初二数学《一次函数》优秀教学设计
- 格式:docx
- 大小:13.60 KB
- 文档页数:3
课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。
教学难点一次函数的图象的性质。
教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。
如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。
(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。
5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。
一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。
一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。
2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。
3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。
二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。
2. 重点:一次函数的概念、图象和性质。
3. 难点:一次函数的应用。
三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。
2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。
3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。
4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。
四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。
2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。
3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。
五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。
2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。
六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。
八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
《一次函数》教学教案《一次函数》教学教案(通用11篇)14.1.1变量与函数【学习目标】1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;4、会根据函数解析式和实际意义确定自变量的取值范围。
【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。
【学习难点】函数概念的理解;函数关系式的确定学习过程:【前置自学】问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s.__s=_________________t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?1.请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y (元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y.__y=_________________x的取值范围是这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?1.请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L.__L=_________________m的取值范围是这个问题反映了_________随_________的变化过程.问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?关系式:________ 1.请同学们根据题意填写下表:面积s(cm2)102030s半径r(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含s的式子表示r.__r=_________________s的取值范围是这个问题反映了___ _ 随_ __的变化过程.问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。
初中数学⼋年级下册《⼀次函数》优秀教学设计课题:⼀次函数 (1)学习⽬标:1、理解正⽐例函数、⼀次函数的概念。
2、会根据数量关系,求正⽐例函数、⼀次函数的解析式。
3、会求⼀次函数的值。
学习重点:⼀次函数函数的概念和解析式。
