仑定律
电场强度、电势
电容
恒定电流:
欧姆定律
串并联电路
电阻定律
磁场:
磁感应强度
磁场力
电磁感应
电磁波:
电磁波的产生和传播
电磁波谱
光学部分
光的直线传播
光的反射、折射
光的干涉、衍射波动光学:
光波的干涉、衍射
光的偏振
现代物理部分
相对论:
狭义相对论
广义相对论
量子力学:
波粒二象性
不确定性原理
量子态
实验部分
常见实验仪器
实验操作规范
数据处理方法
实验误差分析
学习方法
理论联系实际
注重理解概念
多做练习
考试技巧
熟悉考试题型
合理分配时间
注意审题
规范答题
学习资源
教材
辅导书
网络资源
教师指导
学习建议
制定学习计划
勤奋学习
善于思考
不断进步。
高中物理知识点总结大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考总复习知识网络一览表物理高中物理知识点总结大全一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算.四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FNr}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕5.机械波、横波、纵波〔见第二册P2〕6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕.六、冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;00(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;(7)r0为分子处于平衡状态时,分子间的距离;(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕.九、气体的性质1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K).十、电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k =9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差) (V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕.十一、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ωm),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系 I总=I1=I2=I3 I并=I1+I2+I3+电压关系 U总=U1+U2+U3+ U总=U1=U2=U3功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成 (2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨o ff挡.(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零.11.伏安法测电阻电流表内接法:电流表外接法:电压表示数:U=UR+UA 电流表示数:I=IR+IVRx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx /(RV+R)>RA [或Rx>(RARV)1/2] 选用电路条件Rx分享高中物理知识点大全一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
时间和位移时刻和时间间隔定义:在表示时间的数轴上,时刻用点表示,时间间隔用线段表示时间是时间间隔的简称,时间不是时间间隔和时刻的统称路程和位移路程S物体运动轨迹的长度矢量性:路程为标量,只有大小没有方向,遵循算数法则路程的大小与路径有关,但路程不能描述物体位置的变化位移x表示物体(质点)的位置变化从初位置到末位置作一条有向线段表示位移段的长短表示大小,有向线段的指向表示方向矢量性:位移是矢量,既有大小又有方向,运算遵循平行四边形定则位移与路径无关只与始末位置有关物理意义:描述质点位置变化的物理量直线运动的位置和位移公式:△x=x₁-x₂路程≥位移的大小矢量和标量矢量满足平行四边形法则既有大小又有