正弦函数的图象教学设计
- 格式:doc
- 大小:423.50 KB
- 文档页数:6
第一章:正弦函数的定义与基本概念1.1 引入正弦函数讲解正弦函数的定义:在直角三角形中,正弦函数是角的对边与斜边的比值。
强调正弦函数的单位:弧度制。
1.2 分析正弦函数的性质周期性:正弦函数周期为2π。
奇偶性:正弦函数是奇函数,即f(-x) = -f(x)。
1.3 举例说明正弦函数的应用利用正弦函数计算角度对应的弧度值。
应用正弦函数解决实际问题,如测量角度等。
第二章:正弦函数的图象2.1 绘制正弦函数的基本图象利用计算器或绘图软件,绘制y = sin(x)的图象。
观察并描述正弦函数的波形特点,如波动、振幅、周期等。
2.2 分析正弦函数图象的性质周期性:正弦函数图象每隔2π重复一次。
奇偶性:正弦函数图象关于原点对称。
振幅:正弦函数图象的最大值为1,最小值为-1。
2.3 绘制正弦函数的相位图利用计算器或绘图软件,绘制不同相位角的正弦函数图象。
分析相位对正弦函数图象的影响。
3.1 分析正弦函数的单调性证明正弦函数在区间[0, π]上单调递增。
证明正弦函数在区间[π, 2π]上单调递减。
3.2 研究正弦函数的极值求解正弦函数的极大值和极小值。
分析极值出现的条件。
3.3 探讨正弦函数的奇偶性证明正弦函数是奇函数。
探讨正弦函数的偶函数性质。
第四章:正弦函数的应用4.1 正弦函数在物理中的应用介绍正弦函数在振动、波动等物理现象中的应用。
举例说明正弦函数在电磁学中的应用。
4.2 正弦函数在工程中的应用探讨正弦函数在信号处理、通信工程等领域的应用。
举例说明正弦函数在声学、光学等工程领域的应用。
4.3 正弦函数在其他领域的应用介绍正弦函数在音乐、艺术等领域的应用。
探讨正弦函数在其他科学领域的应用。
第五章:正弦函数的综合应用5.1 求解正弦函数的方程求解方程sin(x) = a,其中a为给定的数值。
介绍解正弦方程的方法和技巧。
5.2 利用正弦函数解决实际问题举例说明利用正弦函数解决测量、导航等实际问题。
介绍正弦函数在数据分析、图像处理等领域的应用。
1.4.1《正弦函数余弦函数的图像》教案篇一:正弦函数余弦函数的图像一、教学目标1. 知识与能力能够正确理解正弦函数和余弦函数的定义,并能够绘制它们的图像。
2. 过程与方法学会利用函数的性质和特点绘制函数的图像。
3. 情感态度价值观通过绘制正弦函数和余弦函数的图像,培养学生对数学的兴趣,提高他们的数学解决问题的能力。
二、教学重难点1. 教学重点正弦函数和余弦函数的定义,以及它们的图像特点。
2. 教学难点学生可能对正弦函数和余弦函数的周期性特点理解困难,需要适当的引导和解释。
三、教学过程1. 导入通过展示一张正弦函数和余弦函数的图像,并向学生提问:“这是什么图像?它们有什么特点?”引导学生思考,激发他们的兴趣。
3. 练习让学生通过例题练习,掌握正弦函数和余弦函数的图像特点。
指导学生如何根据函数的性质绘制出函数的图像。
4. 拓展让学生利用计算机绘制正弦函数和余弦函数的图像,并与手绘的图像进行比较,加深对函数图像的理解。
6. 反思让学生总结本节课的学习收获和问题,激发他们对数学学习的兴趣。
四、教学资源1. PPT课件2. 正弦函数和余弦函数的图像3. 计算机绘图软件五、教学评价1. 提问通过提问考察学生对正弦函数和余弦函数的理解程度。
2. 练习布置练习题,检验学生对函数图像的掌握情况。
3. 课堂表现评价学生在课堂上的表现,包括学习态度和参与程度。
六、教学反思1. 教学方法在本节课的教学过程中,需要充分引导学生自主学习,培养他们的解决问题的能力。
2. 教学内容应该注重对正弦函数和余弦函数图像特点的深入讲解,让学生掌握绘制函数图像的方法。
七、教学改进在后续的教学中,可以增加案例分析和实际应用的讲解,让学生更好地理解正弦函数和余弦函数的图像特点。