学习难点:根据已知信息写出⼀次函数的表达式,确定⾃变量的取值范围学习过程:⼀、创设问题情境:某登⼭队⼤本营所在地的⽓温为15℃,海拔每升⾼1km ⽓温下降6℃.登⼭队员由⼤本营向上登⾼xkm 时,他们所处位置的⽓温是y ℃.(1)试⽤解析式表⽰y?与x 的关系.(2)⼆、⾃主学习与合作探究:1、⾃学课本89—90页,回答下列问题:(1)⼀颗树现在⾼60 cm ,每个⽉长⾼2 cm ,x ⽉之后这棵树的⾼度为h cm ,则h 关于x 的函数解析式为___________________.(2)有⼈发现,在20~25℃时蟋蟀每分钟鸣叫次数C 与温度t (℃)有关,即C?的值约是t 的7倍与35的差.(3)某城市的市内电话的⽉收费额y (元)包括:⽉租费22元,拨打电话x 分的计时费(按0.1分收取).(4)把⼀个长10cm ,宽5cm 的矩形的长减少xcm ,宽不变,矩形⾯积y (cm2)随x 的值⽽变化.上⾯这些函数的形式都是⾃变量x 的k (常数)倍与⼀个常数的和.如果我们⽤b 来表⽰这个常数的话.?这些函数形式就可以写成:4、随堂练习:1、(1)下列函数中,是⼀次函数的有_____________,是正⽐例函数的有______________(1)x y 8-= (2)xy 8-= (3)652+=x y (4)15.0--=x y (5)x y = (6))3(2+=x y (7)x y 34-=2、若函数y=(m-1)x+m 是关于x 的⼀次函数,试求m 的值.三、巩固与拓展:例1、已知函数y=(2-m)x+2m-3.求当m 为何值时,(1)此函数为正⽐例函数? (2)此函数为⼀次函数?2.⼀次函数的概念⼀般地,形如的函数,?叫做⼀次函数.当b=0时,y=kx+b 即y=kx .所以说正⽐例函数是⼀种特殊的⼀次函数.3、对⼀次函数概念内涵和外延的把握:(1)⾃变量系数(常数)k ≠0;(2)⾃变量x 的次数为1;例2、函数,b kx y +=当 1=x 时1-=y ,当4=x 时5=y ,求b kx y +=。
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
中学数学八年级《一次函数》教案设计一、教学目标1.知识目标:o学生能够理解一次函数的基本概念,掌握一次函数的标准形式 (y = kx + b)。
o学生能够识别一次函数的图像(直线),并理解斜率 (k) 和截距 (b) 对图像的影响。
o学生能够解决与一次函数相关的实际问题,如利用一次函数模型进行预测和解释现象。
2.能力目标:o培养学生通过观察、分析、归纳等方法,提高逻辑推理能力和数学抽象思维能力。
o提高学生的运算能力,能够准确地进行一次函数的计算和应用。
o培养学生的问题解决能力,能够独立完成与一次函数相关的数学题目。
3.情感态度价值观目标:o激发学生对数学的兴趣,培养学生积极的学习态度和良好的学习习惯。
o培养学生的合作精神和团队意识,通过小组讨论和合作学习,共同解决数学问题。
o培养学生的创新意识和实践能力,鼓励学生将数学知识应用于实际生活中。
二、教学内容-重点:一次函数的基本概念、标准形式、图像特征以及斜率 (k) 和截距 (b) 的意义。
-难点:理解斜率 (k) 对直线倾斜程度的影响,以及如何通过实际问题建立一次函数模型。
三、教学方法-讲授法:通过教师讲解,介绍一次函数的基本概念和标准形式。
-讨论法:组织学生进行小组讨论,探讨斜率 (k) 和截距 (b) 对图像的影响。
-案例分析法:通过分析实际问题,引导学生建立一次函数模型,并进行求解。
-多媒体教学:利用、动画等多媒体资源,直观展示一次函数的图像和变化过程。
四、教学资源-教材:八年级数学上册(人教版)。
-教具:直尺、三角板、计算器。
-多媒体资源:课件、一次函数图像动画、在线数学工具(如GeoGebra)。
-实验器材:无需特定实验器材,但可准备纸质坐标纸供学生绘图。
五、教学过程六、课堂管理-小组讨论:将学生分成小组,每组4-5人,指定小组长负责组织和协调讨论。
教师提供讨论题目和要求,巡视指导,确保每个小组都能积极参与讨论。
-课堂纪律:制定课堂纪律规则,如举手发言、尊重他人意见等,确保课堂秩序良好。
《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。
二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。
本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。
第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。
本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。
为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。
4.理解一次函数的代数表达式与图象之间的一一对应关系。
教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。
教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。
三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。
第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
一次函数的优秀教学设计一次函数的优秀教学设计作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
写教学设计需要注意哪些格式呢?下面是店铺为大家收集的一次函数的优秀教学设计,欢迎大家分享。
一次函数的优秀教学设计篇1教学目标:1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。
2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。
3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。
教学重点:1、从实际问题中抽象概括出运动变化的规律,建立函数关系式。
2、通过函数的性质及定义域范围求函数的最值。
教学难点:从实际问题中抽象概括出运动变化的规律,建立函数关系式教学方法:讨论式教学法教学过程:例1、A校和B校各有旧电脑12台和6台,现决定送给C校10台、D校8台,已知从A校调一台电脑到C校、D校的费用分别是40元和80元,从B校调运一台电脑到C校、D校的运费分别是30元和50元,试求出总运费最低的调运方案,最低运费是多少?(1)几分钟让学生认真读题,理解题意(2)由题意可知,一种调配方案,对应一个费用。
