高考调研新课标A版数学必修1 1-1-1-1
- 格式:doc
- 大小:43.00 KB
- 文档页数:4
高中数学必修1知识点第一章集合与函数概念1.1集合1.1.1集合的含义与表示1、集合的含义2、集合中元素的三个特性:⑴确定性⑵互异性⑶无序性3、集合的表示列举法描述法4、常用数集及其记法:整数集Z有理数集Q实数集R 非负整数集(即自然数集)N 正整数集N*或N+5、属于(∈)6、集合的分类⑴有限集⑵无限集⑶空集(Φ): 不含任何元素的集合1、子集(包含关系)反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊈B(或B⊉A)⑴A与B是同一集合(相等关系)⑵A是B的一部分(真子集)⑶空集是任何集合的子集,空集是任何非空集合的真子集Venn图A B2、集合A(A为非空集合)中有n个元素,则A的子集个数为2n,A的真子集个数为2n-1。
3、注意⑴任何一个集合是它本身的子集A⊆A⑵如果 A⊆B,B⊆C,那么A⊆C⑶如果A⊆B同时 B⊇A那么A=B1、并集A∪B (A∪A = A,A∪φ= A , A∪B = B∪A)A B2、交集A∩B (A∩A = A,A∩φ= φ, A∩B = B∩A)A B3、全集U4、补集5、性质⑴C U(C U A)=A ⑵(C U A)∩A=Φ⑶(C U A)∪A=U ⑷(C U A)∩(C U B)=C U(A∪B) ⑸(C U A)∪(C U B)=C U(A∩B)1.2.1函数的概念1、函数的概念(构成函数的三要素:定义域、对应关系和值域)⑴多对一自变量A(定义域)函数值B(值域)a db ec⑵一对一a db ec f2、定义域3、值域4、区间5、注意⑴没有指明函数y=f(x)的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合。
函数的定义域、值域要写成集合或区间的形式)⑵相同函数的判断方法:①定义域一致②表达式相同 (两点必须同时具备)⑶函数值域中的每一个数都有定义域中的一个或多个自变量与其对应(没有剩余)本节重难点1、求定义域(1)分母不为零(2)偶次根式的被开方数非负(3)对数函数真数部分大于0(4)指数、对数函数的底数大于0且不等于1 (5)y=tanx中x≠kπ+π/2(y=cotx中x≠kπ)(6)X0=1,x≠02、求值域(先考虑其定义域)1.2.2函数的表示法1、解析法2、图象法(列表—描点—连线)(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等判断一个图形是否是函数图象的依据:作垂直于x轴的直线与曲线至多有一个交点。
课时作业(二)1.集合{1,3,5,7,9}用描述法表示应是( )A .{x |x 是不大于9的非负奇数}B .{x |x ≤9,x ∈N }C .{x |1≤x ≤9,x ∈N }D .{x |0≤x ≤9,x ∈Z }2.由大于-3且小于11的偶数组成的集合是( )A .{x |-3<x <11,x ∈Q }B .{x |-3<x <11}C .{x |-3<x <11,x =2k ,x ∈Q }D .{x |-3<x <11,x =2k ,x ∈Z }3.用列举法表示集合{x |x 2-2x +1=0}为( )A .{1,1}B .{1}C .{x =1}D .{x 2-2x +1=0}4.集合{x ∈N *|x <5}的另一种表示法是( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}5.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪ ⎩⎪⎨⎪⎧ x +y =5,2x -y =1表示成列举法,正确的是( ) A .{2,3} B .{(2,3)} C .{x =2,y =3} D .(2,3)6.设集合M ={x |x ∈R 且x ≤23},a =26,则( )A .a ∉MB .a ∈MC .a =MD .{a |a =26}=M7.下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{x =1}C .{1}D .{y |(y -1)2=0}8.下列集合表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|x +y =1},N ={y |x +y =1}C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}9.(2013·大纲全国)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( )A .3B .4C .5D .610.坐标轴上的点的集合可表示为()A.{(x,y)|x=0,y≠0,或x≠0,y=0}B.{(x,y)|x2+y2=0}C.{(x,y)|xy=0} D.{(x,y)|x2+y2≠0}11.将集合“奇数的全体”用描述法表示为①{x|x=2n-1,n∈N*}; ②{x|x=2n+1,n∈Z};③{x|x=2n-1,n∈Z}; ④{x|x=2n+1,n∈R};⑤{x|x=2n+5,n∈Z}.其中正确的是________.12.已知命题:(1){偶数}={x|x=2k,k∈Z};(2){x||x|≤2,x∈Z}={-2,-1,0,1,2};(3){(x,y)|x+y=3且x-y=1}={1,2}.其中正确的是________.13.已知集合A={1,0,-1,3},B={y|y=|x|,x∈A},则B=________.14.用∈或∉填空:(1)若A={x|x2=x},则-1________A;(2)若B={x|x2+x-6=0},则3________B;(3)若C={x∈N|1≤x≤10},则8________C;(4)若D={x∈Z|-2<x<3},则1.5________D.15.