直线方程优秀教案人教版
- 格式:doc
- 大小:127.50 KB
- 文档页数:5
人教版高中必修二《直线与方程》教学案例《人教版高中必修二《直线与方程》教学案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!第1节直线与方程复习目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.一、课前预习基础回顾考点1 直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴_____与直线_____的方向所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.动态定义:旋转(2)倾斜角的范围为_______________.2.直线的斜率(1)定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=______,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_________.考点2 直线方程的几种形式关键要素:点,斜率,截距名称条件方程适用范围点斜式斜率k与点(x1,y1)y-y1=k(x-x1)不含直线x=x1斜截式斜率k与直线在y轴上的截距by=kx+b不含垂直于x轴的直线两点式两点(x1,y1),(x2,y2)=不含直线x=x1(x1=x2)和直线y=y1(y1=y2)截距式直线在x轴、y轴上的截距分别为a、b+=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A,B不同时为0)平面直角坐标系内的直线都适用[双基夯实]一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”)1.直线的倾斜角越大,其斜率越大.( )2.当直线的斜率不存在时,其倾斜角存在.( )3.过点P(x1,y1)的直线方程一定可设为y-y1=k(x-x1).( )4.直线方程的截距式+=1中,a,b均应大于0.( )二、小题快练1.[2017·贵州模拟]已知直线l经过点P(-2,5),且斜率为-,则直线l的方程为( )A.3x+4y-14=0B.3x-4y+14=0C.4x+3y-14=0D.4x-3y+14=02.[课本改编]直线x+y+1=0的倾斜角是( )A.B.C.D.3.[课本改编]过两点(0,3),(2,1)的直线方程为( )A.x-y-3=0B.x+y-3=0C.x+y+3=0D.x-y+3=04.若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为______.考向1 直线的倾斜角与斜率看菜如图,比较直线,,的斜率、、的大小.1.直线2x-y+4=0同时过第()象限A.一,二,三B.二,三,四C.一,二,四D.一,三,四2.直线l1:ax-y+b=0,l2:bx-y+a=0,在同一坐标系下l1和l2的图像是()3.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是_______.拓展:(1)若M在第二象限,则k的取值范围是_______.(2)若M在第四象限,则k的取值范围是_______.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;例1 直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为_______________________.探究1若将题中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.直线l的斜率直线l的倾斜角α区别直线l垂直于x轴时l的斜率不存在直线l垂直于x轴时l的倾斜角是90°联系①直线的斜率与直线的倾斜角(90°除外)为一一对应关系.②当α∈[0°,90°)时,α越大,l的斜率越大;当α∈(90°,180°)时,α越大,l的斜率越大.③所有直线都有倾斜角,但不是所有直线都有斜率.【变式训练1】如果直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角α的取值范围是( )A.0≤α≤πB.0≤α≤或<α<πC.0≤α≤D.≤α<或<α<π考向2 求直线的方程例2 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.【变式训练2】已知△ABC的三个顶点分别为A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.触类旁通求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,即设定含有参数的直线方程,由条件列出方程(组),再求出参数,最后将其代入直线方程.