ANSYS反应谱分析内幕
- 格式:doc
- 大小:364.00 KB
- 文档页数:4
ansys结构化学反应概述及解释说明1. 引言1.1 概述ANSYS是一种广泛应用于工程和科学领域的计算机辅助工程(CAE)软件。
它提供了强大的多物理场仿真功能,能够模拟和分析各种复杂的物理过程和系统行为。
其中,结构化学反应是ANSYS中非常重要且常见的应用之一。
本文将对ANSYS结构化学反应进行概述和解释说明。
1.2 文章结构本文共分为五个部分。
除了本引言部分外,还包括:2. ANSYS结构化学反应概述、3. 解释说明ANSYS结构化学反应模型、4. 结果与讨论以及5. 结论与未来研究方向。
在第二部分中,将介绍ANSYS软件的简介,并阐述结构化学反应的相关概念。
此外,还将探讨ANSYS在结构化学反应中的实际应用。
在第三部分中,我们将详细解释说明ANSYS中的结构化学反应模型。
主要包括对反应控制方程的介绍、网格生成和离散化方法以及物理特性建模与参数设置等方面内容。
第四部分将呈现一些模拟实例,并通过结果分析与解释来进一步说明ANSYS在结构化学反应中的作用。
同时,还将进行讨论,并展望未来研究方向。
最后,在第五部分中,将总结和归纳本文的研究成果,并提出关于结构化学反应发展前景及未来研究方向的建议。
1.3 目的本文旨在全面介绍和阐述ANSYS在结构化学反应中的应用。
通过详细解释ANSYS结构化学反应模型,我们希望读者能够对该软件在处理结构化学反应问题时的原理和方法有一个清晰的认识。
同时,通过对模拟实例结果的分析和讨论,我们也希望能够探索该领域未来的研究方向,并对相关技术发展做出一定预测。
2. ANSYS结构化学反应概述:2.1 ANSYS简介:ANSYS是一种强大的工程仿真软件套件,广泛应用于多个领域,包括机械、电子、材料和流体力学等。
该软件提供了各种建模和分析工具,旨在帮助工程师解决复杂的物理问题。
2.2 结构化学反应概念:结构化学反应是指两个或多个化学物质之间发生的化学变化,同时影响着系统的结构和性能。
ANSYS地震反应谱分析实例/COM,ANSYS地震反应谱分析⽰例/PREP7!定义参数B=15 !基本尺⼨A1=1000 !第⼀个⾯积A2=1000 !第⼆个⾯积A3=1000 !第三个⾯积NMODE=10!定义截⾯ET,1,BEAM4 !⼆维杆单元R,1,0.25,0.0052,0.0052,0.5,0.5!定义材料特性MP,EX,1,2.0E11MP,PRXY,1,,0.3MP,DENS,1,7.8E3!定义节点N,1,-B,0,0N,2,0,0,0N,3,-B,0,BN,4,0,0,BN,5,-B,0,2*BN,6,0,0,2*BN,7,-B,0,3*BN,8,0,0,3*B!定义单元E,1,3E,2,4E,3,5E,4,6E,3,4E,5,6E,5,7E,6,8E,7,8!边界条件D,1,ALL,0,,2FINISH!静⼒分析/SOLUD,1,ALL,0,,2SFBEAM,1,1,PRES,100000,SFBEAM,3,1,PRES,100000,SFBEAM,7,1,PRES,100000,SOLVEFINISHALLSEL!模态分析/SOLUANTYPE,2MODOPT,SUBSP,10 !⼦空间法MXPAND,10, , ,1SOLVE!存储各模态频率*DIM,FRE,,NMODE*DO,I,1,NMODE*GET,FRE(I),MODE,I,FREQ ! OBTAIN MODE FREQENCY FOR MODE I *ENDDOFINISHALLSEL!计算反应谱数据(依据规范GB50011-2001 第5.1.5条)!地震影响系数GRAV=9.81!重⼒加速度GTG=0.35 !特性周期AMAX=0.08!⽔平地震影响系数最⼤值C=0.05 !阻尼⽐!*DIM,A,,NMODE*DIM,T,,NMODE*DO,I,1,NMODET(I)=1.0/FRE(I)*ENDDOR=0.9+(0.05-C)/(0.5+5.0*C)P1=0.02+(0.05-C)/8P2=1+(0.05-C)/(0.06+1.7*C)*DO,I,1,NMODE*IF,T(I),GE,0.0,AND,T(I),LT,0.1,THENA(I)=(0.45+(10.0*P2-4.5)*T(I))*AMAX*GRAV*ELSEIF,T(I),GE,0.1,AND,T(I),LE,TGA(I)=P2*AMAX*GRAV*ELSEIF,T(I),GT,TG,AND,T(I),LE,5*TGA(I)=(TG/T(I))**R*P2*AMAX*GRAV*ELSEA(I)=(P2*0.2**R-P1*(T(I)-5*TG))*AMAX*GRAV*ENDIF*ENDDO!反应谱分析/SOLUANTYPE,SPECTRSPOPT,SPRS ! 单点反应谱SED,1,, ! 反应⽅向为X轴SVTYP,2 ! 加速度谱! 反应谱数据FREQ,FRE(1),FRE(2),FRE(3),FRE(4),FRE(5),FRE(6),FRE(7),FRE(8),FRE(9) FREQ,FRE(10)SV,,A(1),A(2),A(3),A(4),A(5),A(6),A(7),A(8),A(9)SV,,A(10)SRSS,0.0,DISP ! 设置震形组合⽅式SOLVEFINISH/POST1SET,LIST/INPUT,,MCOM!计算反应谱⼯况!***************查看反应谱结果******************ALLSEL,ALLFINISH。