用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5且x∈Z};(4){(x,y)|x+y=6,x,y均为正整数};(5){-3,-1,1,3,5}.16.用描述法表示下列集合.(1)正偶数集;(2)被3除余2的正整数集合;(3)坐标平面内在第四象限的点组成的集合.17.已知集合{x|x2+ax+b=0}={2,3},求a,b的值.18.下列集合是有限集的是()A.{x|x是被3整除的数} B.{x∈R|0<x<2}C.{(x,y)|2x+y=5,x∈N,y∈N}D.{x|x是面积为1的菱形} 19.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是()A.{a|a≤1} B.{a|a≥1} C.{a|a≥0} D.{a|a≤-1}20.已知集合A={x∈R|ax2+x+2=0},若A中至少有一个元素,则a的取值范围是________.1、答案 A2、答案 D3、答案 B4、答案 B5、答案 B6、答案A解析首先元素与集合关系只能用符号“∈”与“∉”表示.集合中元素意义不同的不能用“=”连接,再有a=24>23,a不是集合M的元素,故a∉M.另外{a|a=26}中只有一个元素26与集合M中元素不相同.故D错误.7、答案 B8、答案 C解析A中M是点集,N是点集,是两个不同的点;B中M是点集,N是数集;D中M是数集,N是点集,故选C.9、答案B解析由集合中元素的互异性,可知集合M={5,6,7,8},所以集合M 中共有4个元素.10、答案 C解析 坐标轴上的点的横、纵坐标至少有一个为0,故选C.11、答案 ②③⑤ 12、答案 (1)(2) 13、答案 {0,1,3}解析 ∵y =|x |,x ∈A ,∴y =1,0,3,∴B ={0,1,3}.14、答案 (1)∉ (2)∉ (3)∈ (4)∉15、答案 (1){-2,-1,0,1,2}(2){3,6,9}(3){0,1,2,3,4}(4){(1,5),(2,4),(3,3),(4,2),(5,1)}(5){x |x =2k -1,-1≤k ≤3,k ∈Z }16、答案 (1){x |x =2n ,n ∈N *}(2){x |x =3n +2,n ∈N }(3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪ ⎩⎨⎧ x >0,y <0 17、答案 -5 6解析 ∵{x |x 2+ax +b =0}={2,3},∴方程x 2+ax +b =0有两实根x 1=2,x 2=3.由根与系数的关系得a =-(2+3)=-5,b =2×3=6.18、答案 C 解析 C 中集合可化为:{(0,5),(1,3),(2,1)}.19、答案 A 解析 因为1∉A ,所以当x =1时,1-2+a ≤0,所以a ≤1,即a 的取值范围是{a |a ≤1}.20、答案 {a |a ≤18}解析 当a =0时,A ={-2}符合题意;当a ≠0时,则Δ≥0,即1-8a ≥0,解得a ≤18且a ≠0.综上可知,a 的取值范围是{a |a ≤18}.。
课题:1.1.1集合的含义与表示(1)一、三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。
过程与方法:通过实例了解,体会元素与集合的属于关系。
情感态度与价值观:培养学生的应用意识。
二、学习重、难点:重点:掌握集合的基本概念。
难点:元素与集合的关系。
三、学法指导:认真阅读教材P 1-P 3,对照学习目标,完成导学案,适当总结。
四、知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几例)五、学习过程:1、阅读教材P 2 页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P 3的思考题,并再列举一些集合例子和不能构成集合的例子。
2、集合与元素的字母表示: 集合通常用大写的拉丁字母A ,B ,C …表示,集合的元素用小写的拉丁字母a,b,c,…表示。
问题5:元素与集合之间的关系?A 例1:设A 表示“1----20以内的所有质数”组成的集合,则3、4与A 的关系?B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流; ( ) (3)非负奇数; ( ) (4)本校2009级新生; ( ) (5)血压很高的人; ( ) (6)著名的数学家; ( ) (7)平面直角坐标系内所有第三象限的点 ( ) A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉−,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。
学科核心素养学科核心素养是育人价值的集中体现,是学生通过学科学习而逐步形成的正确价值观念、必备品格和关键能力.数学学科核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现,是在数学学习和应用的过程中逐步形成和发展的.数学学科核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析.这些数学学科核心素养既相对独立、又相互交融,是一个有机的整体.1.数学抽象数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征.数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中.数学抽象使得数学成为高度槪括、表达准确、结论一般、有序多级的系统.数学抽象主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法与思想,认识数学结构与体系.