考向3 直线方程的应用例3 已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点.求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.核心规律1.明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x、y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.满分策略1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.1.直线的倾斜角与斜率(1)在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按__________方向旋转到和直线重合时所转过的____________称为这条直线的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为__________.(2)倾斜角的范围为________________.(3)倾斜角与斜率的关系:α≠90°时,k=________,倾斜角是90°的直线斜率________.(4)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_____________________.2.直线方程的五种基本形式名称方程适用范围点斜式不含直线x=x0斜截式不含垂直于x轴的直线两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式不含垂直于坐标轴和过原点的直线一般式平面直角坐标系内的直线都适用自我检测1.若A(-2,3),B(3,-2),C三点共线,则m的值为________.2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为_______________________________________________________.3.下列四个命题中,假命题是________(填序号).①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;③与两条坐标轴都相交的直线不一定可以用方程+=1表示;④经过点Q(0,b)的直线都可以表示为y=kx+b.4.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过第________象限.5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为______________.二、教学过程探究点一倾斜角与斜率例1 已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB 倾斜角的一半,求l的斜率.变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是______________.探究点二直线的方程例2 过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.变式迁移2 求适合下列条件的直线方程:(1)经过点P(3,2)且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.探究点三直线方程的应用例3 过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:(1)△AOB面积最小时l的方程;(2)PA·PB最小时l的方程.变式迁移3 为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m,应如何设计才能使草坪面积最大?拓展延伸:例4 已知实数x,y满足y=x2-2x+2(-1≤x≤1).试求的最大值与最小值.三、回顾与反思:人教版高中必修二《直线与方程》教学案例这篇文章共9802字。
直线的方程教案(人教版)第一章:直线方程的基本概念一、教学目标1. 理解直线方程的基本概念,包括直线的一般式、点斜式和截距式。
2. 学会将直线的几何性质与方程联系起来,分析直线的斜率、截距等参数。
3. 能够根据直线的几何条件写出直线方程。
二、教学内容1. 直线的一般式方程:Ax + By + C = 02. 直线的点斜式方程:y y1 = m(x x1)3. 直线的截距式方程:x/a + y/b = 14. 直线的斜率和截距的概念。
三、教学重点与难点1. 教学重点:直线方程的三种形式及其相互转化。
2. 教学难点:直线斜率和截距的理解及其应用。
四、教学方法1. 采用讲授法,讲解直线方程的基本概念和公式。
2. 借助图形展示,直观理解直线的几何性质。
3. 例题演示,引导学生学会运用直线方程解决实际问题。
五、课时安排1课时第二章:直线的斜率与倾斜角一、教学目标1. 理解直线的斜率和倾斜角的概念,掌握它们的计算方法。