方向矢量的正负表示方向两个矢量比较大小时,要去掉正负号,因为矢量的正负号表示方向不表示大小标量满足算数法则只有大小没有方向标量的正负表大小运动快慢的描述——速度定义:速度v等于物体运动的位移△x跟发生这段位移所用时间△t的比值表达式v=△x/△t矢量性:矢量,其大小在数值上等于单位时间内位移的大小,方向与△x的方向相同单位国际单位制中速度的单位是“米每秒”m/s常用单位:m/s,km/h等,1m/s=3.6km/h物理意义:描述物体运动快慢及方向的物理量只说速度或速率默认为瞬时速度或瞬时速率平均速度定义:运动的物体的位移△x跟发生这段位移所用时间△t的比值,叫做平均速度矢量性:矢量,方向与这段时间发生的位移△x的方向相同平均速度描述的是某一段时间或某一段时间内的平均快慢程度,只能粗略的描述的描述物体的运动瞬时速度定义:运动物体在某一时刻或某一位置的速度矢量性:矢量,方向为物体所在位置的运动方向,也就是路程轨迹的切线方向瞬时速度能够精确的描述物体运动的快慢程度和方向瞬时速率和平均速率瞬时速率就是瞬时速度的大小,但是平均数率不是平均速度的大小,平均速率与平均速度的大小是两个完全不同的概念平均速率是物体运动的路程与时间的比值实验:用打点计时器测速度打点计时器作用:计时、打点类别电磁打点计时器工作电源4~6V交流电打点方式振针打点阻力来源限位孔和复写纸对纸带的摩擦指针与纸带间的摩擦较大,所以误差较大电火花打点计时器工作电源220V交流电打点方式电火花打点阻力来源限位孔和墨粉盘对纸带的摩擦误差较小计时器的打点周期T=1/f,当f=50Hz时,T=0.02s,首先要确定好电源的频率计时点:打点计时器实际打的点迹计数点:人为选定的点,例如每隔4个计时点选取一个计数点在测量计数点间的距离时要用长刻度尺一次读出各组计数点间的距离,而不要用短刻度尺一段段的测量各计数点间的距离错误分析打点的周期不稳:电源的频率不稳纸带上是短线:电压偏大;振针偏低打双点:振针松动没有点或不清晰:电压偏低;振针偏高;复写纸或墨粉盘使用太久实验步骤的注意事项先开电源再拉动纸带,先关电源再取下纸带电火花打点计时器最好使用两条纸带估计某点的瞬时速度用该点左右两侧的点的平均速度代替速度变化快慢的描述——加速度定义加速度是速度的变化量与这一变化所用时间的比值,通常用a表示(也就是速度的变化率)表达式a=△v/△t=(v-v₀)/(t-t₀)单位米每二次方秒,m/s²或m·s⁻²矢量性矢量,方向与△t的方向相同,与v的方向无关物理意义描述速度改变快慢的物理量,速度的改变包括大小和方向求加速度时要注意规定正方向,然后确定初末速度a和v₀的关系a和v₀,同向→加速运动→a增大,v增大的快; a减小,v增大的慢a和v₀,反向→减速运动→a增大,v减小的快;a减小,v减小的慢对加速的的理解物体的速度大,加速度不一定大物体的速度很小,加速度不一定很小物体的速度为零,加速度不一定为零物体的速度变化很大,加速度不一定大负加速度不一定小于正加速度加速度为负,物体不一定做减速运动加速度不断减小,速度不一定减小加速度不断增大,速度不一定增大物体速度大小不变,加速度不一定为零加速度的方向不一定与速度在同一直线上实验:探究小车速度随时间变化的规律实验步骤把一端附有滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路把一条细绳栓在小车上,细绳跨过滑轮,并在细绳的另一端挂上企适的钩码,试放手后,小车能在长木板上平稳的加速滑行一段距离,把纸带穿过限位孔,复写纸压在纸带上,并把它的一端固定在小车后面把小车停在靠近打点计时器处,先接通电源,后释放小车,让小车运动,打点计时器就在纸带上打出一系列的点。
1. 运动的描述
2. 重力基本相互作用
相互作用
牛顿运动定律
力的合成与分解
牛顿第一定律、第三定律
摩擦力
运动的合成与分解曲线运动抛体运动
圆周运动
弹力
万有引力与航天
牛顿第二定律及其应用
曲线运动
静电场
机械能守恒定律能量守恒定律
电势能电势电势差
电荷守恒定律库仑定律宇宙航行
机械能守恒定律
功功率
势能动能动能定理
静电场中的导体电容器电容
电场电场强度
气体
磁场
交变电流
电磁感应现象楞次定律
法拉第电磁感应定律及其应用
带电粒子在电场中的运动
磁场磁感应强度
电磁感应
电磁感应与现代生活
恒定电流
焦耳定律闭合电路的欧姆定律
欧姆定律电阻定律
安培力洛伦兹力
分子动理论
力与机械
动量守恒定律
热力学定律
热与热机
波粒二象性
物态和物态变化
相对论简介
实验与探究