通过髙中数学课程的学习,学生能在情境中抽象出数学概念、命题、方法和体系,积累从具体到抽象的活动经验;养成在日常生活和实践中一般性思考问题的习惯,把握事物的本质,以简驭繁;运用数学抽象的思维方式思考并觯决问.2.逻辑推理逻辑推理指从一些亊实和命题出发,依据规则推出其他命题的素养.主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要有演绎.逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质.逻辑推理主要表现为:掌握推理基本形式和规则,发现问题和提出命题,探索和表述论证过程,理解命题体系,有逻辑地表达与交流.通过高中数学课程的学习,学生能掌握逻辑推理的基本形式,学会有逻辑地思考问题,能够在比较复杂的情境中把握事物之间的关联,把握事物发展的脉络;形成重论据、有条理、合乎逻辑的思维品质和理性精神,增强交流能力.3.数学建模数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养.数学建模过程主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题.数学模型搭建了数学与外部世界联系的桥梁,是数学应用的重要形式.数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力.数学建模的主要表现为:发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题.通过髙中数学课程的学习,学生能有意识地用数学语言表达现实世界,发现和提出问题,感悟数学与现实之间的关联;学会用数学模型解决实际问题,积累数学实践的经验;认识数学模型在科学、社会、工程技术诸多领域的作用,提升实践能力,增强创新意识和科学精神.4.直观想象直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括:借助空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决问题的思路.直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形成论证思路、进行数学推理、构建抽象结构的思维基础.直观想象的主要表现为:建立形与数的联系,利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物.通过高中数学课程的学习,学生能提升数形结合的能力,发展几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意识,形成数学直观,在具体的情境中感悟事物的本质.5.数学运算数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等.数学运算是解决数学问题的基本手段.数学运算是演绎推理,是计算机解决问题的基础.数学运算主要表现为:理解运算对象,掌握运算法则,探究运算思路,求得运算结果.通过高中数学课程的学习,学生能进一步发展数学运算能力;有效借助运算方法解决实际问题;通过运算促进数学思维发展,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.6.数据分析数据分析是指针对研究对象获取数据,运用数学方法对数据进行整理、分析和推断,形成关于研究对象知识的素养.数据分析过程包括:收集数据,整理数据,提取信息,构建模型,进行推断,获得结论.数据分析是研究随机现象的重要数学技术,是大数据时代数学应用的主要方法,也是“互联网”相关领域的主要数学方法,数据分析已经深入到科学、技术、工程和现代社会生活的各个方面.数据分析主要表现为:收集和整理数据,理解和处理数据,获得和解释结论,概括和形成知识.通过高中数学课程的学习,学生能提升获取有价值信息并进行定量分析的意识和能力;适应数字化学习的需要,增强基于数据表达现实问题的意识,形成通过数据认识事物的思维品质;积累依托数据探索事物本质、关联和规律的活动经验.。
课时作业(二)1.在命题“对顶角相等”与它的逆命题、否命题、逆否命题中,真命题是()A.原命题与逆命题B.原命题与逆否命题C.逆命题与否命题D.上述四个命题答案 B2.以下说法错误的是()A.如果一个命题的逆命题为真命题,那么它的否命题也必定为真命题B.如果一个命题的否命题为假命题,那么它本身一定是真命题C.原命题、逆命题、否命题、逆否命题中,真命题的个数一定为偶数D.一个命题的逆命题、否命题、逆否命题可以同为假命题答案 B3.若命题p的逆命题是q,命题p的逆否命题是r,则q是r的() A.逆命题B.否命题C.逆否命题D.以上都不正确答案 B4.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数答案 B解析一个命题的逆命题就是把原命题的条件和结论互换得到的命题.5.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图像不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是()A.3 B.2C.1 D.0答案 C6.有下列四个命题.①“若x+y=0,则x,y互为相反数”的逆命题;②“若lg a>lg b,则a2>b2”的逆否命题;③“若x≤-3,则x2+x-6≥0”的否命题.其中真命题的个数是()A.0 B.1C.2 D.3答案 C解析①对,②对,③错.7.若命题“若p,则q”的逆命题是真命题,则下列命题一定为真命题的是()A.若p,则q B.若綈p,则綈qC.若綈q,则綈p D.以上均不对答案 B解析因为逆命题与否命题互为逆否命题,有相同的真假性.由逆命题为真可知否命题“若綈p,则綈q”为真命题.8.互为逆否命题的两个命题具有相同的真假性.我们用“↔”表示同真或同假,把它叫做“连连看”.