实验二线性表
- 格式:doc
- 大小:462.50 KB
- 文档页数:12
实验日期2010.4.19 教师签字成绩实验报告【实验名称】第二章线性表的基本操作及应用【实验目的】(1)熟练掌握线性表的基本操作的实现;(2)以线性表的各种操作(建立、插入、删除等)的实现为重点;(3)通过本次实验加深对C语言的使用(特别是函数的参数调用、指针类型的应用和链表的建立等各种基本操作)。
【实验内容】1.顺序表的基本操作(顺序表的插入、访问、删除操作)#include <stdio.h>#include <stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -1typedef int ElemType;typedef int Status;#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef struct{ElemType *elem;int length;int listsize;}SqList;Status InitList_Sq(SqList *L){int i,n;L->elem = (ElemType * )malloc(LIST_INIT_SIZE*sizeof(ElemType));if (! L->elem) exit (OVERFLOW);printf("您希望您的顺序表有几个元素: ");scanf("%d",&n);printf("\n");printf("输入您的%d个元素,以构建顺序表: \n",n);for(i=1;i<=n;i++)scanf("%d",&L->elem[i-1]);L->length = n;L->listsize = LIST_INIT_SIZE;return OK;}//InitList_SqStatus PrintList_Sq(SqList L){int i;printf("顺序表中的元素为:");for (i=1;i<=L.length;i++)printf("%d ",L.elem[i-1]);printf("\n");return OK;}//PrintList_Sqint ListInsert_Sq(SqList* L,int i,ElemType x) //对顺序表进行插入操作{int j;if (L->length==L->listsize){printf("\t\t\t顺序表已满");return 0;}else{if (i<1||i>L->length){printf("\t\t\t位置不合法");return 0;}else{for(j=L->length-1;j>=i-1;--j)L->elem[j+1]=L->elem[j];L->elem[i-1]=x;L->length++;return 1;}}}int ListDelete_Sq(SqList* L,int i) //对顺序表进行删除操作{int j;if (i<1||i>L->length){printf("\t\t\t不存在第i个元素");return 0;}else{for (j=i-1;j<L->length;j++){L->elem[j]=L->elem[j+1];}L->length--;return 1;}}int LocateElem(SqList *L, int i) {if(i<1||i>L->length)return ERROR;else return L->elem[i-1];}int scan(){int choose;printf("选择要执行的基本操作:\n1.插入元素;2.删除元素;3.访问元素.\n");printf("输入其他值退出程序……\n");scanf("%d",&choose);return(choose);}void main(){SqList L;ElemType e;int i;int quit=0;if (InitList_Sq(&L)==OVERFLOW)printf("分配失败,退出程序!");printf("输出程序中的元素\n");PrintList_Sq(L);while(!quit)switch(scan()){case 1:printf("\n请输入你所需要插入的位置和你要插入的元素:");printf("\n请输入i和e的值:");scanf("%d%d",&i,&e);if (ListInsert_Sq(&L,i,e)==OK) PrintList_Sq(L);break;case 2:printf("\n请输入你所需要删除元素的位置:");scanf("%d",&i);if(ListDelete_Sq(&L,i)==OK) PrintList_Sq(L);break;case 3:printf("请输入所要查找元素的位置:\n");scanf("%d",&i);if(LocateElem(&L,i))printf("该位置元素的值为:%d!\n",LocateElem(&L,i));else printf("该位置的元素不存在!\n");break;default:quit=1;printf("操作结束!");printf("\n");}}2.单向链表的基本操作(单向链表的插入、删除、查找以及并表操作)#include<stdio.h>#include<malloc.h>typedef int ElemType;#define OK 1#define ERROR 0#define flag 0typedef struct LNode{ElemType data;struct LNode *next;} LNode,*LinkList;LinkList InitLinkList(){LinkList L;L=(LinkList)malloc(sizeof(LNode));L->next=NULL;return L;}LinkList LocateLinkList(LinkList L,int i){LinkList p;int j;p=L->next;j=1;while(p!=NULL&&j<i){p=p->next; j++;}if (j==i)return p;else return NULL;}void LinkListInsert(LinkList L, int i, ElemType e)//插入元素{LinkList p,s;int j;j=1;p=L;while(p&&j<i){p=p->next;j++;}if(p==NULL||j>i)printf("插入位置不正确\n");else {s=(LNode *)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;printf("%d已插入到链表中\n",e);}}void LinkListDelete(LinkList L,int i) //删除元素{LinkList p,q;int j;j=1;p=L;while(p->next&&j<i){p=p->next;j++;}if(p->next==NULL)printf("删除位置不正确\n");else{q=p->next;p->next=q->next;free(q);printf("第%d个元素已从链表中删除\n",i);}}LinkList CreatLinkList( )//建立单向链表{LinkList L=InitLinkList(),p,r;ElemType e;r=L;printf("请依次输入链表中的元素,输入0结束\n"); scanf("%d",&e);while (e!