机械振动
气体
原子结构
电磁波
高中学习,一定要抓好逻辑结构大框架!了解整个知识框架体系后,明确知识的重难点,抓住主干知识点来进行复习,可以达到事半功倍的效果!。
高中物理知识点思维导图高中物理的学习需要有一个知识点框架图来对整体的思路进行梳理,一个好的思维导图对于物理的学习也是非常帮助的。
高中物理知识点思维导图高中物理知识点思维导图高中物理知识点思维导图高中物理知识点思维导图高中物理知识点思维导图高中物理知识点思维导图拓展一、振动和波公式1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小二、冲量与动量公式1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}2.冲量:I=Ft{I:冲量(Ns),F:恒力(N),t:力的作用时间(s),方向由F决定}3.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′5.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:损失的动能,EKm:损失的最大动能}7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}8.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)9.由8得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}三、力的合成与分解公式1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)四、运动和力公式1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子五、匀速圆周运动公式1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
高中物理《直线运动》核心知识点系统构建一、知识网络图解1.“运动的描述”网络图:2.“直线运动”网络图:直线运动单向匀减速直线运动双向匀变速 20at21t v x +=二、易错知识清单1.质点(1)质点的概念:当物体的形状、大小、体积对所研究的问题不起作用或所起作用可忽略时,为了研究方便,就可忽略其形状、大小、体积,把物体简化为一个有质量的点.(2)物体视为质点的条件:①当物体上各部分的运动情况相同时,物体上任意一点的运动情况都能反映物体的运动,物体可看作质点.②物体的大小、形状对所研究的问题无影响,或可以忽略不计的情况下,可看成质点. 2.时间间隔与时刻①时刻:表示时间坐标轴上的一个点即为时刻。
②时间间隔:前后两时刻之差。
时间坐标轴上用一条线段表示时间间隔,例如,前几秒内、第 几秒内。
3.位移与路程4.速度与速率的区别与联系:①速度是矢量,而速率是标量; ②平均速度=总时间总位移,平均速率=总时间总路程; ③瞬时速度的大小通常叫速率. 5. 伽利略研究自由落体运动的方法:①假设运动的速度与时间是正比关系;②推论如果速度与时间成正比,那么位移与时间的平方成正比;③用小角度的光滑斜面来延长物体的下滑时间,再通过不同角度进行合理的外推来得出结论。
三、核心知识点系统构建1. 匀变速直线运动的规律 (1)三个公式①速度公式:v =v 0+at . ②位移公式:x =v 0t +12at 2 ③推导式:v 2-v 20=2ax .这 三个基本公式,是解决匀变速直线运动的基石.均为矢量式,应用时应规定正方向(一般以始速度方向为正方向). (2)三个推论① 物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:2t x 02t υ+υ=υ=∆∆=υ ,由此可知物体的位移:t 2x 0⋅υ+υ= ②某段位移中间位置的瞬时速度υ s2与这段位移的初、末速度υ0与υ的关系为22202s υ+υ=υ③任意两个连续相等的时间间隔T 内的位移之差为一恒量,即: Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2 ,推广为x m -x n =(m -n )aT 2. (3)v 0=0的四个比例① 1T 末、2T 末、3T 末、……瞬时速度的比为: v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n ② 1T 内、2T 内、3T 内……位移的比为: x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2③ 第一个T 内、第二个T 内、第三个T 内……位移的比为: x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1)④ 从静止开始通过连续相等的位移所用时间的比为: t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1) 2. 