2. 学会利用直线的斜率和倾斜角分析直线的位置关系。
3. 能够运用直线的斜率和倾斜角解决实际问题。
二、教学内容1. 直线的斜率概念及其计算公式。
2. 直线的倾斜角概念及其计算方法。
3. 斜率和倾斜角的关系:k = tanθ。
三、教学重点与难点1. 教学重点:直线斜率和倾斜角的计算及其关系。
2. 教学难点:斜率和倾斜角的运用。
四、教学方法1. 采用讲授法,讲解直线斜率和倾斜角的概念及计算方法。
2. 借助图形展示,直观理解斜率和倾斜角的关系。
3. 例题演示,引导学生学会运用斜率和倾斜角分析直线位置关系。
五、课时安排1课时第三章:直线方程的求解一、教学目标1. 掌握直线方程的求解方法,包括点斜式、截距式和一般式。
2. 学会利用已知条件求解直线方程,如已知直线经过两点、已知斜率和截距等。
3. 能够运用直线方程解决实际问题。
二、教学内容1. 直线方程的求解方法:点斜式、截距式和一般式。
2. 已知直线经过两点的直线方程求解。
直线方程教学设计(多篇)单元教学设计是指对某一单元的教学内容作出具体的教学活动设计,这里的单元可是一章,也可是以某个知识内容为主的知识模块。
单元教学设计要有整体性、相关性、阶梯性和综合性。
本文以人教A版高中数学必修2《直线与方程》一章为例进行了单元教学设计,设计内容包括单元教学目标、要素分析(其中包含数学分析、标准分析、学生分析、重点分析、教材比较分析、教学方式分析等)、教学流程设计、典型案例设计和反思与改进等。
一、单元教学目标(1)理解并体会用代数方法研究直线问题的基本思路:先在平面直角坐标系中建立直线的代数方程,再通过方程,用代数方法解决几何问题。
(2)初步形成用代数方法解决几何问题的能力,体会数形结合的思想。
二、要素分析1.数学分析:直线与方程为人教A版教材必修2第三章内容,必修2包括立体几何初步、解析几何初步,其中立体几何初步分为空间几何体,点、直线、平面之间的位置关系。
直线与方程是继立体几何的学习之后从代数的观点认识、描述、刻画直线,是在平面直角坐标系中建立直线的方程,运用代数方法研究它们的几何性质及其相互位置关系。
它在高中数学中的地位非常重要,可以说是高中数学体系中的“交通枢纽”。
它与代数中的一次函数、二元一次方程、几何中的直线和不等式及线性规划等内容都有关联。
在本章教学中,学生应该经历如下的过程:首先将直线的倾斜角代数化,探索确定直线位置的几何要素,建立直线的方程,把直线问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。
这种数形结合的思想贯穿教学的始终,并且在后续课程中不断体现。
2.标准分析:①坐标法的渗透与掌握:解析几何研究问题的主要方法是坐标法,它是解析几何中最基本的研究方法。
②作为后续学习的基础,要灵活地根据条件确定或者待定直线的方程,如将直线方程预设成点斜式、斜截式或一般式,等等。
③认识到直线方程中的系数唯一确定直线的几何特性,可类比学习后续课程椭圆方程中的系数a,b,c,双曲线标准方程的系数,抛物线的系数,也可以延伸至两条直线的位置关系取决于直线方程中的系数,即取决于两个重要的量――斜率和截距。
直线的点斜式方程一、教课目的1、知识与技术(1)理解直线方程的点斜式、斜截式的形式特色和合用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)领会直线的斜截式方程与一次函数的关系.2、过程与方法在已知直角坐标系内确立一条直线的几何因素——直线上的一点和直线的倾斜角的基础上,经过师生商讨,得出直线的点斜式方程;学生经过对照理解“截距”与“距离”的差别。
3、神态与价值观经过让学生领会直线的斜截式方程与一次函数的关系,进一步培育学生数形联合的思想,浸透数学中广泛存在相互联系、相互转变等看法,使学生能用联系的看法看问题。
二、教课要点、难点:(1)要点:直线的点斜式方程和斜截式方程。
(2)难点:直线的点斜式方程和斜截式方程的应用。
三、教课假想问题1、在直线坐标系内确立一条直线,应知道哪些条件?设计企图使学生在已有知识和经验的基础上,研究新知。
师生活动学生回首,并回答。
而后教师指出,直线的方程,就是直线上随意一点的坐标 (x, y) 满足的关系2、直线l经过点P0(x0, y0),且斜率为 k 。
设点P( x, y)是直线 l 上的任意一点,请建立 x, y 与k, x0 , y0之间的关系。
yPP 0式。
培育学生自主学生依据斜率公式,能够获取,研究的能力,并体时, k yy0 ,即会直线的方程,就当x x0是直线上随意一x x0点的坐标 ( x, y)y y0k( x x0 )(1)知足的关系式,从教师对基础单薄的学生赐予关而掌握依据条件注、指引,使每个学生都能推导出求直线方程的方这个方程。
法。
O x3、( 1)过点P0(x0, y0),斜率使学生认识方学生考证,教师指引。
程为直线方程必是 k 的直线 l 上的点,其坐标都满须满两个条件。