=flag){p=(LinkList)malloc(sizeof(LNode));p->data=e;r->next=p;r=p;scanf("%d",&e);}r->next=NULL;return L;}int LinkListLength(LinkList L){LinkList p;int j;p=L->next;j=0;while(p!=NULL){j++;p=p->next;}return j;}void LinkListPrint(LinkList L){LinkList p;p=L->next;if(p==NULL) printf("单链表为空表\n");else{printf("链表中的元素为:\n");while(p!=NULL){printf("%d ",p->data);p=p->next;}}printf("\n");}void Mergelist_L(LinkList La,LinkList Lb,LinkList Lc) {LNode *pa,*pb,*pc,*p;pa=La->next;pb=Lb->next;Lc=La;pc=Lc;while(pa&&pb){if(pa->data<=pb->data){pc->next=pa;pc=pa;pa=pa->next;}else {pc->next=pb;pc=pb;pb=pb->next;}}pc->next=pa?pa:pb;p=Lc->next;printf("合并结果:");while(p) {printf("%4d",p->data);p=p->next;}free(Lb);}int scan(){int d;printf("请选择你所要执行的单向链表的基本操作:\n1.插入元素;2.删除元素;3.访问元素;4.两个单向链表的合并.\n");printf("其他键退出程序……");printf("\n");scanf("%d",&d);return(d);}void main(){ LinkList La,Lb,Lc;int quit=0;int i,locate;ElemType e;LinkList L,p;L=CreatLinkList();while(!quit)switch(scan()){case 1:printf("请输入插入元素的位置和值(中间以空格或回车分隔):\n");scanf("%d%d",&i,&e);LinkListInsert(L,i,e);LinkListPrint(L);break;case 2:if(LinkListLength(L)==0)printf("链表已经为空,不能删除\n\n");else{printf("请输入待删除元素的位置:\n");scanf("%d",&i);LinkListDelete(L,i);}LinkListPrint(L);break;case 3:printf("请输入待查询元素在链表中的位置:");scanf("%d",&i);p=LocateLinkList(L,i);if(p)printf("链表中第%d个元素的值为:%d\n",i,p->data);elseprintf("查询位置不正确\n\n");break;case 4:La=CreatLinkList();Lb=CreatLinkList();Mergelist_L( La, Lb, Lc);printf("\n");break;default:quit=1;printf("操作结束!");printf("\n");}}3.单向循环链表的基本操作(单向链表的插入、删除、查找操作)#include<stdio.h>#include<malloc.h>typedef int ElemType;#define OK 1#define ERROR 0#define flag 0typedef struct LNode{ElemType data;struct LNode *next;} LNode,*LinkList;LinkList InitLinkList(){LinkList L;L=(LinkList)malloc(sizeof(LNode));L->next=L;return L;}LinkList LocateLinkList(LinkList L,int i){LinkList p;int j;p=L->next;j=1;while(p!=L&&j<i){p=p->next; j++;}if (j==i)return p;else return NULL;}void LinkListInsert(LinkList L, int i, ElemType e)//插入元素{LinkList p,s;int j;j=1;p=L;while(p->next!=L&&j<i){p=p->next;j++;}if(p==L||j>i)printf("插入位置不正确\n");else {s=(LNode *)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;printf("%d已插入到链表中\n",e);}}void LinkListDelete(LinkList L,int i) //删除元素{LinkList p,q;int j;j=1;p=L;while(p->next!=L&&j<i){p=p->next;j++;}if(p->next==L)printf("删除位置不正确\n");else{q=p->next;p->next=q->next;free(q);printf("第%d个元素已从链表中删除\n",i);}}LinkList CreatLinkList( )//建立单向链表{LinkList L=InitLinkList(),p,r;ElemType e;r=L;printf("请依次输入链表中的元素,输入0结束\n"); scanf("%d",&e);while (e!=flag){p=(LinkList)malloc(sizeof(LNode));p->data=e;r->next=p;r=p;scanf("%d",&e);}r->next=L;return L;}int LinkListLength(LinkList L){LinkList p;int j;p=L->next;j=0;while(p!=L){j++;p=p->next;}return j;}void LinkListPrint(LinkList L){LinkList p;p=L->next;printf("链表中的元素为:\n");while(p!=L){printf("%d ",p->data);p=p->next;}printf("\n");}int scan(){int d;printf("请选择你所要执行的单向链表的基本操作:\n1.插入元素;2.删除元素;3.访问元素.\n");printf("其他键退出程序……");printf("\n");scanf("%d",&d);return(d);}void main(){int quit=0;int i;ElemType e;LinkList L,p;L=CreatLinkList();while(!quit)switch(scan()){case 1:printf("请输入插入元素的位置和值(中间以空格或回车分隔):\n");scanf("%d%d",&i,&e);LinkListInsert(L,i,e);LinkListPrint(L);break;case 2:if(LinkListLength(L)==0)printf("链表已经为空,不能删除\n\n");else{printf("请输入待删除元素的位置:\n");scanf("%d",&i);LinkListDelete(L,i);}LinkListPrint(L);break;case 3:printf("请输入待查询元素在链表中的位置:");scanf("%d",&i);p=LocateLinkList(L,i);if(p)printf("链表中第%d个元素的值为:%d\n",i,p->data);elseprintf("查询位置不正确\n\n");break;default:quit=1;printf("操作结束!");printf("\n");}}4.