人教版七年级数学上册一元一次方程去分母
- 格式:ppt
- 大小:1.04 MB
- 文档页数:38
人教版数学七年级上册《——去分母解一元一次方程(2)》教学设计4一. 教材分析人教版数学七年级上册《去分母解一元一次方程(2)》是学生在掌握了去分母解一元一次方程的基本步骤和技巧的基础上进行深入学习的内容。
这部分内容旨在让学生进一步理解一元一次方程的解法和应用,提高他们的数学解题能力。
教材通过具体的例题和练习题,引导学生掌握去分母解一元一次方程的步骤和技巧,进一步培养学生的逻辑思维和运算能力。
二. 学情分析学生在学习本节课之前,已经掌握了去分母解一元一次方程的基本步骤和技巧,能够独立完成一些简单的题目。
但部分学生对于一些复杂的一元一次方程,仍存在解题困难,对于如何正确去分母,如何选择合适的方法解方程,仍需要进一步的引导和训练。
三. 教学目标1.让学生掌握去分母解一元一次方程的步骤和技巧。
2.培养学生独立解决问题的能力,提高他们的数学解题水平。
3.培养学生的逻辑思维和运算能力,提高他们的数学素养。
四. 教学重难点1.重点:让学生掌握去分母解一元一次方程的步骤和技巧。
2.难点:如何引导学生对于一些复杂的一元一次方程,能够正确去分母,选择合适的方法解方程。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究和合作交流,发现和总结解题规律。
2.使用多媒体教学,通过动画和图形的展示,使学生更加直观地理解解题过程。
3.通过大量的练习题,让学生在实践中掌握解题技巧,提高解题能力。
六. 教学准备1.多媒体教学设备。
2.教学PPT。
3.练习题。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾去分母解一元一次方程的基本步骤和技巧。
为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT展示一些典型的一元一次方程,让学生观察和分析,引导学生发现解题的规律。
3.操练(20分钟)教师引导学生分组进行练习,每组选择一道题目进行解答。
学生在解答过程中,教师进行巡视指导,解答学生的疑问。
4.巩固(10分钟)教师选取一些学生解答错误的题目,进行讲解和分析,让学生加深对解题方法的理解。
人教版数学七年级上册《——去分母解一元一次方程(1)》教案5一. 教材分析人教版数学七年级上册《去分母解一元一次方程(1)》教案5,主要讲述了如何通过去分母的方法解一元一次方程。
本节课内容是学生在掌握了方程的基本概念和一元一次方程的解法的基础上进行学习的,旨在培养学生解决实际问题的能力,提高学生的数学素养。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程的解法,对于方程的概念和基本性质也有了一定的了解。
但学生在解决实际问题时,可能会遇到方程中含有分母的情况,因此需要学会去分母的方法解一元一次方程。
三. 教学目标1.让学生掌握去分母解一元一次方程的方法。
2.培养学生解决实际问题的能力,提高学生的数学素养。
3.培养学生合作交流、积极思考的能力。
四. 教学重难点1.去分母解一元一次方程的方法。
2.如何将实际问题转化为方程,并运用去分母的方法解决。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等多种教学方法,引导学生主动探究、积极思考,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.教师准备相关案例和问题,制作PPT。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过PPT展示实际问题,引导学生思考如何解决这些问题。
例如:小明买了一本书,原价是20元,现在打8折,问打折后的价格是多少?2.呈现(10分钟)教师引导学生将实际问题转化为方程,并呈现去分母解一元一次方程的方法。
例如,将上述问题转化为方程:0.8x = 20,然后讲解如何去分母解这个方程。
3.操练(10分钟)教师提出一些有关去分母解一元一次方程的练习题,让学生独立完成。
例如:已知方程 3x - 5/2 = 7/6,求解x的值。
4.巩固(10分钟)教师引导学生通过小组合作,共同解决一些关于去分母解一元一次方程的实际问题。
例如:某商店举行优惠活动,满100元减30元,小华购买了2件商品,一件原价80元,一件原价120元,请问小华实际支付了多少钱?5.拓展(10分钟)教师提出一些关于去分母解一元一次方程的拓展问题,激发学生的思考。