已知命题p的否命题是r,命题r的逆命题为s,命题p的逆命题是t,则下列同真同假的“连连看”中,正确的一组是()A.p↔r,s↔t B.p↔t,s↔rC.p↔s,r↔t D.p↔r,s↔r答案 C解析因为命题p的否命题是r,命题r的逆命题为s,所以命题p与s互为逆否命题,故有p↔s;又由于命题p的否命题是r,命题p 的逆命题是t,故命题r,t也是互为逆否命题,即r↔t.9.(2014·陕西,文)原命题为“若a n+a n+12<a n,n∈N*,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,其正确的是()A.真,真,真B.假,假,真C.真,真,假D.假,假,假答案 A解析写出原命题的逆命题、否命题、逆否命题,并利用原命题与其逆否命题等价进行判断.a n+a n+12<a n⇔a n+1<a n⇔{a n}为递减数列.原命题与其逆命题都是真命题,所以其否命题和逆否命题也都是真命题,故选A.10.用反证法证明,“在△ABC中,若∠C为直角,则∠B一定是锐角”,其反设正确的是()A.∠B是直角B.∠B是钝角或直角C.∠B是钝角D.∠B不是钝角答案 B11.用反证法证明“若ab不是偶数,则a,b都不是偶数”时,应假设________.答案a,b中至少有一个是偶数12.给定下列命题:①若k>0,则方程x2+2x-k=0有实根;②“若a>b,则a+c>b +c”的否命题;③“矩形的对角线相等”的逆命题;④“若xy=0,则x,y中至少有一个为0”的否命题.其中真命题的序号是________.答案①②④13.命题“若关于x的实系数一元二次方程ax2+bx+c=0(a≠0)无实根,则Δ=b2-4ac<0”的逆否命题是________________________,它为________命题.(填真、假) 答案若b2-4ac≥0,则关于x的实系数一元二次方程ax2+bx +c=0(a≠0)有实根,真14.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.解析逆命题:已知a,b∈R,若a>b,则a2>b2.假命题.否命题:已知a,b∈R,若a2≤b2,则a≤b.假命题.逆否命题:已知a,b∈R,若a≤b,则a2≤b2.假命题.15.已知f(x)是(-∞,+∞)内的增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.思路题干中已知函数的单调性,利用函数单调性大多是根据自变量取值的大小推导函数值的大小,当已知两个函数值的关系时,也可以推导自变量的取值的大小.多个函数值的大小关系,则不容易直接利用单调性,故可考虑利用四种命题的关系寻求原命题的等价命题.解析(1)逆命题:已知函数f(x)是(-∞,+∞)内的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.(用反证法证明)假设a+b<0,则有a<-b,b<-a.∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),这与题设中f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立.从而a+b≥0成立.逆命题为真.(2)逆否命题:已知函数f(x)是(-∞,+∞)内的增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b<0.原命题为真,证明如下:∵a+b≥0,∴a≥-b,b≥-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a).∴f(a)+f(b)≥f(-b)+f(-a)=f(-a)+f(-b).∴原命题为真命题.∴其逆否命题也为真命题.1.与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉M B.若b∉M,则a∈MC.若a∉M,则b∈M D.若b∈M,则a∉M答案 D2.已知a,b,c是一组勾股数,即a2+b2=c2,求证:a,b,c 不可能都是奇数.思路利用反证法证明.证明假设a,b,c都是奇数.∵a,b,c是一组勾股数,∴a2+b2=c2.①∵a,b,c都是奇数,∴a2,b2,c2也都是奇数.∴a2+b2是偶数,这样①式的左边是偶数右边是奇数,产生矛盾.∴a,b,c不可能都是奇数.3.证明:如果直线l和两条平行线a,b中的直线a是异面直线,且不与直线b相交,那么直线l与直线b也是异面直线.证明如图所示,假设l与b不是异面直线,则l与b共面,即l与b可能相交,也可能平行.若l与b相交,这与已知相矛盾.若l与b平行,即l∥b,又a∥b,得l∥a,这与l与a是异面直线相矛盾.综上可知,l与b是异面直线.。
可编辑修改精选全文完整版第九章统计统计学有多种不同的定义,综合来说,统计学是收集、处理、分析、解释数据并从数据中得出结论的科学.作为专门研究有效收集和分析数据的科学,可以说凡是一个实际问题涉及数据处理,都应该利用统计学方法去分析和解决.统计方法不仅有用,对于理解周围的世界经常也是不可或缺的,它提供了对许多现象获得新见解的方法.现在统计学已深入到科学、技术、工程和现代社会生活的各个方面.尤其当我们进入大数据时代和“互联网+”时代,作为研究数据分析的重要数学技术,统计学方法在相关领域的应用已成为数学应用的主要方法.统计素养已成为一名效率公民的基本素养.从新中国成立以来,在中学数学课程中,统计经历从无到有、从描述统计到推断统计、从选修变为必修的过程,其要求和地位都在不断提高.《课程标准2021年版》把“概率与统计”与“函数”“代数与几何”并列作为高中数学课程内容主线之一,并贯穿必修、选择性必修和选修整个数学课程.除了在初中统计基础上进一步学习数据收集和整理的方法、数据直观图表的表示方法、数据统计特征的刻画方法外,要求能用样本的统计特征推断总体的统计特征,包括单变量总体集中趋势参数、离散程度参数、取值规律和百分位数的估计,双变量总体的相关关系、一元线性回归模型和独立性的推断.