不同的调配方案对应不同的费用,在这个变化过程中,调配方案决定了总费用。
它们之间存在着一定的关系。
究竟是什么样的关系呢?需要我们建立数学模型,将之形式化、数学化。
解法(一)列表分析:设从A校调到C校x台,则调到D校(12―x)台,B校调到C校是(10―x)台。
B校调到D校是[6-(10-x)]即(x-4)台,总运费为y。
根据题意:y = 40x+80(12- x)+ 30(10-x)+50(x-4)y = 40x+960-80x+300-30x+50x-200= -20x+1060(4≤x≤10,且x是正整数)y = -20x+1060是减函数。
∴当x = 10时,y有最小值ymin= 860∴调配方案为A校调到C校10台,调到D校2台,B校调到D 校2台。
初中一次函数教案优秀5篇一次函数的优秀教学设计篇一课题:14.2.2一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y 与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)当然,这个函数也可表示为:y=-6x+15(x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c 的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。
八年级数学《一次函数》一、教学任务分析《一次函数》是义务教育课程标准北师大版实验教科书八年级 (上) 第六章《一次函数》的第二节.本节内容安排了1个课时:让学生理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力.与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的.二、教学目标分析1.教学目标●知识与技能目标(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.●过程与方法目标(1)经历一般规律的探索过程,发展学生的抽象思维能力;(2)经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.●情感与态度目标(1)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.(2)在探索过程中体验成功的喜悦,树立学习的自信心.2.教学重点理解一次函数和正比例函数的概念.3.教学难点能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.三、教法、学法1.教学方法:“探究——归纳----巩固---反馈”本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对研究常量的计算问题已掌握了一定的方法,但对函数、变量的变化规律的学习刚刚开始,抽象概括概念的能力尚显不足,为此,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)借助探索,通过思维深入,领悟教学过程.2.课前准备教具: 教材、电脑(含PowerPoint)、多媒体课件.学具: 教材、笔记本、课堂练习本、文具.四、教学过程设计本节课设计了七个环节: 第一环节:复习引入;第二环节:新课讲述;第三环节:巩固练习;第四环节:知识提高;第五环节:反馈练习;第六环节:课堂小结;第七环节:布置作业.第一环节:复习引入内容:复习上节课学习的函数,教师提出问题:(1) 什么是函数?(2) 函数有哪些表示方式?(3) 在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?第二环节:新课讲述内容:例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y 增加0.5cm.(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:(2) x与y之间的关系式为;(3) 汽车行驶路程x不可能无限增大,因为汽油只有100L,每行驶50km耗油9L,行驶560km后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零.通过观察、探索、总结,归纳出一次函数与正比例函数的概念:一般地,若两个变量x,y间的关系式可以表示成(为常数,≠0)的形式,则称是的一次函数(是自变量,为因变量).特别地,当时,则是的正比例函数.第三环节:巩固练习内容:1.在函数(1),(2),(3),(4),(5) (6)中是一次函数的是 ,是正比例函数的是 .2.若函数是一次函数,则应满足的条件是;若是正比例函数,则应满足的条件是 .3.当= 时,函数是关于的一次函数.第四环节:知识提高内容:例3 写出下列各题中与之间的关系式,并判断:是否为的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程(千米)与行驶时间(时)之间的关系;(2)圆的面积(厘米2)与它的半径(厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,个月后这棵树的高度为(厘米),则与的关系.答案: (1)由路程=速度×时间,得,是的一次函数,也是的正比例函数;(2)由圆的面积公式,得,不是的一次函数,也不是的正比例函数;(3)这棵树每月长高2厘米,个月长高了厘米,因而,是的一次函数,但不是的正比例函数.例4 某地区电话的月租费为25元,在此基础上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元.(1)写出每月电话费(元)与通话次数(>50)的函数关系式;(2)求出月通话150次的电话费;(3)如果某月通话费为53.6元,求该月通话的次数.分析:解决此类问题首先要理解题意,然后找出相等关系.此题相等关系为:每月通话费=月租费+超过50次后电话费.