双向链表的基本操作(双向链表的插入、删除、查找以及并表操作)#include<stdio.h>#include<malloc.h>#define flag 0typedef int status;typedef int ElemType;typedef struct DuLNode{ElemType data;struct DuLNode *prior;struct DuLNode *next;}DuLNode,*DuLinkList;DuLinkList InitDuLinkList(){DuLinkList L;L=(DuLinkList)malloc(sizeof(DuLNode));L->next=L->prior=NULL;return L;}DuLinkList CreatDuLinkList(){DuLinkList L=InitDuLinkList(),p,r;ElemType e;r=L;printf("请依次输入链表中的元素,输入0结束\n");scanf("%d",&e);while (e!=flag){p=(DuLinkList)malloc(sizeof(DuLNode));p->data=e;r->next=p;p->prior=r->next;r=p;scanf("%d",&e);}r->next=NULL;return L;}void ListInsert_DuL(DuLinkList L, int i, ElemType e){ DuLinkList p,s;int j;j=1;p=L;while(p&&j<i){p=p->next;j++;}if(p==NULL||j>i)printf("插入位置不正确\n");else {s=(DuLinkList)malloc(sizeof(DuLNode));s->data=e;s->next=p->next; p->next->prior=s;s->prior=p; p->next=s;printf("%d已插入到双向链表中\n",e); }}void ListDelete_DuL(DuLinkList L,int i) //删除元素{DuLinkList p,q;int j;j=1;p=L;while(p->next&&j<i){p=p->next;j++;}if(p->next==NULL)printf("删除位置不正确\n");else{q=p->next;p->next=q->next;q->next->prior=p;free(q);printf("第%d个元素已从链表中删除\n",i); }}void LinkListPrint_DuL(DuLinkList L){DuLinkList p;p=L->next;if(p==NULL) printf("双链表为空表\n");else{printf("链表中的元素为:\n");while(p!=NULL){printf("%d ",p->data);p=p->next;}}printf("\n");}int DuLinkListLength(DuLinkList L){DuLinkList p;int j;p=L->next;j=0;while(p!=NULL){j++;p=p->next;}return j;}DuLinkList LocateDuLinkList(DuLinkList L,int i) {DuLinkList p;int j;p=L->next;j=1;while(p!=NULL&&j<i)p=p->next; j++;}if (j==i)return p;else return NULL;}void Mergelist_L(DuLinkList La,DuLinkList Lb,DuLinkList Lc){DuLNode *pa,*pb,*pc,*p;pa=La->next;pb=Lb->next;Lc=La;pc=Lc;while(pa&&pb){if(pa->data<=pb->data){pc->next=pa;pc=pa;pa=pa->next;}else {pc->next=pb;pc=pb;pb=pb->next;}}pc->next=pa?pa:pb;p=Lc->next;printf("合并结果:");while(p) {printf("%4d",p->data);p=p->next;}free(Lb);}int scan(){int d;printf("请选择你所要执行的双向链表的基本操作:\n1.插入元素;2.删除元素;3.访问元素;4.两个双向链表的合并.\n");printf("其他键退出程序……");printf("\n");scanf("%d",&d);return(d);}void main(){int quit=0;int i;ElemType e;DuLinkList L,p;DuLinkList La,Lb,Lc;L=CreatDuLinkList();while(!quit){switch(scan())case 1:printf("请输入插入元素的位置和值(中间以空格或回车分隔):\n");scanf("%d%d",&i,&e);ListInsert_DuL(L,i,e);LinkListPrint_DuL(L);break;case 2:if(DuLinkListLength(L)==0)printf("链表已经为空,不能删除\n\n");else{printf("请输入待删除元素的位置:\n");scanf("%d",&i);ListDelete_DuL(L,i);}LinkListPrint_DuL(L);break;case 3:printf("请输入待查询元素在链表中的位置:");scanf("%d",&i);p=LocateDuLinkList(L,i);if(p)printf("链表中第%d个元素的值为:%d\n",i,p->data);elseprintf("查询位置不正确\n\n");break;case 4:La=CreatDuLinkList();Lb=CreatDuLinkList();Mergelist_L( La, Lb, Lc);printf("\n");break;default:quit=1;printf("操作结束!");printf("\n");}}5.双向循环链表的基本操作(双向循环链表的插入、删除以及访问操作)#include<stdio.h>#include<malloc.h>#define flag 0typedef int status;typedef int ElemType;typedef struct DuLNode{ElemType data;struct DuLNode *prior;struct DuLNode *next;}DuLNode,*DuLinkList;DuLinkList InitDuLinkList(){DuLinkList L;L=(DuLinkList)malloc(sizeof(DuLNode));L->next=L; L->prior=L;return L;}DuLinkList CreatDuLinkList(){DuLinkList L=InitDuLinkList(),p,r;ElemType e;r=L;printf("请依次输入链表中的元素,输入0结束\n"); scanf("%d",&e);while (e!