相比初中统计以描述统计为主,高中统计以推断统计为主,更加强调数据的随机性.在统计的学习过程中,应让学生感悟在实际生活中进行科学决策的必要性和可行性;体会统计思维与确定性思维的差异、归纳推断与演绎证明的差异;通过实际操作、计算机模拟等活动,积累数据分析的经验.通过统计的学习,还应帮助学生建立正确的随机观念,养成通过数据来分析问题的习惯,学会抓住事物的主要因素等,发展数据分析、数学建模、逻辑推理、数学运算和数学抽象等数学学科核心素养,实现统计的教育价值.一、本章内容安排统计是通过数据分析来解决问题的,数据分析的过程体现了统计解决问题的基本思路.因此,让学生了解这个过程,对整体把握统计学科的特点,理解具体的数据分析方法和应用数据分析方法解决实际问题都是非常重要的.数据分析的过程存在多种不同的划分,《课程标准2021年版》对数据分析过程的划分如下:虽然在不同的数据分析过程划分中,划分的环节数、每个环节提法等不完全一致,但都遵循从收集数据到分析数据再到得出结论的基本过程.本章内容主要根据数据分析的基本过程进行安排,把学习内容分为三节.“9.1随机抽样”主要学习收集和整理数据的方法;“9.2样本估计总体”主要学习分析数据的方法,包括数据直观图表的表示方法和数据统计特征的刻画方法等,以及根据样本数据的统计特征估计总体的统计特征;“9.3统计案例公司员工的肥胖情况调查分析”是对前两节所学知识的综合应用.本章的知识结构如下:二、突出数据分析的基本过程,在过程中学习数据分析方法为了达到有效分析数据的目的,统计中会用到各种数据分析的方法,每个数据分析环节都有各自专属的数据分析方法,例如数据收集有随机抽样方法,数据分析有各种数字特征等,这些方法构成了统计研究和学习的主要内容.虽然很多具体的数据分析方法是针对数据分析过程中的某一个环节的,但其方法的合理性要放在整个数据分析过程中去理解.例如,一种抽样方法好坏要通过其抽取的数据对总体估计的效果进行评价,一个数字特征的选取合适与否取决于是否达到最终的统计目的等.因此,要理解数据分析方法的合理性,不能只针对某个环节孤立地进行学习,而应该放在数据分析的过程中进行学习.本章不管是抽样方法的学习,还是样本估计总体的学习,都尽可能通过具体案例的完整解决,让学生经历数据分析的基本过程,在基本过程中来学习数据分析的方法,理解数据分析的思路,并运用所学知识和方法解决实际问题.例如,简单随机抽样方法属于数据收集的内容,教科书并不是直接介绍简单随机抽样方法的定义和不同实现方法,而是设置了以下的问题:问题1家具厂要为树人中学高一年级制作课桌椅,事先想了解整个年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎么抽取样本?这是一个以估计总体均值为目的的抽样调查问题,但问题的解决需要经历数据分析的整个过程.在这个问题的解决过程中,不仅学习简单随机抽样方法的实现,还要通过总体均值和样本均值的比较,评价简单随机抽样方法的效果,体会简单随机抽样方法的特点.三、结合典型案例学习数据分析方法统计学是一门应用性很强的学科,它的概念和方法产生的动力基本都来自解决实际问题的需要.与建立在概念和定义基础上,通过演绎方式进行研究的数学其他分支不同,统计学是建立在数据基础上,通过归纳方式研究随机现象,通过数据分析解决问题.因此,统计的学习有别其他数学分支,需结合具体案例,由具体问题驱动学习,在问题的解决中体会数据的随机性,学习统计的概念和方法,积累数据分析的经验.而且结合具体案例还可以克服由于概念和方法的抽象性带来的理解困难.因此,结合具体案例介绍概念和方法是统计教科书编写的一个主要原则.由于统计的概念和方法都有各自的特点和适用范围,因而根据不同内容的特点,选择典型的案例就成为一个关键的问题.在中学阶段,案例的典型性不仅要体现统计概念、方法引入的必要性和解决问题的适切性,案例的背景还要符合学生的认知特点,有助于理解相关的概念和方法.教科书要尽量采用学生熟悉的案例背景,通过设计恰当的统计问题,在问题的解决中学习有关统计知识.例如,教科书在学习具体的抽样方法前,通过全国人口调查这个案例引入统计调查中涉及的一些基本概念.一方面,全国人口调查是学生比较熟悉的真实统计调查案例,让学生感受统计学科的重要性和应用性.另一方面全国人口调查不仅有普查,还有抽样调查,除了可以引入全面调查、抽样调查、总体、个体、样本、样本量等基本概念外,通过了解全国人口调查实施普查和抽样调查的背景及原因,可以进一步明确两种抽样方式的特点,以及抽样调查的必要性,帮助学生建立和完善有关统计调查的概观知识.这对后续进入具体随机抽样方法的学习是非常必要的.又如,教科书以同一个案例背景贯穿简单随机抽样和分层随机抽样的学习.在简单随机抽样问题1的基础上,教科书在随机分层抽样中设置了以下问题:问题2在树人中学高一年级的712名学生中,男生有326名、女生386名.能否利用这个辅助信息改进简单随机抽样方法,减少这种“极端”样本的出现,从而提高对整个年级平均身高的估计效果呢?教科书之所以采用“调查一个学校高一年级的平均身高”作为抽样调查的案例,主要考虑在通常情况下,对于一所学校的高一年级的学生数,既有进行抽样调查的必要性,又有进行全面调查的可行性,即获得总体均值是可行的,这使教科书后续比较样本均值与总体均值,进而评价随机抽样的效果显得比较自然.而两种抽样方法的学习使用同一案例背景,只是改变男生、女生人数这个条件,不仅有利于比较两种抽样方法的效果,而且有利于理解两种抽样方法的联系与区别.四、加强数据分析方法的形成过程,体现方法的合理性在数据分析方法中会用到很多数学的工具,如果不了解数学符号和公式背后的统计思想和数学原理,容易把统计学习变成纯粹的画图列表、公式计算等程序性操作,学生体会不到数据分析方法的合理性.方法引入的必要性,可以通过合适的案例背景来体现,而体现方法的合理性,则需要加强从直观想法到数学表达的转化过程,这个过程也是积累数据分析经验的过程.