匀变速直线运动解题常用的“六种”物理思想方法 (1)一般公式法一般公式法指速度公式、位移公式及推论三式。
高一物理二章知识点思维导图物理是一门研究物质、能量和它们之间相互关系的自然科学。
在高一学年,学生将接触到物理的第二章知识点,这些知识点是建立在对物理基础知识的理解之上的。
本文将为你呈现高一物理第二章知识点的思维导图,帮助你更好地理解和记忆这些重要内容。
1. 动力学动力学是研究物体运动及其引起的相互作用的学科。
它主要包括运动的描述、运动的原因、运动的规律等内容。
动力学的重点在于物体的力学性质和受力分析。
1.1 牛顿第二定律牛顿第二定律是描述力对物体的加速度产生影响的定律。
它可以用数学公式表示为 F = ma,其中 F 为物体所受合力的大小,m 为物体的质量,a 为物体的加速度。
根据牛顿第二定律,可以得出物体的加速度与所受合力成正比,与物体质量成反比。
1.2 力的合成与分解力的合成是指将多个力合成为一个合力的过程。
力的分解是指将一个力分解为多个力的过程。
力的合成与分解对于解决复杂的力学问题非常重要,它使我们能够将复杂的力分解为简单的力来进行计算。
2. 工作与能量工作与能量是研究力对物体做功和物体具有的能力的学科。
它涉及到力、位移和功等概念。
2.1 功与功率功是力对物体做功的量度,它可以用数学公式表示为 W = F·s·cosθ,其中 W 为功,F 为力的大小,s 为物体的位移,θ 为力与位移之间的夹角。
功率是指单位时间内做功的速率,它可以用数学公式表示为 P = W/t,其中 P 为功率,W 为做的功,t 为时间。
2.2 动能和势能动能是物体由于运动而具有的能量,它可以用数学公式表示为K = 1/2·m·v²,其中 K 为动能,m 为物体的质量,v 为物体的速度。
势能是物体由于位置而具有的能量,常见的势能有重力势能和弹性势能。
3. 机械振动与波动机械振动与波动是研究物体做简谐运动和波动现象的学科。
3.1 简谐运动简谐运动是指物体在受到一个恢复力的作用下以振幅为中心进行的周期性运动。
高中物理学知识的结构体系
高中物理包括必修1、2共7章;选修3-1、2、3、4、5共19章内容。
归纳起来,整个高中物理的知识体系可以分为力学、热学、光学、电磁学(电学和磁学)、原子物理学五大学科部分。
必修1和2属于力学部分;选修3-1、3-2属于电磁学内容;选修3-4主要为光学;选修3-5主要为原子物理学,有3章(机械振动和机械波、动量守恒定律)为力学内容。
除了热学部分是初中物理(选修3-3未学)的主讲内容外,其他都在高中期间得到学习和深化。
力学知识结构体系力学部分包括静力学、运动学和动力学三部分
PART I 静力学
PART II 运动力学
PART III 动力学
热学知识结构体系
热学包括:研究宏观热现象的热力学、研究微观理论的统计物理学,分子动理论是热现象微观理论的基础
电磁学知识结构体系
电磁学包括:电学和磁学两大部分。
包括电性和磁性交互关系,主要研究电磁波、电磁场以及有关电荷、带电物体的动力学,二者很难清晰分割。
电磁场和电磁波
电磁场是电磁作用的媒递物,具有能量和动量,物质存在的一种形式。
其性质、特征及运动变化规律由麦克斯韦方程组确定。
电磁场总是以光速向四周传播,形成电磁波。
光学知识结构体系
原子物理学知识结构体系。
力学知识结构图力的概念定义力是物体对物体的作用。
所以每一个实在的力都有施力物体和受力物体三要素大小、方向、作用点矢量性力的矢量性表现在它不仅有大小和方向,而且它的运算符合平行四边形定则。
效果力的作用效果表现在,使物体产生形变以及改变物体的运动状态两个方面。
力的合成与分解一个力的作用效果,如果与几个力的效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力。
由分力求合力的运算叫力的合成;由合力求分力的运算叫力的分解。