=flag){p=(DuLinkList)malloc(sizeof(DuLNode));p->data=e;r->next=p;p->prior=r->next;r=p;scanf("%d",&e);}r->next=L; L->prior=r;return L;}void ListInsert_DuL(DuLinkList L, int i, ElemType e){ DuLinkList p,s;int j;j=1;p=L;while(j<i){p=p->next;j++;}if(j>i)printf("插入位置不正确\n");else {s=(DuLinkList)malloc(sizeof(DuLNode));s->data=e;s->next=p->next; p->next->prior=s;s->prior=p; p->next=s;printf("%d已插入到双向循环链表中\n",e); }}void ListDelete_DuL(DuLinkList L,int i) //删除元素{DuLinkList p,q;int j;j=1;p=L;while(p->next!=L&&j<i){p=p->next;j++;}if(p->next==L)printf("删除位置不正确\n");else{q=p->next;p->next=q->next;q->next->prior=p;free(q);printf("第%d个元素已从双向循环链表中删除\n",i); }}void LinkListPrint_DuL(DuLinkList L){DuLinkList p;p=L->next;if(p->next==L) printf("双链表为空表\n");else{printf("链表中的元素为:\n");while(p!=L){printf("%d ",p->data);p=p->next;}}printf("\n");}int DuLinkListLength(DuLinkList L){DuLinkList p;int j;p=L->next;j=0;while(p->next!=L){j++;p=p->next;}return j;}DuLinkList LocateDuLinkList(DuLinkList L,int i){DuLinkList p;int j=1;p=L->next;while(p->next!=L&&j<i){p=p->next; j++;}if (j==i)return p;else return NULL;}int scan(){int d;printf("请选择你所要执行的双向链表的基本操作:\n1.插入元素;2.删除元素;3.访问元素.\n");printf("其他键退出程序……");printf("\n");scanf("%d",&d);return(d);}void main(){ int quit=0;int i,locate;ElemType e;DuLinkList L,p;L=CreatDuLinkList();while(!quit)switch(scan()){case 1:printf("请输入插入元素的位置和值(中间以空格或回车分隔):\n");scanf("%d%d",&i,&e);ListInsert_DuL(L,i,e);LinkListPrint_DuL(L);break;case 2:if(DuLinkListLength(L)==0)printf("链表已经为空,不能删除\n\n");else{printf("请输入待删除元素的位置:\n");scanf("%d",&i);ListDelete_DuL(L,i);}LinkListPrint_DuL(L);break;case 3:printf("请输入待查询元素在链表中的位置:");scanf("%d",&i);p=LocateDuLinkList(L,i);if(p)printf("链表中第%d个元素的值为:%d\n",i,p->data);elseprintf("查询位置不正确\n\n");break;default:quit=1;printf("操作结束!");printf("\n");}}【小结讨论】1.通过实验,我加深了对C的工作环境及其基本操作,进一步掌握了基本函数的调用以及使用方法。
第2章线性表线性表是一种最基本、最常用的数据结构,它有两种存储结构——顺序表和链表。
本章主要介绍线性表的定义、表示和基本运算的实现。
重点讨论了线性表的存储结构,以及在顺序、链式两种存储结构上基本运算的实现。
重点提示:●线性表的逻辑结构特征●线性表的顺序存储和链式存储两种存储结构的特点●在两种存储结构下基本操作的实现2-1 重点难点指导2-1-1 相关术语1.线性表线性表是具有相同数据类型的n(n≥0)个数据元素的有限序列,通常记为:(a1,a2,…,a n),其中n为表长,n=0时称为空表。
要点:一种逻辑结构,其数据元素属于相同数据类型,之间的关系是线性关系。
2.顺序表顺序存储的线性表。
要点:按线性表中的元素的逻辑顺序依次存放在地址连续的存储单元里,其存储特点:用物理上的相邻实现逻辑上的相邻。
3.链表用链表存储的线性表。
要点:链表是通过每个结点的链域将线性表的n个结点按其逻辑顺序链接在一起的,对每个结点的地址是否连续没有要求。
4.单链表每个结点除了数据域外还有一个指向其后继的指针域。
要点:通常将每个元素的值和其直接后继的地址作为一个结点,通过每个结点中指向后继结点的指针表示线性表的逻辑结构。
5.头指针要点:头指针是一个指针变量,里面存放的是链表中首结点的地址,并以此来标识一个链表。
如链表H,链表L等,表示链表中第一个结点的地址存放在指针变量H、L中。
通常用头指针来惟一标识一个链表。
6.头结点要点:附加在第一个元素结点之前的一个结点,头指针指向头结点。
当该链表表示一个非空的线性表时,头结点的指针域指向第一个元素结点;为空表时,该指针域为空。
7.头结点的作用要点:其作用有两个,一是使对空表和非空表的处理得到统一;二是在链表的第一个位置上的操作和在其他位置上的操作一致,无需特殊处理。
2-1-2 线性表的顺序存储1.顺序表顺序存储的线性表称为顺序表。
其特点是:用一组地址连续的存储单元来依次存放线性表的数据元素,因此数据元素的逻辑顺序和物理次序一致(这是顺序存储的核心所在)。
算法与数据结构实验报告实验二实验名称:线性表实现集合运算姓名:卢丽娟学号:211006289专业:软件工程班级:二班指导教师:陈亦萍日期: 2012年3月24日一、实验目的本实验是要实现线性表的集合运算,通过该实验更深刻地理解线性结构的特点,学会并掌握线性表的顺序或链式表示和实现。
二、实验内容与实验步骤采用线性表表示集合,用线性表实现集合以及基本操作,实现两个集合的并、交、差运算。
用到的各种函数如下程序步骤所示。