注重对学生自主学习和实践能力的培养。
正弦函数图像教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义与基本性质学会用图像表示正弦函数掌握正弦函数的周期性与对称性1.2 教学内容正弦函数的定义:正弦函数是直角三角形中的一个角的正弦值,用符号sin 表示正弦函数的图像:正弦函数的图像是一条波浪形的曲线,称为正弦波正弦函数的周期性:正弦函数的图像每隔一个周期就会重复一次,周期为2π正弦函数的对称性:正弦函数是奇函数,具有轴对称和中心对称的性质1.3 教学活动引入正弦函数的定义,通过实际问题引入正弦函数的图像利用图形计算器或者软件绘制正弦函数的图像,观察其波浪形的特征引导学生通过观察图像,发现正弦函数的周期性和对称性进行小组讨论,让学生分享自己的观察和发现,进行互动交流1.4 作业与评估布置一些有关正弦函数定义与性质的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数定义与性质的理解程度第二章:正弦函数的图像2.1 教学目标学会绘制正弦函数的图像了解正弦函数图像的各个部分掌握正弦函数图像的平移与伸缩变换2.2 教学内容正弦函数图像的绘制:通过图形计算器或者软件,绘制正弦函数的图像正弦函数图像的各个部分:包括最大值、最小值、零点和周期正弦函数图像的平移与伸缩变换:通过改变函数中的参数,实现图像的平移与伸缩2.3 教学活动利用图形计算器或者软件,引导学生自己绘制正弦函数的图像引导学生观察正弦函数图像的各个部分,理解其含义讲解正弦函数图像的平移与伸缩变换,通过实际操作进行演示进行小组讨论,让学生分享自己的绘制经验和发现,进行互动交流2.4 作业与评估布置一些有关正弦函数图像的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像的理解程度第三章:正弦函数的应用3.1 教学目标学会应用正弦函数解决实际问题了解正弦函数在生活中的应用场景掌握正弦函数在数学、物理等领域的应用方法3.2 教学内容正弦函数的实际问题:通过实际问题引入正弦函数的应用正弦函数的应用场景:包括波动、振动、音乐等正弦函数在其他领域的应用:包括数学、物理、工程等3.3 教学活动引入正弦函数的实际问题,引导学生运用正弦函数解决通过实例讲解正弦函数在生活中的应用场景,让学生了解其应用广泛性讲解正弦函数在其他领域的应用方法,引导学生进行思考与探索进行小组讨论,让学生分享自己的应用经验和发现,进行互动交流3.4 作业与评估布置一些有关正弦函数应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数应用的理解程度第四章:正弦函数图像的综合分析4.1 教学目标学会综合分析正弦函数图像掌握正弦函数图像的变换规律了解正弦函数图像在实际问题中的应用4.2 教学内容正弦函数图像的变换规律:包括平移、伸缩、反转等正弦函数图像在实际问题中的应用:通过实例分析正弦函数图像的实际意义综合分析正弦函数图像:通过观察图像,得出正弦函数的性质和规律4.3 教学活动引导学生通过观察正弦函数图像,发现图像的变换规律利用实例讲解正弦函数图像在实际问题中的应用,引导学生进行思考与探索进行小组讨论,让学生分享自己的分析和发现,进行互动交流4.4 作业与评估布置一些有关正弦函数图像综合分析的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像综合分析的理解程度5.1 教学目标了解正弦函数图像在各个领域的应用探索正弦函数图像的拓展问题5.2 教学内容正弦函数图像的拓展问题:探索正弦函数图像在其他领域的应用和拓展问题5.3 教学活动利用实例讲解正弦函数图像在各个领域的应用,引导学生进行思考与探索提出正弦函数图像的拓展问题,引导学生进行思考与讨论5.4 