体现了方法的必要性和合理性,不仅使得知识的产生显得自然,也有利于学生更好地把握方法的本质.本章数据分析方法中,数学工具的使用主要是在用数字特征刻画数据的统计特征中.对于数字特征,主要是要理解其统计含义.有些数字特征的定义形式比较简单,其统计含义相对比较容易理解.例如,平均数刻画了一组数据平均水平,众数是一组数据最典型的代表,极差刻画了一组数据的波动范围等.但有些数字特征的数学表达相对复杂,其统计含义有时并不能一目了然,例如中位数、方差、标准差,尤其是分层抽样的方差公式.对于数字特征,往往是先有刻画数据某一方面的特征需要,再根据需要定义数字特征的.如果了解数字特征定义的目的是刻画数据哪一方面的特征,不仅有助于学生理解数字特征的统计含义,而且有利于理解数字特征定义的形式.例如,如果学生了解了中位数是把一组数据按大小分成个数相等两部分的那个数,就很容易理解中位数为什么要根据数据的个数,分奇偶两种情况进行定义.又如,方差和标准差都可以用来刻画一组数据离散程度,它们的公式初看起来都比较复杂,但了解了它们定义的过程,就容易理解它们在刻画数据离散程度上的特点,以及之所以定义成现在这种形式.为了让学生更好地理解方差和标准差的统计含义,积累数据分析的经验,教科书详细呈现了方差概念的形成过程.教科书首先通过比较两名射击运动员成绩稳定性,让学生体会定义数字特征刻画数据离散程度的必要性.通过分析,把刻画一组数据的离散程度问题逐步转化为刻画与平均数的“平均距离”大小的数学问题.在数学中,距离可以有多种定义,教科书先呈现学生最容易想到的“绝对值距离”,由于绝对值的数学性质不够好,为了避免含有绝对值,又引入“平方和距离”,以此作为刻画数据的离散程度的数字特征,即方差.这个从统计直观到数学表达逐步优化的数据分析过程,在数字特征的定义中具有一般意义,积累的经验有助于理解选择性必修中样本相关系数的定义.五、加强信息技术与统计的融合1.培养学生使用信息技术的意识和初步能力统计是通过数据分析解决问题的.在数据分析中经常会涉及数据的整理、可视化表示、计算等数据处理,尤其当样本量比较大时,工作量就会变得非常大.运用计算器、计算机等信息技术工具,不仅可以实现快速、准确地列表、画图、计算等数据处理,而且能使大量人工难以完成的数据处理变成可能.会使用信息技术处理数据是现代统计学习的重要组成部分.在高中统计的学习中,应该培养学生使用信息技术的意识和初步能力.为了给学生在统计学习中运用信息技术提供支持,在高中统计的起始章,教科书安排选学栏目“信息技术应用统计软件的应用”,集中介绍电子表格和R两款软件的基本统计功能,其中电子表格软件是使用比较普遍且具有一定统计功能的办公软件,而R软件则是统计专业人员中使用普遍且免费的专业统计软件.在后续统计的章节中,教科书结合有关内容,在适合使用的信息技术的地方,以边注的形式对给予提示.2.利用信息技术提高教学的效率和质量信息技术既是现代统计的组成部分,也是统计学习的有效辅助手段.通过合理使用信息技术,可以把学生从机械、烦琐的数据处理中解放出来,把更多精力集中于统计概念和方法的理解,从而提高教学的效率和质量.例如,绘制频率分布直方图涉及数据的分组、频率的计算、图形的绘制等大量工作,用统计软件可以快速绘制出不同组距和组数的直方图,节约重复计算、机械性操作的时间,把更多的精力花在直方图信息的提取上.又如,平均数、方差等特征数的计算,在学生已经知道如何计算的情况下,统计软件的使用就可以大大节约时间,进而把更多的精力花在理解特征数的统计含义上.3.通过随机模拟直观解释数据分析方法的合理性统计是研究数据收集和分析数据的科学,其研究重点是如何有效地收集和分析数据,所有数据分析方法都是为了达到这个目的.这里的“有效”既包括人力、物力、时间的节省,也包括估计精确度和可靠度的提高.在没有足够概率理论知识刻画估计的精确度和可靠度时,如何让学生了解样本和总体的关系,体会数据分析方法的科学性就成为统计内容呈现的重点.在中学统计中,信息技术一个很大的作用是可以实现随机模拟,它使大量重复试验成为可能.通过随机模拟,可以让学生体会样本数据的随机性和规律性,了解样本和总体之间的关系,这可以在很大程度上直观解释一些数据分析方法的合理性,弥补由于理论知识不足造成的理解困难.例如,在随机抽样的学习中,需要讨论样本量对于抽样估计效果的影响,以及评价简单随机抽样和分层随机抽样的估计效果,在理论上进行说明并不容易.因此,教科书通过随机模拟的方式,让学生直观观察的多次抽样的结果图1和图2,在此基础上归纳概括随机抽样方法的特点.。
1.1.1一、选择题1.方程组⎩⎪⎨⎪⎧ 3x +y =22x -3y =27的解集是( ) A.⎩⎪⎨⎪⎧x =3y =-7 B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7}[答案] D[解析] 解方程组⎩⎪⎨⎪⎧ 3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7 用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D.2.集合A ={x ∈Z |y =12x +3,y ∈Z }的元素个数为( ) A .4B .5C .10D .12 [答案] D[解析] 12能被x +3整除.∴y =±1,±2,±3,±4,±6,±12,相应的x 的值有十二个:9,-15,3,-9,1,-7,0,-6,-1,-5,-2,-4.故选D.3.集合A ={一条边长为2,一个角为30°的等腰三角形},其中的元素个数为( )A .2B .3C .4D .无数个 [答案] C[解析] 两腰为2,底角为30°;或两腰为2,顶角为30°;或底边为2,底角为30°;或底边为2,顶角为30°.共4个元素,因此选C.4.已知a 、b 、c 为非零实数,代数式a |a |+b |b |+c |c |+abc |abc |的值所组成的集合为M ,则下列判断中正确的是( )A .0∉MB .