ANSYS地震反应谱SRSS分析我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算结果,命令流如下:!进入PREP7并建模/PREP7B=15 !基本尺寸A1=1000 !第一个面积A2=1000 !第二个面积A3=1000 !第三个面积ET,1,beam4 !二维杆单元R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参MP,EX,1,2.0E11 !杨氏模量mp,PRXY,1,,0.3mp,dens,1,7.8e3N,1,-B,0,0 !定义结点N,2,0,0,0N,3,-B,0,bN,4,0,0,bN,5,-B,0,2*bN,6,0,0,2*bN,7,-B,0,3*bN,8,0,0,3*bE,1,3 !定义单元E,2,4E,3,5E,4,6E,3,4E,5,6e,5,7e,6,8e,7,8D,1,ALL,0,,2FINISH!!进入求解器,定义载荷和求解/SOLUD,1,ALL,0,,2 !结点UX=UY=0sfbeam,1,1,PRES,100000,sfbeam,3,1,PRES,100000,sfbeam,7,1,PRES,100000,SOLVEFINISHallselNMODE=10/SOL!*ANTYPE,2!*MSAVE,0!*MODOPT,LANB,NMODEEQSLV,SPARMXPAND,NMODE , , ,1LUMPM,0PSTRES,0!*MODOPT,LANB,NMODE ,0,0, ,OFFSOLVE*DIM,FRE,,NMODE*DO,I,1,NMODE*GET,FRE(I),MODE,I,FREQ ! OBTAIN MODE FREQENCY FOR MODE I *ENDDOFINISH!地震影响系数grav=9.81tg=0.35amax=0.08c=0.05!*dim,a,,nmode*dim,t,,nmode*do,i,1,nmodet(i)=1.0/fre(i)*enddor=0.9+(0.05-c)/(0.5+5.0*c)p1=0.02+(0.05-c)/8p2=1+(0.05-c)/(0.06+1.7*c)*do,i,1,nmode*if,t(i),ge,0.0,and,t(i),lt,0.1,thena(i)=(0.45+(10.0*p2-4.5)*t(i))*amax*grav*elseif,t(i),ge,0.1,and,t(i),le,tga(i)=p2*amax*grav*elseif,t(i),gt,tg,and,t(i),le,5*tga(i)=(tg/t(i))**r*p2*amax*grav*elsea(i)=(p2*0.2**r-p1*(t(i)-5*tg))*amax*grav*endif*enddo!! X-方向谱分析Spectrum analysis along Global X-axis direction/SOLUANTYPE,SPECTR ! Spectrum analysisSPOPT,SPRS ! Single point spectrumSED,1,, ! Global X-axis as spectrum directionSVTYP,2 ! Seismic acceleration response spectrum! Frequency points and Spectrum values for SV vs. freq. tableFREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9)FREQ,fre(10)SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)SV,,a(10)FINISH!/SOLU!ANTYPE,MODAL ! Mode-frequency analysis!EXPASS,ON!MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes, calculate element stresses !SOLVE!FINISH/SOLUANTYPE,SPECTRSRSS,0.0,DISP ! Square Root of Sum of Squares Mode combination! with signif=0.0 and displacement solution requested SOLVEFINISH/POST1SET,LIST/INPUT,,mcom!