多因素方差分析实验报告模板
- 格式:doc
- 大小:187.00 KB
- 文档页数:5
方差分析的实验报告方差分析的实验报告引言:方差分析是一种常用的统计方法,用于比较两个或多个组之间的均值差异是否显著。
在本次实验中,我们将运用方差分析来研究三种不同肥料对植物生长的影响。
通过对不同处理组的生长情况进行观察和数据分析,我们旨在探究不同肥料对植物生长的影响是否存在显著差异。
实验设计与方法:本实验采用了完全随机设计,共设置了四个处理组,分别为对照组和三个不同肥料处理组。
每个处理组设置了十个重复样本。
实验的主要步骤如下:1. 准备工作:选取相同品种的植物作为实验材料,并确保它们具有相似的生长状态和健康状况。
同时,为了消除外界因素的干扰,我们将植物放置在相同的环境条件下。
2. 分组处理:将植物随机分为四组,其中一组作为对照组,不施加任何肥料,另外三组分别施加三种不同的肥料。
3. 数据收集:在实验开始后的每个固定时间点,我们测量每个植物的生长指标,如株高、叶片数、根长等,并记录下来。
这些数据将用于后续的方差分析。
数据分析与结果:在实验结束后,我们对收集到的数据进行了方差分析。
通过计算各组的平均值、方差和标准差,我们得到了以下结果:1. 株高:对照组的平均株高为30cm,标准差为2cm;肥料A组的平均株高为35cm,标准差为3cm;肥料B组的平均株高为32cm,标准差为2.5cm;肥料C组的平均株高为33cm,标准差为2.8cm。
方差分析结果显示,不同处理组之间的株高差异是显著的(F=4.56, p<0.05)。
2. 叶片数:对照组的平均叶片数为15片,标准差为2片;肥料A组的平均叶片数为18片,标准差为3片;肥料B组的平均叶片数为16片,标准差为2.5片;肥料C组的平均叶片数为17片,标准差为2.8片。
方差分析结果显示,不同处理组之间的叶片数差异是显著的(F=3.21, p<0.05)。
3. 根长:对照组的平均根长为25cm,标准差为2cm;肥料A组的平均根长为28cm,标准差为3cm;肥料B组的平均根长为26cm,标准差为2.5cm;肥料C组的平均根长为27cm,标准差为2.8cm。
大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。
二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。
销售量日期周一至周三周四至周五周末地区一5000 6000 4000 6000 8000 3000 4000 7000 5000地区二700080008000500050006000500060004000地区三300020004000600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。
在SPSS输入数据。
(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。
1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。
(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。
三、实验结论(包括SPSS输出结果及分析解释)SPSS输出的多因素方差分析的饱和模型分析:表的第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P-值。
F日期,,F地区,F日期*地区概率P-值分别为0.254,0.313,0.000。
如果显著性水平α为0.05,由于F日期、,F地区大于显著性水平α,所以不应拒绝原假设,不同地区和不同日期对该商品没有显著性影响。
方差与方差分析实验报告方差与方差分析实验报告引言方差是统计学中常用的一个概念,用来衡量数据集中的离散程度。
方差分析是一种用于比较多个样本之间差异的方法。
本实验旨在通过方差和方差分析的应用,探索不同因素对实验结果的影响。
实验设计我们设计了一个实验,研究不同肥料对植物生长的影响。
为了排除其他因素对结果的干扰,我们选择了相同品种、相同生长环境的植物,并将其随机分为三组,分别施加不同肥料。
每组实验重复10次,以减少随机误差的影响。
实验步骤1. 准备工作:选择适当的植物品种、土壤和肥料,并确保生长条件的一致性。
2. 分组:将植物随机分为三组,每组10个样本。
3. 施肥:分别给每组植物施加不同肥料,确保施肥方法的一致性。
4. 观察记录:在一定时间内,每天记录植物的生长情况,包括高度、叶片数量等指标。
5. 数据整理:将每组植物的生长数据整理成表格,以便后续分析。
数据分析我们使用方差分析来比较不同肥料对植物生长的影响。
首先,我们计算每组植物的平均生长值,并计算出总体的平均值。
然后,我们计算组内差异的平方和,即各组数据与组内均值之差的平方之和。
最后,我们计算组间差异的平方和,即各组均值与总体均值之差的平方之和。
通过计算方差和协方差,我们可以得到组内方差和组间方差的估计值。
方差反映了每组数据与该组均值之间的离散程度,而组间方差则反映了不同组之间的差异程度。
通过比较这两个方差的大小,我们可以判断不同肥料对植物生长的影响是否显著。
结果与讨论经过方差分析,我们得到了组内方差和组间方差的估计值。
通过计算F值,我们可以判断组间方差是否显著大于组内方差。
如果F值大于临界值,就可以认为不同肥料对植物生长的影响是显著的。
在我们的实验中,我们发现组间方差明显大于组内方差,且F值远远超过了临界值。
这表明不同肥料对植物生长的影响是显著的。
进一步的分析显示,第一组施加的肥料对植物生长的促进效果最好,第二组次之,第三组最差。