-4∉MC .2∈MD .4∈M [答案] D[解析] a 、b 、c 皆为负数时代数式值为-4,a 、b 、c 二负一正时代数式值为0,a 、b 、c 一负二正时代数式值为0,a 、b 、c 皆为正数时代数式值为4,∴M ={-4,0,4}.5.在直角坐标系内,坐标轴上的点构成的集合可表示为( )A .{(x ,y )|x =0,y ≠0或x ≠0,y =0}B .{(x ,y )|x =0且y =0}C .{(x ,y )|xy =0}D .{(x ,y )|x ,y 不同时为零}[答案] C[解析] 在x 轴上的点(x ,y ),必有y =0;在y 轴上的点(x ,y ),必有x =0,∴xy =0.6.集合M ={(x ,y )|xy ≤0,x ,y ∈R }的意义是( )A .第二象限内的点集B .第四象限内的点集C .第二、四象限内的点集D .不在第一、三象限内的点的集合[答案] D[解析] ∵xy ≤0,∴xy <0或xy =0当xy <0时,则有⎩⎪⎨⎪⎧ x <0y >0或⎩⎪⎨⎪⎧ x >0y<0,点(x ,y )在二、四象限, 当xy =0时,则有x =0或y =0,点(x ,y )在坐标轴上,故选D.7.方程组⎩⎪⎨⎪⎧ x +y =1x 2-y 2=9的解(x ,y )构成的集合是( )A .(5,4)B .{5,-4}C .{(-5,4)}D .{(5,-4)}[答案] D[解析] 首先A ,B 都不对,将x =5,y =-4代入检验知是方程组的解.∴选D.*8.集合S ={a ,b ,c }中的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC 一定不是() A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形[答案] D[解析] 由集合元素的互异性知,a 、b 、c 两两不等.9.设a 、b ∈R ,集合{1,a +b ,a }={0,b a ,b },则b -a 等于( )A .1B .-1C .2D .-2[答案] C[解析] ∵{1,a +b ,a }={0,b a,b }, ∴a ≠0,∴a +b =0,∴a =-b ,∴b a=-1, ∴a =-1,b =1,∴b -a =2.故选C.10.设集合A ={0,1,2},B ={-1,1,3},若集合P ={(x ,y )|x ∈A ,y ∈B ,且x ≠y },则集合P 中元素个数为( )A .3个B .6个C .9个D .8个[答案] D[解析] x ∈A ,对于x 的每一个值,y 都有3个值与之对应,但由于x ≠y ,∴x =1,y =1,不合题意,故共有3×3-1=8个.[点评] 可用列举法一一列出:P ={(0,-1),(0,1),(0,3),(1,-1),(1,3),(2,-1),(2,1),(2,3)}.二、填空题11.将集合{(x ,y )|2x +3y =16,x ,y ∈N }用列举法表示为________.[答案] {(2,4),(5,2),(8,0)}[解析] ∵3y =16-2x =2(8-x ),且x ∈N ,y ∈N ,∴y 为偶数且y ≤5,∴当x =2时,y =4,当x =5时y =2,当x =8时,y =0.12.已知A ={1,0,-1,2},B ={y |y =|x |,x ∈A },则B =________.[答案] {1,0,2}[解析] 当x =1时,y =1;x =0时,y =0;x =-1时,y =1;x =2时,y =2,∴B ={1,0,2}.13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________.[答案] 2或4[解析] ∵a ∈A ,∴a =2或a =4或a =6,而当a =2和a =4时,6-a ∈A ,∴a =2或a =4.三、解答题14.用列举法表示集合.(1)平方等于16的实数全体;(2)比2大3的实数全体;(3)方程x 2=4的解集;(4)大于0小于5的整数的全体.[解析] (1){-4,4} (2){5} (3){-2,2} (4){1,2,3,4}.15.用描述法表示下列集合:(1){0,2,4,6,8};(2){3,9,27,81,…};(3)⎩⎨⎧⎭⎬⎫12,34,56,78,…; (4)被5除余2的所有整数的全体构成的集合.[解析] (1){x ∈N |0≤x <10,且x 是偶数}.(2){x |x =3n ,n ∈N +}.(3){x |x =2n -12n,n ∈N +}. (4){x |x =5n +2,n ∈Z }.*16.设A 表示集合{2,3,a 2+2a -3},B 表示集合{|a +3|,2},若已知5∈A ,且5∉B ,求实数a 的值.[解析] ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,|a +3|≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2且a ≠-8,∴a =-4. 17.已知集合A ={x |ax 2-3x -4=0,x ∈R }:(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数a 的取值范围.[分析] 集合A 是方程ax 2-3x -4=0的解集.A 中有两个元素,即方程有两个相异实根,必有a ≠0;A 中至多有一个元素,则a ≠0时,应有Δ≤0;a =0时,恰有一个元素.[解析] (1)∵A 中有两个元素,∴关于x 的方程ax 2-3x -4=0有两个不等的实数根,∴⎩⎪⎨⎪⎧Δ=9+16a >0a ≠0,即a >-916且a ≠0. (2)当a =0时,A ={-43};当a ≠0时,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根,∴Δ=9+16a ≤0,即a ≤-916.