***************EARTHQUAKE X******************ALLSEL,ALLFINISH! Y-方向谱分析Spectrum analysis along Global X-axis direction!!**********************************************!/SOL!!*!ANTYPE,2!!*!MSAVE,0!!*!MODOPT,LANB,NMODE!EQSLV,SPAR!MXPAND,NMODE , , ,1!LUMPM,0!PSTRES,0!!*!MODOPT,LANB,NMODE ,0,0, ,OFF!SOLVE!FINISH!!**********************************************/SOLULSCLEAR,LSOPTANTYPE,SPECTR ! Spectrum analysisSPOPT,SPRS ! Single point spectrumSED,,1, ! Global Y-axis as spectrum directionSVTYP,2 ! Seismic acceleration response spectrumFREQ! Frequency points and Spectrum values for SV vs. freq. tableFREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9)FREQ,fre(10)SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)SV,,a(10)SOLVEFINISH!/SOLU!ANTYPE,MODAL ! Mode-frequency analysis!EXPASS,ON!MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes, calculate element stresses!SOLVE!FINISH/SOLUANTYPE,SPECTRSRSS,0.0,DISP ! Square Root of Sum of Squares Mode combination! with signif=0.0 and displacement solution requestedSOLVEFINISH/POST1SET,LIST/INPUT,,mcom!***************EARTHQUAKE Y******************ALLSEL,ALLFINISH这里在进行X方向的反应谱分析以后,进行Y方向的分析,可是他生成的*.mcom文件如下:/COM,ANSYS RELEASE 8.0 UP20190930 09:28:42 07/23/2019/COM, truss.mcomLCOPER,ZEROLCDEFI,1, 1, 1LCFACT,1, 0.263825E-17LCASE,1LCOPER,SQUARELCDEFI,1, 1, 2LCFACT,1, 8.55778LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, -0.188669E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -0.871099E-15LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.757013LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.967307E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.533141E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.203699LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.445795E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, -0.387808E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT/COM,ANSYS RELEASE 8.0 UP20190930 09:28:42 07/23/2019/COM, truss.mcomLCOPER,SQUARE !