人教版数学七年级上册《——去分母解一元一次方程(1)》教学设计6一. 教材分析人教版数学七年级上册《去分母解一元一次方程(1)》是学生在掌握了方程的概念、解方程的方法等基础知识后,进一步学习解一元一次方程的一部分。
本节课通过去分母的方法,让学生掌握解一元一次方程的技巧,培养学生解决实际问题的能力。
教材内容主要包括去分母的方法、步骤以及如何将实际问题转化为方程等。
二. 学情分析七年级的学生已经掌握了方程的基本概念和解方程的基本方法,但部分学生在解决实际问题时,仍存在将问题转化为方程的能力不足,以及对去分母方法的掌握不熟练等问题。
因此,在教学过程中,教师需要关注学生的学习需求,针对性地进行辅导,提高学生解决实际问题的能力。
三. 教学目标1.让学生掌握去分母解一元一次方程的方法和步骤。
2.培养学生将实际问题转化为方程的能力。
3.提高学生解决实际问题的能力,培养学生的数学思维。
四. 教学重难点1.去分母解一元一次方程的方法和步骤。
2.如何将实际问题转化为方程。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究去分母解一元一次方程的方法。
2.通过实例分析,让学生学会将实际问题转化为方程。
3.运用小组合作学习,培养学生相互协作、解决问题的能力。
4.采用激励评价,激发学生的学习兴趣和自信心。
六. 教学准备1.教学PPT,包括去分母解一元一次方程的方法、步骤以及实例分析等。
2.练习题,包括不同类型的去分母解一元一次方程题目。
3.教学素材,包括实际问题转化为方程的案例。
七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题,引导学生思考如何将其转化为方程。
例如:小明买了一本书,原价是20元,打八折后花了16元,问这本书的原价是多少?2.呈现(10分钟)讲解去分母解一元一次方程的方法和步骤,引导学生理解并掌握。
例如:对于方程3x / 4 = 7,我们可以将其两边同时乘以4,去分母后得到3x = 28,再将两边同时除以3,得到x = 28 / 3。
《一元一次方程的解法----去分母》教案湖北省松滋市沙道观初级中学——周友芬教学目标1、知识目标:(1).掌握解一元一次方程中“去分母”的方法,并能解这种类型的方程;(2).了解一元一次方程解法的一般步骤。
(3).会处理分母中含有小数的方程。
2、能力目标:经历“把实际问题抽象为方程”的过程,发展用方程方法分析问题、解决问题的能力。
3、情感目标:(1).通过具体情境引入新问题(如何去分母),激发学生的探究欲望;(2).通过埃及古题的情境感受数学文明。
(3).多表扬、多鼓励、营造学生快乐学习的课堂氛围。
教学重点:通过"去分母"解一元一次方程。
教学难点:探究通过“去分母”的方法解一元一次方程(①不漏乘不含分母的项②注意给分子添加括号。
)教学活动流程:活动1:复习回顾——活动2:典故引入解含有分母且方程一边是多项式的一元一次方程——活动3:突破难点,去分母时多项式一边要添括号——活动4:典例精讲,分子是多项式去分母时要添括号——活动5:突破多项式分子添括号难点,评选最优互助组——活动6:如何查错。
——活动7:学生练习演板, 学生点评。
——活动8:归纳总结解方程的一般步骤和各步变形时的注意点——活动9:实战演练竞赛快准解方程——活动10:拓展,解含小数的方程——活动11:反馈化整得——活动12:教学小结——活动13:在乐曲中完成作业第98页练习,习题第3题。
教学设计一、复习回顾1、解方程①7X=6X-4 ;②8-2(X-7)=X-(X-4)鼓励两名同学板演,其余同学在练习本上自主完成解题,看哪组同学全对的人数最多。
从简单到复杂,巩固所学的解方程知识为去分母做铺垫,并让学生回忆解一元一次方程的基本程序。
①去括号②移项③合并同类项④两边同除以未知数的系数1、求下列各组数的最小公倍数:10,5与15 4,6与9二、典故导入,激情引趣,探索新知:1、国伦敦博物馆保存着一部极其珍贵的文物----纸莎草文书.这是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有三千七百多年.书中记载了许多与方程有关的数学问题.其中有如下一道著名的求未知数的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个数是多少?【师】你能帮古人解决这个问题吗?【生】设未知数列方程来求这个数。
七年级上册数学教案《解一元一次方程(二)——去分母》教学目标1、掌握解一元一次方程中“去分母”的方法,能解这种类型的方程。
2、经历“把实际问题抽象为方程”的过程,发展用方程方法分析问题,解决问题的能力。