作业与评估第六章:正弦函数图像的绘制与应用6.1 教学目标学会使用图形计算器或者软件绘制正弦函数图像能够应用正弦函数图像解决实际问题6.2 教学内容正弦函数图像的绘制:学习如何使用图形计算器或者软件绘制正弦函数图像正弦函数图像的应用:通过实际问题,学习如何利用正弦函数图像解决问题6.3 教学活动讲解如何使用图形计算器或者软件绘制正弦函数图像,并进行演示学生分组进行实验,自行绘制正弦函数图像,并尝试解决实际问题6.4 作业与评估布置一些有关正弦函数图像绘制与应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像绘制与应用的理解程度第七章:正弦函数图像的变换7.1 教学目标学会正弦函数图像的平移、伸缩和反转等变换方法能够理解和应用这些变换方法解决实际问题7.2 教学内容正弦函数图像的平移:学习如何通过改变函数中的参数实现图像的平移正弦函数图像的伸缩:学习如何通过改变函数中的参数实现图像的伸缩正弦函数图像的反转:学习如何通过改变函数中的参数实现图像的反转7.3 教学活动讲解正弦函数图像的平移、伸缩和反转等变换方法,并进行演示学生分组进行实验,尝试对正弦函数图像进行各种变换,并解决实际问题7.4 作业与评估布置一些有关正弦函数图像变换的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像变换的理解程度第八章:正弦函数图像在实际问题中的应用8.1 教学目标学会如何将正弦函数图像应用于实际问题中能够利用正弦函数图像解决实际问题8.2 教学内容正弦函数图像在物理中的应用:例如振动、波动等正弦函数图像在工程中的应用:例如信号处理、电路设计等正弦函数图像在数学中的应用:例如证明、分析等8.3 教学活动讲解正弦函数图像在实际问题中的应用,并进行演示学生分组进行实验,尝试利用正弦函数图像解决实际问题8.4 作业与评估布置一些有关正弦函数图像在实际问题中应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像在实际问题中应用的理解程度第九章:正弦函数图像的进一步探索9.1 教学目标学会如何探索正弦函数图像的更深层次的性质和规律能够利用这些性质和规律解决更复杂的问题9.2 教学内容正弦函数图像的周期性:学习正弦函数图像的周期性及其应用正弦函数图像的对称性:学习正弦函数图像的对称性及其应用正弦函数图像的奇偶性:学习正弦函数图像的奇偶性及其应用9.3 教学活动讲解正弦函数图像的周期性、对称性和奇偶性等更深层次的性质和规律,并进行演示学生分组进行实验,尝试探索正弦函数图像的重点和难点解析1. 正弦函数的定义与性质重点:正弦函数的定义与基本性质的理解难点:正弦函数的周期性与对称性的深入理解2. 正弦函数的图像重点:正弦函数图像的绘制与观察难点:正弦函数图像的平移与伸缩变换的掌握3. 正弦函数的应用重点:正弦函数在实际问题中的应用场景的发现难点:正弦函数在数学、物理等领域的应用方法的探索4. 正弦函数图像的综合分析重点:正弦函数图像的综合分析方法的掌握难点:正弦函数图像的变换规律的应用难点:正弦函数图像在各个领域的应用的拓展6. 正弦函数图像的绘制与应用重点:图形计算器或者软件的使用方法难点:正弦函数图像在实际问题中的应用7. 正弦函数图像的变换重点:正弦函数图像的平移、伸缩和反转等变换方法的掌握难点:变换方法在实际问题中的应用8. 正弦函数图像在实际问题中的应用重点:实际问题中正弦函数图像的应用方法的发现难点:复杂实际问题的解决9. 正弦函数图像的进一步探索重点:正弦函数图像的更深层次的性质和规律的探索难点:性质和规律在更复杂问题中的运用本文主要分析了正弦函数图像的教学内容,从正弦函数的定义与性质,到正弦函数的图像,再到正弦函数的应用,是正弦函数图像的综合分析,接着是正弦函数图像的绘制与应用,之后是正弦函数图像的变换,再之后是正弦函数图像在实际问题中的应用,是正弦函数图像的进一步探索。