注意这里没有清空数据库LCDEFI,1, 1, 1LCFACT,1, 50.7528LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 2LCFACT,1, 0.887017E-14LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, 0.612824E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -1.96484LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.331613E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.330459E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.366569LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.976991E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.417313E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, 0.401040E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT我感觉这样好像是X和Y两个方向地震的叠加,可是如果在座Y方向的地震以前把注释掉的模态分析在做一下这样的Y方向的地震的*.mcom就是:/COM, truss.mcomLCOPER,ZERO !注意这里清空数据库LCDEFI,1, 1, 1LCFACT,1, 50.7528LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 2LCFACT,1, 0.887017E-14LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, 0.612824E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -1.96484LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.331613E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.330459E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.366569LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.976991E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.417313E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, 0.401040E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT如果在X方向后不作Y方向的地震,他的*.mcom:/COM,ANSYS RELEASE 8.0 UP20190930 08:46:23 07/23/2019 /COM, truss.mcomLCOPER,ZEROLCDEFI,1, 1, 1LCFACT,1, 0.263825E-17LCASE,1LCOPER,SQUARELCDEFI,1, 1, 2LCFACT,1, 8.55778LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, -0.188669E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -0.871099E-15LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.757013LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.967307E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.533141E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.203699LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.445795E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, -0.387808E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT可是在X后作Y他不清空数据库,需要进行两次模态分析,这很耗时间对于大型结构,请大家讨论讨论如何处理呢?Re:讨论:ANSYS地震反应谱SRSS分析本人是学土木工程的,平时主要用Patran+Nastran对结构做线性分析,偶尔使用Ansys对结构做地震反应谱分析,但对Ansys的命令流不熟悉。