重力由地球对物体的吸引而产生。
方向:总是竖直向下。
大小G =mg 。
g 为重力加速度,由于物体到地心的距离变化和地球自转的影响,地球周围各地g 值不同。
在地球表面,南极与北极g 值较大,赤道g 值较小;通常取g=9.8米/秒2。
重心的位置与物体的几何形状、质量分布有关。
任何两个物体之间的吸引力叫万有引力,2RMm GF 。
通常取引力常量G =6.67×10-11牛·米2/千克2。
物体的重力可以认为是地球对物体的万有引力。
弹力弹力产生在直接接触并且发生了形变的物体之间。
支持面上作用的弹力垂直于支持面;绳上作用的弹力沿着绳的收缩方向。
胡克定律F=kx ,k 称弹簧劲度系数。
滑动摩擦力物体间发生相对滑动时,接触面间产生的阻碍相对滑动的力,其方向与接触面相切,与相对滑动的方向相反;其大小f=μN 。
N 为接触面间的压力。
μ为动摩擦因数,由两接触面的材料和粗糙程度决定。
静摩擦力相互接触的物体间产生相对运动趋势时,沿接触面产生与相对运动趋势方向相反的静摩擦力。
静摩擦力的大小随两物体相对运动的“趋势”强弱,在零和“最大静摩擦力”之间变化。
“最大静摩擦力”的具体值,因两物体的接触面材料情况和压力等因素而异。
摩擦力三种常见的力牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
物体的这种性质叫做惯性。
惯性是物体的固有属性,衡量惯性的大小的物理量是质量。
曲线运动条件质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上匀变速曲线运动做曲线运动的物体受的是恒力,即加速度大小、方向都不变的曲线运动,如平抛运动变加速曲线运动做曲线运动的物体所受的是变力,加速度改变,如匀速圆周运动特点曲线运动的速度方向不断变化,故曲线运动一定是变速运动曲线运动轨迹上某点的切线方向表示该点的速度方向曲线运动的轨迹向合力所指一方弯曲,合力指向轨迹的凹侧当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力的方向与速度方向的夹角为90度时,物体做曲线运动的速率将不变运动的合成与分解合运动和分运动关系等时性合运动所需时间和对应的每个分运动所需时间相等等效性合运动的效果和各分运动的整体效果是相同的,合运动和分运动是等效替代关系,不能并存独立性每个分运动都是独立的,不受其他运动的影响矢量性加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则相关性合运动的性质是由分运动性质决定的从已知的分运动来求合运动,叫做运动的合成;求已知运动的分运动,叫运动的分解物体的实际运动是合运动速度、时间、位移、加速度要一一对应如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算。
如果分运动互成角度,运动合成要遵循平行四边形定则小船渡河问题平抛运动将物体沿水平方向抛出,只在重力作用下的运动为平抛运动运动特点只受重力初速度与重力垂直运动性质平抛运动是初速度为零的匀变速曲线运动处理方法平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动基本规律水平方向:匀速直线运动vx=v₀,x=v₀t竖直方向:自由落体运动vy=gt,y=gt²/2合速度合位移特点运动时间由高度决定,与v₀无关竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立类平抛当物体所受的合外力恒定且与初速度垂直时,做类平抛运动圆周运动描述述圆周运动物理量线速度做匀速圆周运动的物体所通过的弧长与所用的时间的比值(描述质点沿切线方向运动的快慢)大小v=s/t单位:m/s方向某点线速度方向沿圆弧该点切线方向角速度做匀速圆周运动的物体,连接物体与圆心的半径转过的圆心角与所用的时间的比值(描述质点绕圆心转动的快慢)大小ω=θ/t 