正弦函数图像教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义掌握正弦函数的性质1.2 教学内容正弦函数的定义:正弦函数是直角三角形中的锐角对边与斜边的比值,用符号sin 表示。
正弦函数的性质:正弦函数是周期函数,周期为2π;正弦函数的值域在[-1,1]之间;正弦函数在对称轴上对称。
1.3 教学活动教师通过实物或图形展示正弦函数的定义。
学生通过例题掌握正弦函数的性质。
教师引导学生进行小组讨论,探索正弦函数的其他性质。
1.4 作业与评估布置练习题,让学生巩固正弦函数的定义与性质。
在下一节课前进行小测验,评估学生对正弦函数的理解程度。
第二章:正弦函数图像的绘制2.1 教学目标学会绘制正弦函数的图像2.2 教学内容学习正弦函数图像的特点:振幅、周期、相位、对称性学习使用函数图像绘制工具绘制正弦函数图像2.3 教学活动教师演示如何使用函数图像绘制工具绘制正弦函数图像。
学生跟随教师的步骤,自行绘制正弦函数图像。
教师引导学生观察图像的特点,并与正弦函数的性质进行联系。
2.4 作业与评估布置练习题,让学生绘制其他函数的图像。
在下一节课前进行小测验,评估学生对绘制正弦函数图像的掌握程度。
第三章:正弦函数图像的应用3.1 教学目标学会使用正弦函数图像解决实际问题3.2 教学内容学习如何通过正弦函数图像找到函数的极值点学习如何通过正弦函数图像解决周期性问题3.3 教学活动教师通过示例讲解如何使用正弦函数图像找到极值点。
学生尝试解决实际问题,例如计算正弦函数在特定区间内的值。
教师引导学生讨论解决过程中遇到的问题,并提供帮助。
3.4 作业与评估布置练习题,让学生应用正弦函数图像解决实际问题。
在下一节课前进行小测验,评估学生对正弦函数图像应用的掌握程度。
第四章:正弦函数图像的综合应用4.1 教学目标能够综合运用正弦函数图像解决复杂的实际问题4.2 教学内容学习如何综合运用正弦函数图像解决多个变量的问题学习如何利用正弦函数图像进行优化问题4.3 教学活动教师通过示例讲解如何综合运用正弦函数图像解决复杂问题。
正弦函数的图像与性质教案教学目标:1. 了解正弦函数的定义和图像特点。
2. 掌握正弦函数的周期性和对称性。
3. 理解正弦函数的增减性和奇偶性。
4. 能够应用正弦函数的性质解决实际问题。
教学内容:第一章:正弦函数的定义与图像1.1 正弦函数的定义1.2 正弦函数的图像第二章:正弦函数的周期性2.1 周期性的定义2.2 周期性的图像表现第三章:正弦函数的对称性3.1 对称性的定义3.2 对称性的图像表现第四章:正弦函数的增减性4.1 增减性的定义4.2 增减性的图像表现第五章:正弦函数的奇偶性5.1 奇偶性的定义5.2 奇偶性的图像表现教学步骤:第一章:正弦函数的定义与图像1.1 正弦函数的定义1. 引入正弦函数的概念,让学生回顾三角函数的定义。
2. 解释正弦函数的定义,即在直角坐标系中,正弦函数表示对边与斜边的比值。
1.2 正弦函数的图像1. 利用计算机软件或板书,绘制正弦函数的图像。
2. 解释正弦函数图像的波动特点,如周期性和振幅。
第二章:正弦函数的周期性2.1 周期性的定义1. 引入周期性的概念,让学生理解周期函数的定义。
2. 解释正弦函数的周期性,即每隔一个周期,函数值重复出现。
2.2 周期性的图像表现1. 利用计算机软件或板书,展示正弦函数周期性的图像。
2. 引导学生观察图像,理解周期性的特点。
第三章:正弦函数的对称性3.1 对称性的定义1. 引入对称性的概念,让学生理解对称函数的定义。
2. 解释正弦函数的对称性,即函数图像关于y轴对称。
3.2 对称性的图像表现1. 利用计算机软件或板书,展示正弦函数对称性的图像。
2. 引导学生观察图像,理解对称性的特点。