3、能用去分母的方法,解含分母的一元一次方程,会检验方程的解以及总结解方程的步骤。
教学重点掌握去分母解一元一次方程的解法,并归纳出解一元一次方程解法的步骤。
教学难点熟练利用解一元一次方程的步骤,解各种类型的方程。
一、复习回顾1、解方程,说一说解一元一次方程的步骤。
3x - 7(x - 1)= 3 - 2(x + 3)解:3x - 7x + 7 = 3 - 2x - 6-4x + 7 = -2x - 3-4x + 2x + 7 = -2x + 2x - 3-2x + 7 = -3-2x + 7 - 7 = -3 - 7-2x = -10(-2x)×(-1/2) = (-10)× (-1/2)x = 5解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等,通过这些步骤可以使以x为未知数的方程逐步向x = a的形式转化,这个过程的主要依据是等式的基本性质和运算律。
2、情境导入英国伦敦博物馆保存着一部极其珍贵的文物——纸草书。
这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成。
这部书中记载了许多有关数学的问题,其中有一道著名的求未知数的问题。
二、学习新知1、问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,计算这个数。
总数 = 数的三分之二 + 数的二分之一 + 数的七分之一 = 33解:设这个数为x,则:2/3x + 1/2x + 1/7x + x = 33方法一:合并同类项,系数化为12/3x + 1/2x + 1/7x + x = 33解: 97/42x = 33x = 1386/97方法二:去分母2/3x + 1/2x + 1/7x + x = 33解:42 × 2/3x + 42 × 1/2x + 42 × 1/7x + 42x = 42 × 3328x + 21x + 6x + 42x = 138697x = 1386x = 1386/972、问题23x+1 / 2 - 2 = 3x-2 / 10 - 2x + 3 / 5解: 5(3x+1) - 2×10 =(3x - 2) - 2(2x+3)15x + 5 - 20 = 3x - 2 - 4x - 615x - 3x + 4x = -2 - 6 - 5 + 2016x = 716x × 1/16 = 7 × 1/16x = 7/16三、典例精讲,课堂小练(1)x+1 / 2 - 1 = 2 + 2-x / 4 解:去分母:2(x+1) - 4×1 = 4 × 2 + 2 - x去括号: 2x + 2 - 4 = 8 + 2 - x移项: 2x + x = 8 + 2 - 2 + 4 合并同类项: 3x = 12系数化为1:3x × 1/3 = 12 × 1/3x = 4(2)3x + x-1 / 2 = 3 - 2x-1 / 3解:去分母: 18x + 3x - 3 = 18 - 2(2x - 1)去括号: 18x + 3x - 3 = 18 - 4x + 2移项: 18x + 3x + 4x = 18 + 2 + 3合并同类项: 25x = 23系数化为1:25x × 1/25 = 23 × 1/25x = 23/25四、巩固练习解下列方程:(1)19/100x = 21/100(x-2)解: 19/100x = 21/100x - 21/5021/100x - 19/100x = 21/502/100x = 21/502/100x × 100/2 = 21/50 ×100/2x = 21(2)x + 1 / 2 - 2 = x/4解:2x + 2 - 2 × 4 = x2x + 2 - 8 = x2x - 6 = x2x - x = 6x = 6(3)5x -1 / 4 = 3x + 1 / 2 - 2-x / 3解: 3(5x-1) = 6(3x + 1) - 4(2-x)15x - 3 = 18x + 6 - 8 + 4x15x - 3 = 22x - 27x = -1x = -1/7(4)3x+2 / 2 - 1 = 2x-1 /4 - 2x+1 / 5解:10(3x+2) - 20 = 5(2x-1) - 4(2x+1)30x + 20 - 20 = 10x - 5 - 8x -430x = 2x -930x - 2x = -928x = -9x = -9/28教学总结本节课的教学首先回顾了之前所学知识,复习巩固方程的解法,学生进一步明白解方程的步骤是逐渐发展的,然后通过一个实际问题,列出一个有分母的方程,大胆放手,给学生探索的机会,猜想各种解决方法,尝试各种解题的思路,启发学生探索新的解题方向。