步骤:1. 链表销毁void DestoryList_L(list& L){ list p=L->next,s;while(p){ s=p; p=p->next;free(s);}L->next=NULL;}2. 链表初始化void InitList(list &L){ L=NULL;}3. 往链表L中插入元素e,并按升序排列,如果L中已有元素e,则不插入ListInsert_L(list &L, char e){ list p=L->next,t,s; t = L;while(p!=NULL &&p->data<= e){ if(p->data==e) return OK;t=p; p=p->next;}s =(list)malloc(sizeof(LNode));s->data=e;s->next=p;t->next=s;return OK;}4. 创建链表,按字符串输入元素void CreateList_L(list &L, int n){ L =(list)malloc(sizeof(LNode));L->next=NULL;int i=0;for(i=n;i>0;i--){ char e; scanf("%c",&e);ListInsert_L(L,e);}getchar();}5.定义输入函数,分配存储空间void inputdata(list head)//定义输入函数{ list p;char tmp;scanf("%c",&tmp);while(tmp!='\n'){ p=(list)malloc(sizeof(struct LNode));//分配存储空间p->data=tmp;p->next=head->next;head->next=p;scanf("%c",&tmp); }}6.定义输出函数,初始化,并判断其是否为空void outputdata(list head)//定义输出集合函数{ list p;p=head->next;//初始化,p指向第一个结点while(p!=NULL)//判断是否为空{ printf("%c",p->data);p=p->next;} printf("\n");//输出集合函数}7.定义集合的并集函数,其中函数的数据元素均已按值非递减排列void MergeList(list head1,list head2,list head3)//定义集合的并集函数{//已知p1、p2中的数据元素按值非递减排列。
数据结构实验报告实验总结本次数据结构实验主要涉及线性表、栈和队列的基本操作以及链表的应用。
通过实验,我对这些数据结构的特点、操作和应用有了更深入的了解。
下面对每一部分实验进行总结。
实验一:线性表的基本操作线性表是一种常见的数据结构,本实验要求实现线性表的基本操作,包括插入、删除、查找、遍历等。
在实验过程中,我对线性表的结构和实现方式有了更清晰的认识,掌握了用数组和链表两种方式实现线性表的方法。
实验二:栈的应用栈是一种后进先出(LIFO)的数据结构,本实验要求利用栈实现简单的括号匹配和后缀表达式计算。
通过实验,我了解到栈可以方便地实现对于括号的匹配和后缀表达式的计算,有效地解决了对应的问题。
实验三:队列的应用队列是一种先进先出(FIFO)的数据结构,本实验要求利用队列实现银行排队和迷宫求解。
通过实验,我对队列的应用有了更加深入的了解,了解到队列可以解决需要按顺序处理的问题,如排队和迷宫求解等。
实验四:链表的应用链表是一种常用的数据结构,本实验要求利用链表实现学生信息管理系统。
通过实验,我对链表的应用有了更深入的了解,了解到链表可以方便地实现对于数据的插入、删除和修改等操作,并且可以动态地调整链表的长度,适应不同的需求。
通过本次实验,我掌握了线性表、栈、队列和链表的基本操作,并了解了它们的特点和应用方式。
同时,通过实际编程的过程,我对于数据结构的实现方式和效果有了更直观的认识,也锻炼了自己的编程能力和解决问题的能力。
在实验过程中,我遇到了一些问题,如程序逻辑错误和内存泄漏等,但通过调试和修改,最终成功解决了这些问题,对自己的能力也有了更多的信心。
通过本次实验,我深刻体会到了理论与实践的结合的重要性,也对于数据结构这门课程有了更加深入的理解。
总之,本次数据结构实验给予了我很多有益的启发和收获,对于数据结构的概念、特点和应用有了更深入的理解。
在以后的学习中,我会继续加强对数据结构的学习和研究,不断提高自己的编程能力和解决问题的能力。
数据结构--实验报告线性表的基本操作数据结构--实验报告线性表的基本操作一、引言本实验报告旨在通过实际操作,掌握线性表的基本操作,包括初始化、插入、删除、查找等。
线性表是最基本的数据结构之一,对于理解和应用其他数据结构具有重要的作用。
二、实验目的1·了解线性表的定义和基本特性。
2·掌握线性表的初始化操作。
3·掌握线性表的插入和删除操作。
4·掌握线性表的查找操作。
5·通过实验巩固和加深对线性表的理解。
三、线性表的基本操作1·初始化线性表线性表的初始化是将一个线性表变量设置为空表的过程。
具体步骤如下:(1)创建一个线性表的数据结构,包括表头指针和数据元素的存储空间。
(2)将表头指针指向一个空的数据元素。
2·插入元素插入元素是向线性表中指定位置插入一个元素的操作。
具体步骤如下:(1)判断线性表是否已满,如果已满则无法插入元素。
(2)判断插入位置是否合法,如果不合法则无法插入元素。
(3)将插入位置及其后面的元素都向后移动一个位置。
(4)将待插入的元素放入插入位置。
3·删除元素删除元素是从线性表中删除指定位置的元素的操作。
具体步骤如下:(1)判断线性表是否为空,如果为空则无法删除元素。
(2)判断删除位置是否合法,如果不合法则无法删除元素。
(3)将删除位置后面的元素都向前移动一个位置。
(4)删除最后一个元素。
4·查找元素查找元素是在线性表中查找指定元素值的操作。
具体步骤如下:(1)从线性表的第一个元素开始,逐个比较每个元素的值,直到找到目标元素或遍历完整个线性表。
(2)如果找到目标元素,则返回该元素的位置。
(3)如果未找到目标元素,则返回找不到的信息。
四、实验步骤1·初始化线性表(1)定义线性表的数据结构,包括表头指针和数据元素的存储空间。
(2)将表头指针指向一个空的数据元素。
2·插入元素(1)判断线性表是否已满。
数据结构实验报告线性表数据结构实验报告:线性表引言:数据结构是计算机科学中的重要概念,它涉及到如何组织和存储数据,以及如何有效地操作和管理这些数据。
线性表是数据结构中最基本的一种,它是一种有序的数据元素集合,其中的元素之间存在着一对一的关系。
一、线性表的定义和特点线性表是由n个数据元素组成的有限序列,其中n为表的长度。
这些数据元素可以是相同类型的,也可以是不同类型的。
线性表中的数据元素按照一定的顺序排列,并且每个数据元素都有唯一的前驱和后继。
线性表的特点有以下几个方面:1. 数据元素之间是一对一的关系,即每个数据元素只有一个直接前驱和一个直接后继。
2. 线性表中的元素是有序的,每个元素都有一个确定的位置。
3. 线性表的长度是有限的,它的长度可以是0,也可以是任意正整数。
二、线性表的实现方式线性表可以使用不同的数据结构来实现,常见的实现方式有数组和链表。
1. 数组实现线性表:数组是一种连续存储的数据结构,它可以用来存储线性表中的元素。
数组的优点是可以快速访问任意位置的元素,但是插入和删除操作需要移动其他元素,效率较低。
2. 链表实现线性表:链表是一种非连续存储的数据结构,它通过指针将线性表中的元素链接起来。
链表的优点是插入和删除操作简单高效,但是访问任意位置的元素需要遍历链表,效率较低。
三、线性表的基本操作线性表的基本操作包括插入、删除、查找和修改等。
1. 插入操作:插入操作用于向线性表中插入一个新元素。
具体步骤是先将插入位置后面的元素依次后移,然后将新元素插入到指定位置。
2. 删除操作:删除操作用于从线性表中删除一个元素。
具体步骤是先将删除位置后面的元素依次前移,然后将最后一个元素删除。
3. 查找操作:查找操作用于在线性表中查找指定元素。
具体步骤是从线性表的第一个元素开始逐个比较,直到找到匹配的元素或者到达线性表的末尾。
4. 修改操作:修改操作用于修改线性表中的某个元素的值。