故所求的a 的取值范围是a ≤-916或a =0. *18.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2008+b 2007.[解析] 解法1:∵A =B ,∴⎩⎪⎨⎪⎧ a 2=1,ab =b ,或⎩⎪⎨⎪⎧a 2=b ,ab =1. 解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0,或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数. 由集合元素的互异性得a ≠1,∴a =-1,b =0,故a 2008+b 2007=1.解法2:由A =B ,可得⎩⎪⎨⎪⎧ 1·a ·b =a ·a 2·ab ,1+a +b =a +a 2+ab ,即⎩⎪⎨⎪⎧ab (a 3-1)=0 ①(a -1)(a +b +1)=0 ②因为集合中的元素互异,所以a≠0,a≠1.解方程组得,a=-1,b=0.故a2008+b2007=1.。
人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合11 / 11。
课时作业(一)
1.下列说法中正确的是( )
A .2014年3月马来西亚失联客机MH370上的所有乘客组成一个集合
B .衡水中学年龄较小的学生组成一个集合
C .{1,2,3}与{2,1,3}是不同的集合
D .由1,0,5,1,2,5组成的集合有六个元素
2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )
A .3.14
B .-2 C.78 D.7
3.设集合M ={(1,2)},则下列关系式成立的是( )
A .1∈M
B .2∈M
C .(1,2)∈M
D .(2,1)∈M
4.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( )
A .1
B .2
C .3
D .4
5.若2∈{1,x 2+x },则x 的值为( )
A .-2
B .1
C .1或-2
D .-1或2
6.若集合A 为小于1的数的全体,则有( )
A .3∈A
B .1∈A
C .0∈A
D .-3∉A
7.下列关系中
①-43∈R ;②3∉Q ;③|-20|∉N *;
④|-2|∈Q ;⑤-5∉Z ;⑥0∈N .其正确的是________.
8.下列说法中①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合N 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的个数是
________.
9.设方程ax2+2x+1=0(a∈R)的根构成集合A,若A中只有一个元素,则a的值为________.
10.集合{1,2}与集合{2,1}是否表示同一集合?________;
集合{(1,2)}与集合{(2,1)}是否表示同一集合?______.(填“是”或“不是”)
11.若{a,0,1}={c,1
b,-1},则a=______,b=______,c=
________.
12.由实数x,-x,x2,-3
x3所组成的集合里最多含有________
个元素.
13.已知集合A中含有两个元素1和a2,则a的取值范围是________.
14.对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的值是________.
15.设A表示集合{2,3,a2+2a-3},B表示集合{a+3,2},若已知5∈A,且5∉B,求实数a的值.
16.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.
(1)判断集合A={-1,1,2}是否为可倒数集;
(2)试写出一个含3个元素的可倒数集.
17.设a,b∈R,集合{1,a}={0,a+b},则b-a=()
A.1 B.-1 C.2 D.-2
18.若a,b,c,d为集合A的四个元素,则以a,b,c,d为边长构成的四边形可能是()
A.矩形B.平行四边形C.菱形D.梯形
1、答案 A 解析 根据集合的性质判断.
2、答案 D 解析 由题意知a 应为无理数,故a 可以为7.
3、答案 C
4、答案 C 解析 M ={-1,2,3}.
5、答案 C 解析 由题意知x 2+x =2,即x 2+x -2=0.解得x =-2或x =1.
6、答案 C
解析 由于集合A 中的元素为小于1的数,故3∉A,1∉A,0∈A ,-3∈A ,故只有C 正确.
7、答案 ①②⑥
8、答案 2解析 由数集性质知①③错误,②④正确.
9、答案 0或1解析 当a =0时,x =-12,当a ≠0时,Δ=4
-4a =0,a =1,故a 为0或1.
10、答案 是,不是
11、答案 -1 1 0解析 ∵-1∈{a,0,1},∴a =-1.
又0∈{c ,1b ,-1}且1b ≠0,∴c =0,从而可知1b =1,∴b =1.
12、答案 2解析 x 2=|x |,-3
x 3=-x . 13、答案 a ∈R 且a ≠±1
解析 由集合元素的互异性,可知a 2≠1,∴a ≠±1,即a ∈R 且a ≠±1.
14、答案 2或4
15、答案 -4
解析 ∵5∈A ,且5∉B ,
∴{ a 2+2a -3=5,a +3≠5, 即{
a =-4或a =2,a ≠2.
∴a =-4.
16、答案 (1)由于2的倒数为12不在集合A 中,故集合A 不是可
倒数集.
(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必
有一个元素有a =1a ,即
a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.。