足方程( 1)吗?问题(2)坐标知足方程(1)的点都在经过 P0 ( x0 , y0 ) ,斜率为k的直线l 上吗?4、直线的点斜式方程可否表示坐标平面上的全部直线呢?5、( 1)x轴所在直线的方程是什么? y 轴所在直线的方程是什么?( 2)经过点P0 ( x0 , y0 ) 且平行于x 轴(即垂直于y 轴)的直线方程是什么?( 3)经过点P0( x0, y0)且平行于y 轴(即垂直于 x 轴)的直线方程是什么?设计企图师生活动使学生认识方学生考证,教师指引。
直线方程的一般形式一、教学目标(一)知识教学点掌握直线方程的一般形式,能用定比分点公式设点后求定比.(二)能力训练点通过研究直线的一般方程与直线之间的对应关系,进一步强化学生的对应概念;通过对几个典型例题的研究,培养学生灵活运用知识、简化运算的能力.(三)学科渗透点通过对直线方程的几种形式的特点的分析,培养学生看问题一分为二的辩证唯物主义观点.二、教材分析1.重点:直线的点斜式、斜截式、两点式和截距式表示直线有一定的局限性,只有直线的一般式能表示所有的直线,教学中要讲清直线与二元一次方程的对应关系.2.难点:与重点相同.3.疑点:直线与二元一次方程是一对多的关系.同条直线对应的多个二元一次方程是同解方程.三、活动设计分析、启发、讲练结合.四、教学过程(一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x轴垂直的直线可表示成x=x0,与x轴平行的直线可表示成y=y0。
它们都是二元一次方程.我们问:直线的方程都可以写成二元一次方程吗?反过来,二元一次方程都表示直线吗?(二)直线方程的一般形式我们知道,在直角坐标系中,每一条直线都有倾斜角α.当α≠90°时,直线有斜率,方程可写成下面的形式:y=kx+b当α=90°时,它的方程可以写成x=x0的形式.由于是在坐标平面上讨论问题,上面两种情形得到的方程均可以看成是二元一次方程.这样,对于每一条直线都可以求得它的一个二元一次方程,就是说,直线的方程都可以写成关于x、y的一次方程.反过来,对于x、y的一次方程的一般形式Ax+By+C=0.(1)其中A、B不同时为零.(1)当B≠0时,方程(1)可化为这里,我们借用了前一课y=kx+b表示直线的结论,不弄清这一点,会感到上面的论证不知所云.(2)当B=0时,由于A、B不同时为零,必有A≠0,方程(1)可化为它表示一条与y轴平行的直线.这样,我们又有:关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0这个方程(其中A、B不全为零)叫做直线方程的一般式.引导学生思考:直线与二元一次方程的对应是什么样的对应?直线与二元一次方程是一对多的,同一条直线对应的多个二元一次方程是同解方程.(三)例题解:直线的点斜式是化成一般式得4x+3y-12=0.把常数次移到等号右边,再把方程两边都除以12,就得到截距式讲解这个例题时,要顺便解决好下面几个问题:(1)直线的点斜式、两点式方程由于给出的点可以是直线上的任意点,因此是不唯一的,一般不作为最后结果保留,须进一步化简;(2)直线方程的一般式也是不唯一的,因为方程的两边同乘以一个非零常数后得到的方程与原方程同解,一般方程可作为最终结果保留,但须化为各系数既无公约数也不是分数;(3)直线方程的斜截式与截距式如果存在的话是唯一的,如无特别要求,可作为最终结果保留.例2 把直线l的方程x-2y+6=0化成斜截式,求出直线l的斜率和在x轴与y轴上的截距,并画图.解:将原方程移项,得2y=x+6,两边除以2得斜截式:x=-6根据直线过点A(-6,0)、B(0,3),在平面内作出这两点连直线就是所要作的图形(图1-28).本例题由学生完成,老师讲清下面的问题:二元一次方程的图形是直线,一条直线可由其方向和它上面的一点确定,也可由直线上的两点确定,利用前一点作图比较麻烦,通常我们是找出直线在两轴上的截距,然后在两轴上找出相应的点连线.例3 证明:三点A(1,3)、B(5,7)、C(10,12)在同一条直线上.证法一直线AB的方程是:化简得 y=x+2.将点C的坐标代入上面的方程,等式成立.∴A、B、C三点共线.∴A、B、C三点共线.∵|AB|+|BC|=|AC|,∴A、C、C三点共线.讲解本例题可开拓学生思路,培养学生灵活运用知识解决问题的能力.例4 直线x+2y-10=0与过A(1,3)、 B(5,2)的直线相交于C,此题按常规解题思路可先用两点式求出AB的方程,然后解方程组得到点C的坐标,再求点C分AB所成的定比,计算量大了一些.如果先用定比分点公式设出点C的坐标(即满足点C 在直线AB上),然后代入已知的直线方程求λ,则计算量要小得多.代入x+2y-10=0有:解之得λ=-3.(四)课后小结(1)归纳直线方程的五种形式及其特点.(2)例4一般化:求过两点的直线与已知直线(或由线)的交点分以这两点为端点的有向线段所成定比时,可用定比分点公式设出交点的坐标,代入已知直线(或曲线)求得.五、布置作业1.(1.6练习第1题)由下列条件,写出直线的方程,并化成一般式:(2)经过点B(4,2),平行于x轴;(5)经过两点P1(3,-2)、P2(5,-4);(6)x轴上的截距是-7,倾斜角是45°.