具体步骤是先查找到要修改的元素,然后将其值更新为新值。
线性表实验报告一、实验目的本次实验的主要目的是深入理解线性表的基本概念和操作,通过实际编程实现线性表的存储和基本运算,掌握线性表在数据结构中的应用,提高对数据结构的理解和编程能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理线性表是一种最基本、最简单的数据结构,它是由 n(n≥0)个数据元素组成的有限序列。
在这个序列中,每个数据元素的位置是按照其逻辑顺序排列的。
线性表有两种存储结构:顺序存储结构和链式存储结构。
顺序存储结构是用一组地址连续的存储单元依次存储线性表中的数据元素,使得逻辑上相邻的两个元素在物理位置上也相邻。
其优点是可以随机访问表中的任意元素,时间复杂度为 O(1);缺点是插入和删除操作需要移动大量元素,时间复杂度为 O(n)。
链式存储结构是通过指针将各个数据元素链接起来,每个数据元素由数据域和指针域组成。
其优点是插入和删除操作不需要移动大量元素,时间复杂度为 O(1);缺点是不能随机访问表中的元素,需要从头指针开始遍历,时间复杂度为 O(n)。
四、实验内容本次实验实现了顺序表和链表的基本操作,包括创建、插入、删除、查找、遍历等。
1、顺序表的实现定义顺序表的结构体,包括数据存储数组和表的长度。
实现顺序表的初始化函数,将表的长度初始化为 0。
实现顺序表的插入函数,在指定位置插入元素,如果插入位置非法或表已满,则返回错误。
实现顺序表的删除函数,删除指定位置的元素,如果删除位置非法,则返回错误。
实现顺序表的查找函数,查找指定元素,如果找到则返回元素的位置,否则返回-1。
实现顺序表的遍历函数,输出表中的所有元素。
2、链表的实现定义链表的结构体,包括数据域和指向下一个节点的指针域。
实现链表的创建函数,创建一个空链表。
实现链表的插入函数,在指定位置插入元素,如果插入位置非法,则返回错误。
实现链表的删除函数,删除指定位置的元素,如果删除位置非法,则返回错误。
实验一线性表的顺序实现一、实验目的:(1)掌握线性表的顺序存储结构的定义及C语言实现。
(2)掌握线性表在顺序存储结构即顺序表中的各种基本操作。
二、实验要求:(1)复习课本中有关线性表的知识;(2)用C语言完成算法和程序设计并上机调试通过;(3)撰写实验报告,给出算法思路或流程图和具体实现(源程序)、算法分析结果(包括时间复杂度、空间复杂度以及算法优化设想)、输入数据及程序运行结果(必要时给出多种可能的输入数据和运行结果)。
三、实验内容1、顺序表的建立2、顺序表的插入3、顺序表的删除4、顺序表的遍历实验二线性表的链式实现一、实验目的:(1)掌握线性表的链式存储结构——单链表的定义及C语言实现。
(2)掌握线性表在链式存储结构——单链表中的各种基本操作。
二、实验要求:(1)复习课本中有关线性表的知识;(2)用C语言完成算法和程序设计并上机调试通过;(3)撰写实验报告,给出算法思路或流程图和具体实现(源程序)、算法分析结果(包括时间复杂度、空间复杂度以及算法优化设想)、输入数据及程序运行结果(必要时给出多种可能的输入数据和运行结果)。
三、实验内容1、单链表的建立2、单链表的插入3、单链表的删除4、单链表的合并5、删除单链表中的重复值实验三栈(队列)的实现一、实验目的:(1)熟悉栈(队列)的特点及栈(队列)的基本操作,如入栈、出栈(入队、出队)等。
(2)掌握栈(队列)的基本操作在栈(队列)的顺序存储结构和链式存储结构上的实现;二、实验要求:(1)复习课本中有关栈(队列)的知识;(2)用C语言完成算法和程序设计并上机调试通过;(3)撰写实验报告,给出算法思路或流程图和具体实现(源程序)、算法分析结果(包括时间复杂度、空间复杂度以及算法优化设想)、输入数据及程序运行结果(必要时给出多种可能的输入数据和运行结果)。
三、实验内容:编写一个程序实现顺序栈(队列)的各种基本运算,并在此基础上设计一个主程序,完成如下功能:(1)初始化顺序栈(队列)(2)插入元素(3)删除栈顶(队头)元素(4)取栈顶(队头)元素(5)遍历顺序栈(队列)(6)置空顺序栈(队列)(7)完成数制转换实验四、二叉树的基本操作的实现一、实验目的:(1)掌握二叉树链表的结构和二叉树的建立过程;(2)掌握二叉树的基本操作,加深对二叉树的理解,逐步培养解决实际问题的编程能力。
数据结构课程实验报告数据结构课程实验报告引言:数据结构是计算机科学中非常重要的一门课程,它研究了数据的组织、存储和管理方法。
在数据结构课程中,我们学习了各种数据结构的原理和应用,并通过实验来加深对这些概念的理解。
本文将对我在数据结构课程中的实验进行总结和分析。
实验一:线性表的实现与应用在这个实验中,我们学习了线性表这种基本的数据结构,并实现了线性表的顺序存储和链式存储两种方式。
通过实验,我深刻理解了线性表的插入、删除和查找等操作的实现原理,并掌握了如何根据具体应用场景选择合适的存储方式。
实验二:栈和队列的实现与应用栈和队列是两种常见的数据结构,它们分别具有后进先出和先进先出的特点。
在这个实验中,我们通过实现栈和队列的操作,加深了对它们的理解。
同时,我们还学习了如何利用栈和队列解决实际问题,比如迷宫求解和中缀表达式转后缀表达式等。
实验三:树的实现与应用树是一种重要的非线性数据结构,它具有层次结构和递归定义的特点。
在这个实验中,我们学习了二叉树和二叉搜索树的实现和应用。
通过实验,我掌握了二叉树的遍历方法,了解了二叉搜索树的特性,并学会了如何利用二叉搜索树实现排序算法。
实验四:图的实现与应用图是一种复杂的非线性数据结构,它由节点和边组成,用于表示事物之间的关系。
在这个实验中,我们学习了图的邻接矩阵和邻接表两种存储方式,并实现了图的深度优先搜索和广度优先搜索算法。
通过实验,我深入理解了图的遍历方法和最短路径算法,并学会了如何利用图解决实际问题,比如社交网络分析和地图导航等。
实验五:排序算法的实现与比较排序算法是数据结构中非常重要的一部分,它用于将一组无序的数据按照某种规则进行排列。
在这个实验中,我们实现了常见的排序算法,比如冒泡排序、插入排序、选择排序和快速排序等,并通过实验比较了它们的性能差异。
通过实验,我深入理解了排序算法的原理和实现细节,并了解了如何根据具体情况选择合适的排序算法。
结论:通过这些实验,我对数据结构的原理和应用有了更深入的理解。
线性表的实验报告线性表的实验报告概述:线性表是一种常见的数据结构,它是由一组具有相同数据类型的元素组成的序列。
本次实验旨在通过实际操作线性表,掌握线性表的基本操作以及了解其应用场景。
实验目的:1. 理解线性表的概念和基本操作;2. 掌握线性表的顺序存储结构和链式存储结构;3. 熟悉线性表的常见应用场景。
实验材料:1. 计算机;2. 编程软件(如C、C++、Java等);3. 实验教材或参考资料。
实验步骤:一、线性表的顺序存储结构实验1. 创建一个空的线性表;2. 向线性表中插入若干元素;3. 删除线性表中的某个元素;4. 根据索引查找线性表中的元素;5. 遍历线性表,输出所有元素。
二、线性表的链式存储结构实验1. 创建一个空的链表;2. 向链表中插入若干节点;3. 删除链表中的某个节点;4. 根据节点值查找链表中的节点;5. 遍历链表,输出所有节点。
实验结果:1. 顺序存储结构实验结果:- 成功创建空的线性表;- 成功插入若干元素;- 成功删除某个元素;- 成功根据索引查找元素;- 成功遍历线性表,输出所有元素。
2. 链式存储结构实验结果:- 成功创建空的链表;- 成功插入若干节点;- 成功删除某个节点;- 成功根据节点值查找节点;- 成功遍历链表,输出所有节点。