基于Ansys的塔式起重机地震反应谱分析秦仙蓉 赵俊陆 王玉龙 张 氢 孙远韬同济大学机械与能源工程学院 上海 201804摘 要:塔式起重机在工程建造中发挥着重要作用,但因其具有高耸大跨度的细长结构,在地震的作用下可能造成结构损伤或破坏,有必要在设计阶段即对塔式起重机进行地震反应谱分析。
文中标定了利用Ansys平台进行反应谱分析的基本流程,构建了1个单自由度和1个二自由度系统,分别利用理论计算和Ansys数值模拟完成了这2个系统的地震反应谱分析,并分析对比这2种方法所得结果,实现了对Ansys分析流程的标定。
另外,根据经过理论标定的分析流程,对某型塔式起重机进行了反应谱分析,分别在平行、垂直于该塔式起重机模型臂架的方向施加地震加速度谱,合并生成各阶模态结果,可知模型垂直于臂架方向具有更强抗震性能。
关键词:塔式起重机;反应谱;结构;有限元;地震响应;分析中图分类号:TH213.3 文献标识码:A 文章编号:1001-0785(2023)15-0018-05Abstract: Tower crane plays an important role in engineering construction. However, due to large span, it may suffer structural damage or destruction in case of an earthquake. Therefore, it is necessary to analyze the seismic response spectrum of tower crane in the design stage. In this paper, the authors calibrated the basic process of response spectrum analysis through Ansys platform, constructed a single-degree-of-freedom system and a two-degree-of-freedom system, and analyzed the seismic response spectrum of these two systems by theoretical calculation and Ansys numerical simulation respectively, and compared the results, thus realizing the calibration of Ansys analysis process. In addition, according to the theoretically calibrated analysis process, the response spectrum of a tower crane was analyzed, and the seismic acceleration spectra were applied in the directions parallel to and perpendicular to the boom of the tower crane model, and the modal results of each order were generated. The results show that the seismic performance perpendicular to the boom direction is better. Keywords:tower crane; response spectrum; structure; finite element method; seismic response; analysis0 引言地震反应谱分析由美国学者Biot M A在20世纪40年代提出的[1],描述了不同自振频率的弹性单自由度系统中相同阻尼比在地震激励下产生的最大响应与自振周期的关系[2],广泛应用于结构抗震设计过程中。
A N S Y S动力分析-谱分析实例?? 谱分析实例- 工作台的响应谱分析说明:确定一个工作台在如下加速度谱作用下的位移和应力:操作指南:1. 清除数据库,读入文件table.inp 以创建模型的几何和网格。
2. 模态分析,求解15 个模态,注意选择计算单元结果。
查看前几个模态形状:3. 返回/Solution,选择新分析- 谱分析:设置求解选项,选择单点谱分析,使用所有15 个模态:设置常数阻尼比0.01。
设置激励为X 方向的加速度谱:定义加速度谱:首先定义频率表:然后定义各频率点的谱值(加速度值):定义阻尼比为0.02,然后输入个频率点的加速度值:使用Show States 可以查看设置结果:选择模态组合方法:使用SRSS 方法进行模态叠加,输出类型为位移。
其中的有效门限值(significance threshold) 使得在模态组合时只包含主要的模态,模态的有效门限值是模态系数与最大模态系数的比值。