解:(1)x+2y-4=0; (2)y-2=0; (3)2x+1=0;(4)2x-y-3=0; (5)x+y-1=0; (6)x-y+7=0.3.(习题二第8题)一条直线和y轴相交于点P(0,2),它的倾斜角4.(习题二第十三题)求过点P(2,3),并且在两轴上的截距相等的直线方程.5.(习题二第16题)设点P(x0,y0)在直线As+By+C=0上,求证:这条直线的方程可以写成A(x-x0)+B(y-y0)=0.证明:将点P(x0,y0)的坐标代入有C=-Ax0-By0,将C代入Ax+By+C=0即有A(x-x0)+B(y-y0)=0.6.过A(x1,y1)、B(x2,y2)的直线交直线l:Ax+By+C=0于C,六、板书设计[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。
直线的方程教案人教版一、教学目标1. 理解直线方程的概念,掌握直线方程的表示方法。
2. 能够运用直线方程解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容1. 直线方程的概念和表示方法2. 直线方程的求解方法3. 直线方程的应用三、教学重点与难点1. 直线方程的概念和表示方法2. 直线方程的求解方法3. 直线方程在实际问题中的应用四、教学方法1. 采用问题驱动法,引导学生主动探究直线方程的概念和表示方法。
2. 通过案例分析,让学生掌握直线方程的求解方法。
3. 运用小组讨论法,培养学生团队合作解决问题的能力。
五、教学过程1. 导入新课:通过展示生活中的直线现象,引发学生对直线方程的思考。
2. 讲解直线方程的概念和表示方法:引导学生掌握直线方程的基本概念,了解直线方程的表示方法。
3. 案例分析:给出实际问题,让学生运用直线方程进行求解。
4. 小组讨论:让学生分小组讨论直线方程在实际问题中的应用,分享解题心得。
5. 总结与反馈:对学生的学习情况进行总结,对学生的疑问进行解答。
六、教学评价1. 评价学生对直线方程概念和表示方法的掌握程度。
2. 评价学生运用直线方程解决实际问题的能力。
3. 评价学生在团队合作中的表现和问题解决能力。
七、教学资源1. 教材:人教版高中数学教材。
2. 课件:直线方程的演示课件。
3. 案例题库:提供一定数量的直线方程应用案例。
4. 小组讨论工具:如白板、彩色笔等。
八、教学进度安排1. 教案编写:根据教学目标和内容进行详细教案编写。
2. 教学实践:根据教案进行教学实践,确保教学目标的实现。
3. 教学反馈:根据学生的学习情况及时进行教学反馈,调整教学方法和进度。
九、教学拓展1. 引导学生思考直线方程在不同领域的应用,如物理学、工程学等。
2. 引导学生探索直线方程的进一步研究,如曲线方程、多维空间中的直线方程等。
十、教学反思1. 对整个直线方程教案进行反思,总结教学过程中的优点和不足。
教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。
(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。
定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。
②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。
直线的方程教案人教版一、教学目标1. 知识与技能:(1)理解直线方程的概念和意义;(2)掌握直线的点斜式、斜截式和一般式方程的表示方法;(3)能够熟练运用直线方程解决实际问题。
2. 过程与方法:(1)通过观察实际问题,引导学生发现直线方程的规律;(2)利用数形结合的思想,引导学生从图形上理解直线方程的含义;(3)通过小组合作探究,培养学生解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作交流的良好习惯。
二、教学重点与难点1. 教学重点:(1)直线方程的概念和意义;(2)直线的点斜式、斜截式和一般式方程的表示方法。
2. 教学难点:(1)直线方程的推导和理解;(2)直线的点斜式、斜截式和一般式方程的互化。
三、教学过程1. 导入新课:(1)利用实际问题引出直线方程的概念;(2)引导学生观察直线方程的特点和规律。
2. 知识讲解:(1)讲解直线的点斜式方程;(2)讲解直线的斜截式方程;(3)讲解直线的一般式方程。
3. 例题解析:(1)利用直线方程解决实际问题;(2)引导学生从图形上理解直线方程的含义。
4. 课堂练习:(1)巩固直线方程的概念和表示方法;(2)提高学生运用直线方程解决实际问题的能力。
四、课后作业1. 复习直线方程的概念和表示方法;2. 完成课后练习题,巩固所学知识;3. 思考实际问题,运用直线方程解决问题。
五、教学反思1. 课堂讲解是否清晰易懂,学生是否能理解和掌握直线方程的概念和表示方法;2. 学生是否能运用直线方程解决实际问题;3. 针对学生的掌握情况,对教学内容和教学方法进行调整和改进。