实验分析:1. 顺序存储结构适用于元素个数固定或变化不大的情况,插入和删除操作需要移动大量元素,效率较低;2. 链式存储结构适用于元素个数不固定的情况,插入和删除操作只需修改指针,效率较高;3. 线性表的应用场景包括但不限于:图书馆图书管理系统中的图书列表、学生信息管理系统中的学生列表等。
实验总结:通过本次实验,我深入了解了线性表的概念、基本操作以及两种常见存储结构。
顺序存储结构适用于元素个数固定的情况,而链式存储结构适用于元素个数不固定的情况。
线性表在实际应用中有着广泛的应用场景,如图书馆管理系统、学生信息管理系统等。
在以后的学习和工作中,我将灵活运用线性表,为解决实际问题提供便利。
实验报告二线性表一、实验目的:(1)理解线性表的逻辑结构、两种存储结构和数据操作;(2)应用顺序表的基本算法实现集合A=AUB算法,应用顺序表的基本算法实现两有序顺序表的归并算法;(单链表的归并算法)(3)掌握单链表的遍历、插入和删除等操作算法,实现多项式相加。
二、实验容:1、设有线性表LA=(3,5,8,11)和LB=(2,6,8,9,11,15,20);①若LA和LB分别表示两个集合A和B,求新集合A=A U B(‘并’操作,相同元素不保留);预测输出:LA=(3,5,8,11,2,6,9,15,20)实现代码:package Q1_1;public class Node<T> {public T data;public Node<T> next;public Node(T data,Node<T> next){this.data=data;this.next=next;}public Node(){this(null,null);}}package Q1_1;import Q1_2.Node;public class LList {public static Node<Integer> headA;public static Node<Integer> headB;public static Node<Integer> CreateLA(){int[] A={3,5,8,11};Node<Integer> LA = new Node<Integer>();headA=LA;for(int i=0;i<A.length;i++){LA.next=new Node<Integer>(A[i],null);LA=LA.next ;}return headA;}public static Node<Integer> CreateLB(){int[] B={2,6,8,9,11,15,20};Node<Integer> LB = new Node<Integer>();headB=LB;for(int i=0;i<B.length;i++){LB.next=new Node<Integer>(B[i],null);LB=LB.next ;}return headB;}public static boolean Compare(Node<Integer> List,int t){Node<Integer> p=List.next;boolean flag=false;while(p!=null){if(p.data==t)flag=true;p=p.next ;}return flag;}public static Node<Integer> link(Node<Integer> LA,Node<Integer> LB){ LB=LB.next;LA=LA.next;boolean flag;Node<Integer> rear = null;while(LA!=null){rear=LA;LA=LA.next;}while(LB!=null){flag=Compare(headA,LB.data);if(flag==false){Node<Integer >temp =new Node<Integer>(LB.data,null);rear.next=temp;rear=rear.next;LB=LB.next;}elseLB=LB.next;}return headA;}public static void main(String[] args) {Node<Integer> t = new Node<Integer>();headA=CreateLA();headB=CreateLB();t=link(headA,headB);while(t.next!=null){System.out.printf("%-3d",t.next.data);t=t.next;}}}粘贴运行结果:②将LA与LB表归并,要求仍有序(相同元素要保留)预测输出:LC=(2,3,5,6,8,8,9,11,11,15,20)package Q1_2;public class Node<T> {public T data;public Node<T> next;public Node(T data,Node<T> next){this.data=data;this.next=next;}public Node(){this(null,null);}}package Q1_2;import java.util.*;public class LList {public static Node<Integer> headA;public static Node<Integer> headB;public static Node<Integer> CreateLA(){int[] A={3,5,8,11};Node<Integer> LA = new Node<Integer>();headA=LA;for(int i=0;i<A.length;i++){LA.next=new Node<Integer>(A[i],null);LA=LA.next ;}return headA;}public static Node<Integer> CreateLB(){int[] B={2,6,8,9,11,15,20};Node<Integer> LB = new Node<Integer>();headB=LB;for(int i=0;i<B.length;i++){LB.next=new Node<Integer>(B[i],null);LB=LB.next ;}return headB;}public static Node<Integer> compare(Node<Integer> LA,Node<Integer> LB){ LB=LB.next;LA=LA.next;while(LA!=null){if(LB.data <= LA.data && LA.data <LB.next.data){Node<Integer >temp =new Node<Integer>(LA.data,null);temp.next=LB.next ;LB.next=temp;LA=LA.next ;}elseLB=LB.next ;}return headB;}public static void main(String[] args) {Node<Integer> t = new Node<Integer>();headA=CreateLA();headB=CreateLB();t=compare(headA,headB);while(t.next!=null){System.out.printf("%-3d",t.next.data);t=t.next;}}}粘贴运行结果:2、在SinglyLinkedList类中增加下列成员方法。