要在组合时包含所有模态,使用0 值作为门限值。
点击Solve -> Current LS 进行求解:进入POST1,首先读入 .mcom 文件(File -> Input File From ...),执行模态组合,然后查看桌子的位移,注意它的组号为9999:显示工作台的Mises 应力:注意:–大多数组合方法包含平方运算,这会导致应力分量正负号的丢失。
因此,从这些无正负号的应力分量导出的等效应力和主应力是非保守和不正确的;–如果对等效应力/ 应变和主应力/ 应变感兴趣,应该在读入jobname.mcom 文件前执行SUMTYPE, PRIN ( General Postprocessor > Load Case > Calc Options > Stress Option …) 命令。
从而会直接计算导出值,得到更为保守的结果。
设置如下,选择Comb Principals:从新读入 .mcom 文件,执行模态组合,然后查看桌子的应力,比前面Comb Conponent 略大一点:5. 如果有兴趣,自己可以分别在Y 和Z 方向施加加速度谱,重复这一分析。
ANSYS谱分析的概念、过程及关键点解析谱是谱值和频率的关系曲线,反映了时间-历程载荷的强度和频率之间的关系。
响应谱代表系统对一个时间-历程载荷函数的响应,是一个响应和频率的关系曲线。
谱分析是一种将模态分析结果和已知谱联系起来的计算结构响应的分析方法,主要用于确定结构对随机载荷或随时间变化载荷的动力响应。
谱分析可分为时间-历程分析和频域的谱分析。
时间-历程谱分析主要应用瞬态动力学分析。
谱分析可以代替费时的时间-历程分析,主要用于确定结构对随机载荷或时间变化载荷(地震、风载、海洋波浪、喷气发动机推力、火箭发动机振动等)的动力响应情况。
谱分析的主要应用包括核电站(建筑和部件),机载电子设备(飞机/导弹),宇宙飞船部件、飞机构件,任何承受地震或其他不规则载荷的结构或构件,建筑框架和桥梁等。
功率谱密度(Power Spectrum Density):是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值-频率值的关系曲线,其中PSD可以是位移PSD、速度PSD、加速度PSD、力PSD等形式。
数学上,PSD-频率关系曲线下面的面积就是方差,即响应标准偏差的平方值。
ANSYS谱分析分为3种类型:*响应谱分析(SPRS OR MPRS)ANSYS响应谱分为单点响应谱和多点响应谱,前者指在模型的一个点集(不局限于一个点)定义一条响应谱;后者指在模型的多个点集定义多条响应谱。
* 动力设计分析(DDAM)动力分析设计是一种用于分析船舶装备抗震性的技术*随机振动分析(PSD)随机振动分析主要用于确定结构在具有随机性质的载荷作用下的响应。
与响应谱分析类似,随机振动分析也可以是单点的或多点的。
在单点随机振动分析时,要求在结构的一个点集上指定一个PSD;在多点随机振动分析时,则要求在模型的不同点集上指定不同的PSD。
一、单点响应谱分析基本步骤(1)建立模型(2)求得模态解(3)求得谱解(4)扩展模态(5)合并模态(6)观察结果1.模型的建立*只允许线性行为,任何非线性特性均作为线性处理,即非线性行为无效;*一定要定义弹性模量EX和密度DENS2.计算模态解结构的固有频率和模态振型是谱分析所必须的数据,在进行谱分析求解前需要先计算模态解。
ANSYS谱分析实例1.结构模态分析结构模态分析是指分析结构的振动模态和频率。
在ANSYS中,可以通过建立结构的有限元模型,定义结构的材料和边界条件,进行模态分析。
模态分析可以计算结构的固有频率和模态形态,用于确定结构的自由振动特性。
同时,模态分析还可以用于确定结构在不同激励条件下的响应。
2.地震响应分析地震响应分析是指分析结构在地震荷载下的响应。
在ANSYS中,可以通过定义地震荷载和结构的边界条件,进行地震响应分析。
地震响应分析可以计算结构在不同地震条件下的加速度、速度和位移响应,用于评估结构的地震抗震性能。
3.动力荷载响应分析动力荷载响应分析是指分析结构在动力荷载下的响应。
在ANSYS中,可以通过定义动力荷载和结构的边界条件,进行动力荷载响应分析。
动力荷载响应分析可以计算结构在不同动力荷载条件下的加速度、速度和位移响应,用于评估结构在动态工况下的响应。
4.谐响应分析谐响应分析是指分析结构在谐振激励下的响应。
在ANSYS中,可以通过定义谐振激励的频率和幅值,进行谐响应分析。
谐响应分析可以计算结构在不同谐振频率和幅值下的加速度、速度和位移响应,用于评估结构的谐响应特性。
5.随机振动分析随机振动分析是指分析结构受随机振动荷载作用下的响应。
在ANSYS 中,可以通过定义随机振动荷载的统计特性,进行随机振动分析。
随机振动分析可以计算结构在不同随机振动荷载条件下的平均响应和随机响应谱,用于评估结构在随机振动环境下的可靠性。
以上是几个常见的ANSYS谱分析实例,通过这些实例可以看出,ANSYS谱分析功能非常强大,可以广泛应用于各种工程领域,帮助工程师评估和优化结构的振动和动力学性能。