六、教学活动1. 小组合作探究:让学生分组讨论直线方程的推导过程,以及不同形式方程之间的联系和互化方法。
2. 互动环节:邀请学生上黑板演示直线方程的推导过程,并讲解其含义。
3. 课后实践:布置一道实际问题,让学生运用所学知识解决,培养学生的应用能力。
3. 2.1 直線的點斜式方程【教學目標】(1)理解直線方程的點斜式、斜截式的形式特點和適用範圍;(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數的關係.【教學重難點】重點:直線的點斜式方程和斜截式方程。
難點:直線的點斜式方程和斜截式方程的應用。
【教學過程】(一)情景導入、展示目標1.情境1:過定點P(x0,y0)的直線有多少條?傾斜角為定值的直線有多少條?學生思考、討論。
(二)預習檢查、交流展示檢查落實了學生的預習情況並瞭解了學生的疑惑,使教學具有了針對性。
(三)合作探究、精講精煉。
問題1:確定一條直線需要幾個獨立的條件?學生可能的回答:(1)兩個點P1(x1,y1),P2(x2,y2);(2)一個點和直線的斜率(可能有學生回答傾斜角);(3)斜率和直線在y軸上的截距(說明斜率存在);(4)直線在x軸和y軸上的截距(學生沒有學過直線在x軸上的截距,可類比,同時強調截距均不能為0)。
問題2:給出兩個獨立的條件,例如:一個點P 1(2,4)和斜率k =2就能決定一條直線l 。
(1)你能在直線l 上再找一點,並寫出它的座標嗎?你是如何找的?(2)這條直線上的任意一點P (x ,y )的座標x ,y 滿足什麼特徵呢?直線上的任意一點P (x ,y )(除P 1點外)和P 1(x 1,y 1)的連線的斜率是一個不變數,即為k ,即:k =00x x y y --, 即y - y 1= k (x - x 1)學生在討論的過程中:(1) 強調P (x ,y )的任意性。
(2) 不直接提出直線方程的概念,而用一種通俗的,學生易於理解的語言先求出方程,可能學生更容易接受,也更願意參與。
問題3:(1)P 1(x 1,y 1)的座標滿足方程嗎?(2)直線上任意一點的座標與此方程有什麼關係?教師指出,直線上任意一點的座標都是這個方程的解;反過來,以這個方程的解為座標的點都在此直線上。
直线方程教案模板d oc〔共6篇〕教学目标〔1〕掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.〔2〕理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.〔3〕掌握直线方程各种形式之间的互化.〔4〕通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.〔5〕通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.〔6〕进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.教学建议 1.教材分析〔1〕知识结构由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.〔2〕重点、难点分析①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.1 / 5②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.2.教法建议〔1〕教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各局部知识之间过渡要自然流畅,不生硬.〔2〕直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程〞打下根底.直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点〔3〕在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.〔4〕教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而两点可以求得斜率,所以点斜式又可推出两点式〔斜截式和截距式仅是它们的特例〕,因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.〔5〕注意正确理解截距的概念,截距不是距离,截距是直线〔也是曲线〕与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数〔或非负实数〕.〔6〕本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适中选择一些有关的问题指导学生练习,培养学生的综合能力.2 / 5〔7〕直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和dc,FKMCKVN其它学科,教师要注意引导,增强学生用数学的意识和能力.