结论通过方差分析,我们证明了不同肥料对植物生长的影响是显著的。
实验八多因素方差分析一、实验目的通过本次实验,了解如何进行各种类型均值的比较与检验。
二、实验性质必修,基础层次三、主要仪器及试材计算机及SPSS软件四、实验内容1. 多因素方差分析2.协方差分析五、实验学时2学时六、实验方法与步骤1.开机2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS3.打开一个已经存在的数据文件4.按要求完成上机作业;5. 关闭SPSS,关机。
七、实验注意事项1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
八、上机作业要求:以下题目的分析过程和结果保存为文件“作业8.1, 作业8.2”。
请根据你的分析用Word写出你对题目的答案及解释,保存为“作业8-1.doc, 作业8-2.doc”1.多因素方差分析(Univariate过程)某城市从4个排污口取水,经两种不同方法处理后,检测大肠杆菌数量,单实验步骤:(1)建立数据文件。
定义变量名:编号、大肠杆菌数量、处理方法和排污口的变量名分别为x1、x2、x3和x4,之后输入原始数据。
(2)选择菜单“Analyz e→ General Linear Model→ Univariate”,弹出“多因素方差分析”对话框。
在对话框左侧的变量列表中选择变量“大肠杆菌数量”进入“Dependent Variable”框,选择“排污口”和“处理方法”进入“Fixed Factor(s)”框。
(3)选择建立多因素方差分析的模型。
单击“Univariate”对话框中的“Model”按钮,弹出“Univariate: Model”对话框。
选中“Full Factorial”单选纽即饱和模型。
实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。
学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。
二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。
零假设:各水平下总体方差没有显著差异。
相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。
从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。
2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。
(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。
不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。
说明不同广告和不同地区对汽车销量都有显著性影响。
广告对于销量的影响略大于地区对销量的影响。
从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。
实验报告方差分析学院:参赛队员:参赛队员: 参赛队员: 指导老师:目录一、实验目的 (6)1.了解方差分析的基本容; (6)2.了解单因素方差分析; (6)3.了解多因素方差分析; (6)4.学会运用spss软件求解问题; (6)5.加深理论与实践相结合的能力。
(6)二、实验环境 (6)三、实验方法 (7)1. 单因素方差分析; (7)2. 多因素方差分析。
(7)四、实验过程 (7)问题一: (7)1.1实验过程 (7)1.1.1输入数据,数据处理; (7)1.1.2单因素方差分析 (8)1.2输出结果 (9)1.3结果分析 (10)1.3.1描述 (10)1.3.2方差性检验 (10)1.3.3单因素方差分析 (10)问题二: (10)2.1实验步骤 (11)2.1.1命名变量 (11)2.1.2导入数据 (11)2.1.3单因素方差分析 (12)2.1.4输出结果 (14)2.2结果分析 (15)2.2.1描述 (15)2.2.2方差性检验 (15)2.2.3单因素方差分析 (15)问题三: (15)3.1提出假设 (16)3.2实验步骤 (16)3.2.1数据分组编号 (16)3.2.2多因素方差分析 (17)3.2.3输出结果 (22)3.3结果分析 (23)五、实验总结 (23)方差分析一、实验目的1.了解方差分析的基本容;2.了解单因素方差分析;3.了解多因素方差分析;4.学会运用spss软件求解问题;5.加深理论与实践相结合的能力。
二、实验环境Spss、office三、实验方法1. 单因素方差分析;2. 多因素方差分析。
四、实验过程问题一:用二氧化硒50mg对大鼠染尘后不同时期全肺湿重的变化见下表,试比较染尘后1个月,3个月,6个月,三个时期的全肺湿重有无差别。
1个月3个月6个月3.4 3.4 3.63.64.4 4.44.3 3.45.14.1 4.2 54.2 4.75.53.34.2 4.71.1实验过程1.1.1输入数据,数据处理;1.1.2单因素方差分析选择:分析比较均值单因素AVONA;将变量大鼠全肺湿重放置因变量列表栏中,月份放置因子栏中;两两比较中,勾选最小显著差异法;选项中,勾选描述性,方差同质性检验,welch;1.3.1描述由描述可知,一月份的均值为3.817,标准差为0.4355,三月份的均值为4.050,标准差为0.5357,六月份的均值为4.717,标准差为0.66161.3.2方差性检验由方差齐性检验可知,Sig值=0.826>0.05,说明各组的方差在α=0.05水平上没有显著性差异,即方差具有齐次性1.3.3单因素方差分析根据输出的p值为0.034可以看出,小于0.05,大于0.01,因此拒绝原假设,染尘后1个月,3个月,6个月,三个时期的全肺湿重有无差别有显著性意义,结论是染尘后1个月,3个月,6个月,三个时期的全肺湿重有差别,一个月大鼠的全肺湿重最小,三个月其次,六个月大鼠的全肺湿重最大。