矢量单位:rad/s周期和转速周期T做圆周运动物体一周所用的时间(s)转速n做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数(r/s,r/min)v,ω,T,n的关系匀速圆周运动特点线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的性质速度大小不变而速度方向时刻改变加速度大小不变、方向时刻改变变加速曲线运动加速度和向心力匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度向心力就是做匀速圆周运动的物体所受外力的合力质点做匀速圆周运动的条件合外力大小不变方向始终与速度方向垂直且指向圆心向心加速度描述线速度方向改变的快慢大小方向总是指向圆心,方向时刻在变化向心力作用产生向心加速度,只改变线速度的方向,不改变速度的大小向心力对做圆周运动的物体不做功大小方向总是沿半径指向圆心,时刻在变化向心力是个变力向心力是按效果命名的力,不是某种性质的力,向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定关联速度同轴转动的物体各点角速度ω相等线速度v=ωr与半径r成正比链条传动、齿轮传动、皮带传动(不打滑)两轮边缘的各点线速度大小相等,而角速度ω=v/r与半径r成反比向心运动和离心运动提供的向心力等于所需要的向心力时物体做匀速圆周运动提供的向心力大于所需要的向心力时物体做向心运动提供的向心力小于所需要的向心力时物体做离心运动生活中的圆周运动火车转弯汽车过拱桥弹力只能背离圆心汽车过凹路弹力只能指向圆心→M=π²r³/Gt²只要测出环绕星体M运转的一颗卫星运转的半径和周期,就可以计算出中心天体的F=GMm/r²=m4π²r/T²追寻守恒量——能量伽利略的斜面实验过程将小球由斜面A上某位置由静止释放,小球运动到斜面B上现象小球在斜面B上速度变为0时,即到达最高点时的高度与它出发时的高度相同结论这一事实说明某个量是守恒的,在物理学上我们把这个量叫作能量或者能动能与势能动能:物体由于运动而具有的能量势能:相互作用的物体凭借其位置而具有的能量能量转化:小球的动能和势能可以相互转化功功功等于力和沿该力方向上的位移的乘积做功的两个必要因素力和物体在力的方向上的位移公式W=FScosθ(θ为F与s的夹角)单位:焦耳1J=1N·m适用恒力做功求解功是过程量,是力对空间的积累效应,和位移、时间相对应功是标量,没有方向,但有正负正功表示动力做功负功表示阻力做功功的正负表示能的转移方向公式W=FScosθ的求解W等于力F乘以物体在力F方向上的分位移Scosθ,即将物体的位移分解为沿F方向W等于力F在位移s方向上的分力Fcosθ乘以物体的位移s,即将力F分解为沿s方向功的物理含义功是能量转化的量度做功的过程是能量的一个转化过程,这个过程做了多少功,就有多少能量发生了转化对物体做正功,物体的能量增加;功的正负当0≤θ<90°时W>0,力对物体做正功,动力当θ=90°时w=0,力对物体不做功当90°<θ≤180°时W<0,力对物体做负功或说成物体克服这个力做正功,阻力合力功的计算用平行四边形定则求出合外力,再根据W=FScosθ计算功θ应是合外力与位移s间的夹角,且合力为恒力分别求各个外力的功,再求各个外力功的代数和变力做功问题将变力转化为恒力,再用W=FScosθ计算滑动摩擦力、空气阻力等,在曲线运动或往返运动时,若变力F大小不变,功等于力和路程的乘积作出变力F随位移变化的图象,图象与位移轴所围均“面积”即为变力做的功根据动能定理或能量转化和守恒定律求变力做的功摩擦力的做功静摩擦力做功的特点静摩擦力可以做正功,可以做负功,也可以不做功静摩擦力起着传递机械能的作用只有机械能的相互转移,而没有机械能转化为其他形式的能相互摩擦的系统内,一对静摩擦力所做功的代数和总为零滑动摩擦力做功的特点滑摩擦力可以做正功,可以做负功,也可以不做功能量的转化相互摩擦的物体之间机械能的转移机械能转化为内能相互摩擦的系统内,转化为内能值等于滑动摩擦力与相对位移的乘积Q=Fs功率定义功跟完成这些功所用时间的比值叫做功率。
完整的知识网络构建,让复习备考变得轻松简单!(注意:全篇带★需要牢记!)高中物理重要知识点总结(史上最全)高中物理知识点总结(注意:全篇带★需要牢记!)一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上. (2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 . (4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态. (3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑F x =0,∑F y =0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。