根据已知条件写出简单的一次函数的表达式,教学时,学生会出现一定的差异,此时,要给予学生足够的思考时间,必要的时候可组织学生交流讨论,而不能是简单的“告诉”.另外,在教学上还必须注意培养学生的书面表达能力,这些都是逻辑思维训练的一部分.在例4中的(1)中,易错解为.应让学生仔细审题,找准等量关系;(2)、(3)两问是给定自变量的值,求函数数值,这类问题的实质就是解方程.第五环节:反馈练习内容:1.下列语句中,具有正比例函数关系的是( )(A) 长方形花坛的面积不变,长与宽之间的关系;(B) 正方形的周长不变,边长与面积之间的关系;(C) 三角形的一条边不变,这条边上的高与面积之间的关系;(D) 圆的面积为,半径为,与之间的关系.2.我国现行个人工资、薪金所得税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税……如果某人月收入1960元.他应缴纳个人工资、薪金所得税为()×%=(元).(1)当月收入大于1600元而又小于2100元时,写出应缴纳所得税(元)与月收入(元)之间的关系式.(2)某人月收入为1760元,他应该缴纳所得税多少元?(3)如果某人本月缴所得税元,那么此人本月工资、薪金是多少以元?第六环节: 课堂小结内容:这节课我们学习了一类很有用的函数——一次函数,只要解析式可以表示成(为常数,≠0)的形式的函数则称为一次函数.正比例函数是一次函数当时的特殊情形.(方式:师生互相交流总结.)第七环节:布置作业教科书习题6.2 第1.2.3题五.板书设计1.一次函数的定义2.正比例函数的定义。
初二数学一次函数教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初二数学一次函数教案教案标题:初二数学一次函数教学设计教学目标:1.理解一次函数的概念和特点;2.能够识别一次函数的图像并熟练绘制;3.掌握一次函数方程的求解方法;4.能够应用一次函数解决实际问题。
《一次函数》教学设计一、教学目标(一)理解一次函数的概念以及它和正比例函数之间的关系;(二)确定一次函数解析式;(三)会画一次函数图像,并根据一次函数图像解决实际问题。
重点:理解一次函数的概念以及一次函数图像的性质。
难点:根据一次函数图像解决实际问题。
二、教材内容分析本课主要通过类比正比例函数来探究一次函数的概念,引导学生画出一次函数的图像并根据图像解决实际问题。
一次函数是一种最基本的初等函数,在现实生活中有着广泛的应用,而熟练掌握一次函数的性质和应用,是渗透“数形结合”的思想方法的重要途径,对今后进一步学习反函数以及二次函数具有启示作用。
三、教学方法(一)由实际问题引出一次函数解析式的过程,充分体现数学与生活之间的联系;(二)在画一次函数图像过程中体会“数形结合”的思想方法。
四、活动准备:(一)学生准备:课前认真复习正比例函数相关知识;(二)物质材料准备:课件《一次函数》。
五、活动过程:(一)课堂回顾1、引导学生利用绘制表格的方式回顾正比例函数的相关知识。
正比例函数的函数解析式为,当时,它的图像为。
(出示课件)。
当时,正比例函数的图像经过一三象限,且y随x的增大而增大。
当时,它的图像为。
(出示课件)当时,正比例函数的图像经过二四象限,且y随x的增大而减小。
(二)新课导入1、某登山队大本营所在地气温为5℃,海拔每升高1km下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用函数解析式表示y 与x的关系。
2、以下变量之间的对应关系是函数关系吗?(1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数c与温度t(单位:℃)有关,即c的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4)把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的变化而变化.通过列一次函数解析式归纳出一次函数的概念。
初二数学《一次函数》优秀教学设计
初中数学《一次函数》教学设计
利川市谋道初级中学向先权
教学任务分析
教学目标知识技能 1.理解直线y=kx+b(k≠0)与直线y=kx(k≠0)之间的位置关系;
2.会用两点法画出一次函数的图象;
3.掌握一次函数的性质.
教学思考 1.通过对应描点来研究一次函数的图象,经历知识的归纳、探究过程;
2.通过一次函数的图象归纳函数性质,体验数形结合法的应用.
解决问题通过一次函数图象和性质的研究,体会数形结合法在问题解决中的作用,并能运用性质、图象及数形结合法解决相关函数问题.
情感态度 1.通过画函数的图象,并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;
2.在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.
重点一次函数的图象和性质
难点由一次函数的图象归纳得出一次函数的性质及对性质的理解和应用。
教学流程安排
活动流程图活动内容和目的
活动1复习正比例函数的图象和性质
活动2认识一次函数的图象
活动3选取两个合适的点画一次函数的图象
活动4学习一次函数的性质
活动5练习与思考
活动6小结与作业回顾正比例函数的图象和性质,为学习一次函数的图象及其性质作铺垫,自然地引入课题.通过对应描点画出一次函数的图象,进而发现它的形状及其与正比例函数图象的位置关系,加强对一次函数图象的认识.
通过学生动手实践,熟悉和掌握一次函数图象的画法.类比正比例函数y=kx(k≠0)中k的正负对函数图象的影响
并结合一次函数的图象,归纳出一次函数y=kx+b(k≠0)的性质.
巩固一次函数的图象和性质,留给学有余力的学生进一步发展的空间.
整理本节知识,加强学习反思。
教学过程设计
问题与情境师生行为设计意图
活动1:
问题
1.什么叫正比例函数、一次函数?它们之间有什么关系?
2.正比例函数的图象形状是什么样的?
3.正比例函数y=kx(k是常数,k≠0)中,k的正负对函数的图象有什么影响?。