ANSYS动力学分析指南——谱分析引言ANSYS是一款功能强大的有限元分析软件,可以用于进行各种工程分析,包括力学、流体力学、电磁学等。
在动力学分析中,谱分析是一种常用的方法,用于研究结构在不同频率下的响应。
本文将介绍ANSYS中进行谱分析的方法与步骤。
谱分析的基本原理谱分析是将信号分解为不同频率的成分的一种方法。
在动力学分析中,我们关注的是结构在不同频率下的响应。
对于一个复杂的结构,可以将其响应信号通过傅里叶变换的方法分解为各个频率的成分,得到结构在不同频率下的振动模态。
基于频率的谱分析基于频率的谱分析是将预定义的频率作用于结构,计算其响应。
具体步骤如下:1.打开ANSYS软件,导入要进行谱分析的结构模型。
2.在“工作空间”中选择“动力学”模块,并创建一个新的工程。
3.在“属性”窗口中,选择“谱预定义”选项,并设置要使用的频率范围。
4.设置谱分析的加载方式,可以选择“振动”或“随机”。
5.设置谱分析的时间范围和步长。
6.点击“求解”按钮,进行谱分析计算,并观察结果的振动模态。
基于自由振动模态的谱分析基于自由振动模态的谱分析是利用结构的固有振动模态来分析其在不同频率下的响应。
具体步骤如下:1.打开ANSYS软件,导入要进行谱分析的结构模型。
2.在“工作空间”中选择“动力学”模块,并创建一个新的工程。
3.在“属性”窗口中,选择“自由振动”选项,并进行模态分析,得到结构的固有振动模态。
4.在“谱响应”窗口中,选择要进行谱分析的频率范围。
5.设置谱分析的时间范围和步长。
6.点击“求解”按钮,进行谱分析计算,并观察结果的振动模态。
注意事项在进行谱分析时,需要注意以下几点:1.设置合适的频率范围和步长,以保证获得准确的谱分析结果。
2.结构的刚度、材料性质等参数都会对谱分析结果产生影响,需要进行合理的设置。
3.谱分析是一种近似方法,其结果可能与实际情况有所差异,需要进行合理的解释和判断。
结论谱分析是一种常用的分析方法,在动力学分析中具有重要的应用价值。
ANSYS动力学分析指南――谱分析ANSYS动力学分析指南——谱分析§4.1谱分析的定义谱分析是一种将模态分析的结果与一个已知的谱联系起来计算模型的位移和应力的分析技术。
谱分析替代时间-历程分析,主要用于确定结构对随机载荷或随时间变化载荷(如地震、风载、海洋波浪、喷气发动机推力、火箭发动机振动等等)的动力响应情况。
§4.2什么是谱谱是谱值与频率的关系曲线,它反映了时间-历程载荷的强度和频率信息。
ANSYS的谱分析有三种类型:·响应谱分析单点响应谱(Single-point Response Spectrum,SPRS)多点响应谱(Multi-point Response Spectrum,MPRS)·动力设计分析方法(Dynamic Design Analysis Method,DDAM)·功率谱密度(Power Spectral Density,PSD)在ANSYS/Professional产品中只提供单点响应谱方法。
§4.2.1响应谱分析一个响应谱代表单自由度系统对一个时间-历程载荷函数的响应,它是一个响应与频率的关系曲线,其中响应可以是位移、速度、加速度、力等。
响应谱又分为如下两种形式:§4.2.1.1单点响应谱在模型的一个点集上定义一条(或一族)响应谱曲线,例如在所有支撑处,图4-1(a)所示。
ANSYS/LinearPlus program中只能进行单点响应谱分析。
§4.2.1.2多点响应谱在模型的不同点集上定义不同的响应谱曲线,图4-1(b)所示。
图4-1单点响应谱和多点响应谱§4.2.2动力设计分析方法该法是一种用于分析船用装备抗振性的技术,它所使用的谱是从美国海军研究实验室报告(NRL-1396)中一系列经验公式和振动设计表得来的。
§4.2.3功率谱密度功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。
ANSYS动力学分析指南——谱分析§4.1谱分析的定义谱分析是一种将模态分析的结果与一个已知的谱联系起来计算模型的位移和应力的分析技术。
谱分析替代时间-历程分析,主要用于确定结构对随机载荷或随时间变化载荷(如地震、风载、海洋波浪、喷气发动机推力、火箭发动机振动等等)的动力响应情况。
§4.2什么是谱谱是谱值与频率的关系曲线,它反映了时间-历程载荷的强度和频率信息。
ANSYS的谱分析有三种类型:·响应谱分析Ø单点响应谱(Single-point Response Spectrum,SPRS)Ø多点响应谱(Multi-point Response Spectrum,MPRS)·动力设计分析方法(Dynamic Design Analysis Method,DDAM)·功率谱密度(Power Spectral Density,PSD)在ANSYS/Professional产品中只提供单点响应谱方法。
§4.2.1响应谱分析一个响应谱代表单自由度系统对一个时间-历程载荷函数的响应,它是一个响应与频率的关系曲线,其中响应可以是位移、速度、加速度、力等。