体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。
多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
下面用例子的形式来说说多因素方差分析的运用.还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
分析:1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2。
因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。
在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。
在大多数场合,交互作用的信息比主效应的信息更为有用。
根据上面的判断。
根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。
这里假设他们之间有交互作用。
第1篇一、实验目的本研究旨在探讨多因素实验设计在心理学领域中的应用,通过实验验证不同自变量对因变量的影响,并分析自变量之间的交互作用。
本实验选取了两个自变量:实验组别和实验时长,考察其对被试反应时间的影响。
二、实验方法1. 实验对象实验对象为30名大学生,男女各半,年龄在18-22岁之间。
所有被试均无色盲、色弱等视觉障碍。
2. 实验材料实验材料为一系列图片,每张图片包含一个字母,要求被试在看到图片后尽快判断该字母是否为目标字母。
3. 实验设计本实验采用2(实验组别:实验组与对照组)×2(实验时长:短时长与长时长)的多因素实验设计。
其中,实验组别为自变量A,实验时长为自变量B。
4. 实验程序(1)实验前,向被试说明实验目的和实验流程,并要求被试在实验过程中保持专注。
(2)实验过程中,将30名被试随机分为两组,每组15人。
实验组进行短时长实验,对照组进行长时长实验。
(3)短时长实验:实验组被试在30秒内完成所有图片判断任务。
(4)长时长实验:对照组被试在60秒内完成所有图片判断任务。
(5)实验结束后,收集被试的反应时间数据。
5. 数据处理采用SPSS软件对实验数据进行方差分析,以检验自变量A和B对因变量(反应时间)的影响,以及自变量之间的交互作用。
三、实验结果1. 实验组别对反应时间的影响方差分析结果显示,实验组别对反应时间有显著影响(F(1,28) = 8.71,p <0.01)。
具体来说,实验组被试的平均反应时间为523.71毫秒,对照组被试的平均反应时间为598.43毫秒。
2. 实验时长对反应时间的影响方差分析结果显示,实验时长对反应时间有显著影响(F(1,28) = 6.82,p <0.05)。
具体来说,短时长实验组被试的平均反应时间为523.71毫秒,长时长实验组被试的平均反应时间为598.43毫秒。
3. 自变量之间的交互作用方差分析结果显示,实验组别与实验时长之间存在交互作用(F(1,28) = 5.05,p < 0.05)。
SPSS上机实验报告(6)学生姓名学号成绩上机实验题目考勤上机表现实验时间一、实验目的:1.熟悉并掌握单因素、双因素方差分析,univarate协方差分析的SPSS操作,其他较简单的方差分析问题,多元方差分析,重复测量的方差分析的具体操作。
2、对分析的结果能给出统计学的解释二、实验内容:1、熟悉方差分析菜单界面,掌握方差分析的操作。
2、对得到的结果进行解释。
3、掌握不同实验设计所使用的统计方法。
4、实际应用1)p151的三个实例,根据提示作相应的方差分析2)P153(5、6、7、8)题建立数据文件,进行方差分析三、实验要求:1、根据上机报告模板详细书写上机报告2、作业发到邮箱*****************四第七题第1步分析:需要研究不同包装和不同摆放位置对销量的影响。
这是一个多因素(双因素)方差分析问题。
第2步数据组织:如上表的变量名组织成4列数据。
第3步变量设置:按“分析|一般线性模型| 单变量”的步骤打开单变量对话框。
并将“销量”变量移入因变量框中,将“casing”和“摆放位置”移入固定因子中,如下图:第4步选择建立多因素方差分析的模型种类:打开“模型”对话框,本例用默认的全因子模型。
第5步以图形方式展示交互效果:设置方式如下图第6步设置方差齐性检验:由于方差分析要求不同casing数据方差相等,故应进行方差齐性检验,单击“选项”按钮,选中“方差齐性检验”,显著性水平设为默认值0.05。
75步设置控制变量的多重比较分析:单击“两两比较”按钮,如下图,在其中选出需要进行比较分析的控制变量,这里选“casing”,再选择一种方差相等时的检验模型,如LSD。
第8步对控制变量各个水平上的观察变量的差异进行对比检验:选择“对比”对话框,对两种因素均进行对比分析,用“简单”方法,并以最后一个水平的观察变量均值为标准。
五、程序运行结果:第七题运行结果UNIANOVA主体间因子值标签N包装1 A1 92 A2 93 A3 9摆放位置1 B1 92 B2 93 B3 9误差方差等同性的 Levene 检验a因变量: 销量F df1 df2 Sig..754 8 18 .646检验零假设,即在所有组中因变量的误差方差均相等。