〔8〕本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.直线方程的一般形式教学目标:〔1〕掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.〔2〕理解直线与二元一次方程的关系及其证明〔3〕培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.教学重点、难点:直线方程的一般式.直线与二元一次方程的对应关系及其证明.教学用具:计算机教学方法:启发引导法,讨论法教学过程:下面给出教学实施过程设计的简要思路:教学设计思路:〔一〕引入的设计前边学习了如何根据所给条件求出直线方程的方法,看下面问题:问:说出过点〔2,1〕,斜率为2的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生答复,并纠正学生中不标准的表述.再看一个问题:问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是〔或其它形式〕,也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.3 / 5肯定学生答复后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次〞.启发:你在想什么〔或你想到了什么〕?谁来谈谈?各小组可以讨论讨论.学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:【问题1】“任意直线的方程都是二元一次方程吗?〞〔二〕本节主体内容教学的设计这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.学生或独立研究,或合作研究,教师巡视指导.经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:思路一:…思路二:………教师组织评价,确定最优方案〔其它待课下研究〕如下:按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.综合两种情况,我们得出如下结论:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成的形式,准确地说应该是“要么形如这样,要么形如这样的方程〞.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?学生们不难得出:二者可以概括为统一的形式.4 / 5这样上边的结论可以表述如下:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如〔其中不同时为0〕的二元一次方程.启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?【问题2】任何形〔其中不同时为0〕的二元一次方程都表示一条直线吗?不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚刚一样认真地研究,得到明确的结论.那么如何研究呢?师生共同讨论,评价不同思路,达成共识:回忆上边解决问题的思路,发现原路返回就是非常好的思路,即Ax+By+C=0〔其中A,B不同时为0〕系数-A/B是否为0恰好对应斜率K是否存在,即〔1〕当B不为0时,方程可化为y=-A/B X –C/B这是表示斜率为k、在x轴上的截距为b的直线.〔2〕当B=0时,由于A,B不同时为0,必有A不为0,方程可化为X=-C/A 这表示一条与X 轴垂直的直线.哦干吗r,因此,得到结论:在平面直角坐标系中,任何形如Ax+By+C=0〔其中A,B不同时为0〕的二元一次方程都表示一条直线.为方便,我们把Ax+By+C=0〔其中A,B不同时为0〕称作直线方程的一般式是合理的.5 / 5第2篇:直线方程教案Ⅰ.课题导入[师]同学们,我们前面几节课,我们学习了直线方程的各种形式,以一个方程的解为坐标的点都是某条直线上的点;反之这条直线上的点的坐标都是这个方程的解。
第一课时直线的方程
【考点诠释】:
理解直线斜率的概念,掌握过两点的直线的斜率公式,熟练掌握直线方程的点斜式、斜截式、两点式、截距式以及直线方程的一般式,能根据条件求出直线的方程。
直线方程是解析几何的基础,高考中常以小题形式出现,考查倾斜角和斜率的关系、直线方程的求法;有时作为大题的一部分,设方程、求直线。
【知识整合】:
1.直线的倾斜角:在直线坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点
按方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做,其中00≤α<1800
2.斜率:倾斜角不是900的直线,它的倾斜角的叫做这条直线的斜率,常用k 表示:k= .
3.经过P1(x1,y1)、P2(x2,y2)( x1≠x2)的直线的斜率k= .