响应谱又分为如下两种形式:§4.2.1.1单点响应谱在模型的一个点集上定义一条(或一族)响应谱曲线,例如在所有支撑处,图4-1(a)所示。
ANSYS/LinearPlus program中只能进行单点响应谱分析。
§4.2.1.2多点响应谱在模型的不同点集上定义不同的响应谱曲线,图4-1(b)所示。
图4-1单点响应谱和多点响应谱§4.2.2动力设计分析方法该法是一种用于分析船用装备抗振性的技术,它所使用的谱是从美国海军研究实验室报告(NRL-1396)中一系列经验公式和振动设计表得来的。
§4.2.3功率谱密度功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。
ansys反应谱生成
在ANSYS中,生成反应谱通常涉及以下步骤:
1. 定义地震荷载,首先,您需要定义地震荷载的特性,包括地震波的频谱、加速度、周期等参数。
2. 模型建立,接下来,您需要建立要分析的结构模型,包括几何形状、材料特性、约束条件等。
3. 求解分析,进行模态分析,获取结构的振动特性,包括自然频率和振型。
4. 反应谱分析,利用模态分析的结果,进行反应谱分析,生成结构在地震作用下的反应谱。
5. 结果评估,最后,评估反应谱分析的结果,包括结构的最大位移、加速度等参数,以及结构的安全性评估。
以上是在ANSYS中生成反应谱的一般步骤,具体操作可能会因应用场景和结构类型而有所不同。
希望这些信息能对您有所帮助。
A N S Y S反应谱分析内幕-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
ANSYS反应谱分析内幕ANSYS结构振型分解反应谱分析有如下内容:
1)首先要定义好加速度反应谱。
这里需要注意的是,规范上给的是地震影响系数谱曲线,这个曲线的函数值是以地面加速度为单位的。
而我们在用这个软件算的时候就需要给出绝对的加速度值,这个绝对加速度值当然就是要在地震影响系数的基础上再乘上一个地面加速度。
而地面加速度也并不一定是9.8,这与我们使用的单位制有关,如果是N/M/S,就应该是9.8,如果是N/MM/S就应该是9800。
2)求振型。
一定要是相对质量矩阵进行归一化,当然modopt 命令默认的方法就可以了,为什么要这样呢,从ANSYS文档式17-110就可以看出,这个式子是求振型参与系数的,显然这个式子里面不是完整的求振型参与系数的式子,它少了分母,但是,由于对振型相对质量矩阵进行了归一化,这个分母就等于1了,这就是为什么必须要对振型相对质量进行归一化的原因了。
在这一步中,可以这样理解,程序只进行了一次特征值求解,即只求出了周期和振型。
如果需要看某个振型的“内力/应力/反力”,就需要对其进行模态扩展。
模态扩展其实就是相当于对将“振型位移”看作“强制位移”进行静力的分析而得到静力分析的结果。
3)求谱解。
其实在这一步中,程序只做了一件事,那就是求模态系数。
模态系数的算法在ANSYS文档里有说明,对于不同的激励谱(位移谱、加速度谱、力谱),其算法不一样,对于加速度谱,它等于模态参与数/模态频率的平方*谱值(模态频率的平方是弧度/秒,开始
的时候我老是验算不过去这个式子,总是差一个40左右的系数,就是没有注意它的单位制,原来(2*3.14159)^2就约等于40),而详细的说明见ANSYS文档式17-120~17-126。
总而言之,模态系数描述的是某个模态对的结构总的响应的贡献。
顺便指出,模态参与系数是某个模态对结构发生给定单位方向位移的贡献,这个东东可查阅的资料比较多,这里就不多说了。
4)模态扩展。
关于它的意思,在2)中已说过了,其实这一步也可以放在2)中执行,效果是一样的。
5)模态组合。
其实如果在2)中进行了模态扩展,可以把每一个模态看作一个“荷载工况”,那么就可以看到每一个“荷载工况”下的“应力/内力/反力”了。
那么现在,我们又知道了每一个“荷载工况”的“工况组合系数”——模态系数,我们就可以将它们“组合”起来了。
这里的“组合”当然不是简单的线组合了,而是基于概念理论的srss、cqc等组合。
那么在这一步里面,程序其实也就做了一件事,那就是生成了一个以mcom为后缀的命令流文件,这个文件完全可以用记事本儿打开看看,里面全是工况运算,其实,就是进行工况的组合
罢了。
文件里面可以清楚的看到每一种“工况”的组合系数,这个组合系数就是3)中算出的模态系数。
最后,有一点需要解释一下,为什么求解的振型明明是10(打个比方)个,而反应分析后用SET,LIST却没有10个,并且看到的几个子步号也不连续。
这是由于mxpand命令里的最后一个参数SIFNIF 控制的,它的意思(其实文档里写得很清楚)是当模态的模态系数除以最大的那个模态系数的值小于这个值的话,就不对这个模态进行mxpand(模态扩展)。
如果打开.mcom文件,里面的“工况”可能会更少,这是由srss命令的第一个参数SIFNIF,其原理和mxpand命令里的最后一个参数SIFNIF一样。