public SinglyLinkedList(E[] element)//由指定数组中的多个对象构造单链表public SinglyLinkedList(SinglyLinkedList list)//以单链表list构造新的单链表,复制单链表public void concat(SinglyLinkedList list)//将指定单链表list在当前单链表之后public Node<E> search(E element)//若查找到指定,则返回结点,否则返回nullpublic boolean contain (E element)//以查找结果判断单链表是否包含指定对象public boolean remove (E element)//移去首次出现的指定对象public boolean replace (Object obj, E element)//将单链表中的obj对象替换为对象elementpublic boolean equals(Object obj)//比较两条单链表是否相等实现代码:package Q2;public class Node<T> {public T data;public Node<T> next;public Node(T data,Node<T> next){this.data=data;this.next=next;}public Node(){this(null,null);}}package Q2;public class SinglyLinkedList<E>{Node<E> head;public SinglyLinkedList(E[] element){//由指定数组中的多个对象构造单链表head = new Node<E>();Node<E> List = head;for(int i=0;i<element.length;i++){List.next=new Node(element[i],null);List=List.next ;}}public SinglyLinkedList(SinglyLinkedList list){//以单链表list构造新的单链表,复制单链表head=new Node<E>();Node<E> list_new = head;Node<E> p=list.head;if(p.data==null){p=p.next;list_new=list_new.next;}while(p!=null){list_new.next =new Node<E>(p.data,null);list_new=list_new.next;p=p.next ;}}public void concat(SinglyLinkedList list){//将指定单链表list在当前单链表之后Node<E> rear = null;Node<E> p = head;Node<E> q=list.head.next ;if(p.data==null)p=p.next ;while(p!=null){rear=p;p=p.next ;}if(q==null){q=q.next ;}rear.next=q;}public Node<E> search(E element){//若查找到指定,则返回结点,否则返回null Node<E> p=this.head;Node<E> temp=null;if(p==null)p=p.next ;while(p.next!=null){if(p.data==element){temp=p;}p=p.next ;}return temp;}public boolean contain (E element){//以查找结果判断单链表是否包含指定对象boolean flag=false;Node<E> p=this.head;Node<E> temp=null;if(p==null)p=p.next ;while(p!=null){if(p.data==element){flag=true;}p=p.next ;}return flag;}public boolean remove (E element){//移去首次出现的指定对象Node<E> p=this.head;Node<E> temp=null;Node<E> front=head;boolean flag=false;if(p==null)p=p.next ;while(p!=null && temp==null){if(p.data==element){temp=p;flag=true;break;}p=p.next ;front=front.next ;}front=p.next ;return flag;}public boolean replace (Object obj, E element){//将单链表中的obj对象替换为对象element boolean flag=false;if (obj!=null && element!=null){Node<E> p=this.head;while (p!=null){if (obj.equals(p.data)){p.data = element;flag = true;}p = p.next;}}return flag;}public boolean equals(Object obj){//比较两条单链表是否相等boolean flag=true;SinglyLinkedList x=(SinglyLinkedList) obj;Node t=x.head.next;Node s=this.head.next;while(t!=null&&s!=null){if(t.data!=s.data){flag=false;break;}t=t.next;s=s.next;}return flag;}}package Q2;import java.util.*;public class Test {static Integer[] x={3,5,8,11};static Integer[] x1={3,5,8,11};static Integer[] x2={2,6,8,9,11,15,20};static SinglyLinkedList<Integer> List1=new SinglyLinkedList<Integer>(x); static SinglyLinkedList<Integer> List2=new SinglyLinkedList<Integer>(x1); static SinglyLinkedList<Integer> List3=new SinglyLinkedList<Integer>(x2); public static void disList(SinglyLinkedList List){for(Node temp=List.head.next;temp!=null;temp=temp.next){ System.out.printf("%-5d",temp.data);}System.out.println();}public static void concat(){List1.concat(List3);}public static void Find(){System.out.println("请输入需要查找的数:");Scanner scan=new Scanner(System.in);Integer element=scan.nextInt();Node t=List1.search(element);if(t!=null)System.out.println(t.data);elseSystem.out.println("List1中找不到指定的数。