【基础再现】:
1.过点A(-2,m2)和B(m,4)的直线的斜率是-1,则直线的倾斜角是;实数m的值是。
2.直线2x+y+3=0的倾斜角为α,则α= 。
3.过点(2,3)且在两坐标轴上截距相等的直线方程是。
4.设a+b=k(为不对于0的常数),则直线ax+by=1恒过定点,则该定点的坐标是。
【例题精析】:
例1.已知两点A(m,2),B(3,1),求直线AB的斜率与倾斜角以及倾斜角的范围。
例2.直线L过点M(2,1),且分别交x轴、y轴的正半轴于点A、B,O为坐标原点。
(1)当△AOB的面积最小时,求直线L的方程;(2)当|MA|•|MB|取最小值时,求直线L 的方程。
例3. 设直线L 的方程为(a+1)x+y+2-a=0(a ∈R),(1)若L 在两坐标轴上的截距相等,求L
的方程;(2)若L 不经过第二象限,求实数a 的取值范围。
例4. 设直线L 的方程是2x+By-1=0,倾斜角为α.(1)试将α表示为B 的函数;(2)若
6
π<α<32π,试求B ∈(-∞,-2)⋃(1,+ ∞)的取值范围;(3)若B ∈(-∞,-2)⋃(1,+ ∞),求α的取值范围。
例5. (2002年全国)已知点P 到两定点M(-1,0)、N(1,0)距离的比为2,点N 到直线PM
的距离为1.求直线PN 的方程。
【精彩小结】:
1. 正确理解直线的倾斜角、斜率及直线在坐标轴上的截距等概念,有时是正确解题的关键;
2. 求直线的方程,通常用待定系数法;
3. 在设直线的斜率为k 时,就是默认了直线的斜率存在,倘若符合题意的直线的斜率可以
不存在,我们的解题便有明显的漏洞,补救的办法是检验当斜率不存在时是否符合题意。
但我们也看到,有时候又不需要作这样的补救,那么,如何判断该不该“补救”呢?看图!在很多情况下,图会“提醒”我们。
4. 直线的倾斜角与斜率是刻画直线位置状态的两个基本量,与直线的方程相联系,斜率的
应用更普遍,研究倾斜角时应注意α为钝角时用反正切表示的α形式,用斜率研究问题时,不要忘记斜率不存在的情况;
5. 直线方程的三种形式各有适用范围。
要能根据题中所给已知条件选用最恰当的表示形
式,并能根据问题的需要灵活准确地进行互化。
【随堂巩固】:
一.选择题:
1. 如果AC<0且BC<0,那么直线Ax+By+C=0不通过
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2. 直线bx+ay=ab(a<0,b<0)的倾斜角是() A.arctan(-a b ) B. arctan(-b a ) C. π-arctan(a
b ) D. π-arctan(b a )
3.直线L 的截距为2,倾斜角的正弦值为5
4,则此直线方程为() A.4x-3y-6=0 B.4x-3y+6=0或4x+3y-6=0 C.4x+3y+6=0
D.4x-3y-6=0或4x-3y+6=0
4.已知点A(2,3),B(-3,-2),若直线L 过点P(1,1),且与线段AB 相交,则直线L 的斜率k 的取值范围是()
A. k ≥43
B. 43≤.k ≤2
C. k ≥2或k ≤4
3 D. k ≤2
5.直线y=mx+2m+1恒过一定点,则此点是()
A. (-2,1)
B. ( 2,1)
C. ( 1,2)
D. ( 1,-2)
6.如果直线L 沿x 轴负方向平移3个单位,再沿y 轴正方向平移一个单位后,又回到原来的位置,那么直线L 的斜率是() A. -31 B. -3 C. 3
1 D. 3
二.填空题:
7.过点(2,5),(2,-5)的直线方程为 。
8.已知直线L 的倾斜角为α,sin α+cos α=5
1,则直线L 的斜率k= 。
9.若直线L 的方程为xcos-y+2=0,则其倾斜角θ的取值范围是 。
10.若直线L 的倾斜角为
π+arctan(-2
1),且过点(1,0),则直线L 的方程为 。
三.解答题:
11.已知直线的斜率为6
1,且和坐标轴围成面积为3的三角形,求直线方程。
12.已知直线L:y=-2x+6和点A(1,-1),过点A 作直线L 1与已知直线交于点B ,且|AB|=5,求直线L 1的方程。
13.△ABC 的三个顶点A(-3,0)、B(2,1)、C(-2,3),求:①BC 所在直线的方程;②BC 边的中线AD 所在直线方程;③BC 边的垂直平分线DE 的方程。
14.求过点P(-5,-4)且满足下列条件的直线方程:(1)倾斜角的正弦是5
4;(2)倾斜角是正弦L:y=43x+2的倾斜角的21;(3)与x 轴、y 轴分别交于A 、B 两点,且5
3|||| BP AP .
【创新、综合】:
某房地产公司要在荒地ABCDE (如图)上画出一块长方形地面(不改变方位)建造一幢
八层楼的公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到1m 2).。