第四章:正弦函数的增减性4.1 增减性的定义1. 引入增减性的概念,让学生理解函数的增减性质。
2. 解释正弦函数的增减性,即在一定区间内,函数值的增减规律。
4.2 增减性的图像表现1. 利用计算机软件或板书,展示正弦函数增减性的图像。
2. 引导学生观察图像,理解增减性的特点。
教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图像1.2 教学内容正弦函数的定义:y = sin(x)正弦函数的图像特点:周期性、振幅、相位、对称性1.3 教学步骤1. 引入正弦函数的概念,解释正弦函数的定义2. 利用数学软件或图形计算器,绘制正弦函数的图像3. 分析正弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性1.4 练习与作业练习绘制不同振幅和相位的正弦函数图像完成课后练习题,巩固对正弦函数图像的理解第二章:正弦函数的性质2.1 教学目标了解正弦函数的性质能够应用正弦函数的性质解决问题2.2 教学内容正弦函数的单调性:增减区间正弦函数的奇偶性:奇函数与偶函数正弦函数的周期性:周期为2π正弦函数的值域:[-1, 1]2.3 教学步骤1. 介绍正弦函数的单调性,利用图像进行解释2. 解释正弦函数的奇偶性,利用数学公式进行证明3. 强调正弦函数的周期性,引导学生理解周期为2π4. 分析正弦函数的值域,解释正弦函数的取值范围2.4 练习与作业练习判断正弦函数的单调性、奇偶性和周期性完成课后练习题,应用正弦函数的性质解决问题第三章:余弦函数的定义与图像3.1 教学目标了解余弦函数的定义能够绘制余弦函数的图像3.2 教学内容余弦函数的定义:y = cos(x)余弦函数的图像特点:周期性、振幅、相位、对称性3.3 教学步骤1. 引入余弦函数的概念,解释余弦函数的定义2. 利用数学软件或图形计算器,绘制余弦函数的图像3. 分析余弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性3.4 练习与作业练习绘制不同振幅和相位的余弦函数图像完成课后练习题,巩固对余弦函数图像的理解第四章:正切函数的定义与图像4.1 教学目标了解正切函数的定义能够绘制正切函数的图像4.2 教学内容正切函数的定义:y = tan(x)正切函数的图像特点:周期性、振幅、相位、对称性4.3 教学步骤1. 引入正切函数的概念,解释正切函数的定义2. 利用数学软件或图形计算器,绘制正切函数的图像3. 分析正切函数的图像特点,引导学生理解周期性、振幅、相位、对称性4.4 练习与作业练习绘制不同振幅和相位的正切函数图像完成课后练习题,巩固对正切函数图像的理解第五章:正弦型函数的应用5.1 教学目标了解正弦型函数的应用能够解决与正弦型函数相关的问题5.2 教学内容正弦型函数在物理、工程等领域的应用解决与正弦型函数相关的问题:如振动、波动、音乐等5.3 教学步骤1. 介绍正弦型函数在物理、工程等领域的应用实例2. 解释正弦型函数在振动、波动、音乐等方面的作用3. 示例解决与正弦型函数相关的问题,引导学生应用正弦型函数的性质和图像5.4 练习与作业练习解决与正弦型函数相关的问题完成课后练习题,应用正弦型函数解决实际问题第六章:正弦型函数的积分与微分6.1 教学目标理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数6.2 教学内容正弦型函数的不定积分:基本积分公式正弦型函数的定积分:利用积分公式计算面积正弦型函数的导数:求导法则6.3 教学步骤1. 介绍正弦型函数的不定积分,讲解基本积分公式2. 通过例题演示如何计算正弦型函数的定积分3. 讲解正弦型函数的导数,引导学生理解求导法则6.4 练习与作业练习计算正弦型函数的不定积分和定积分完成课后练习题,巩固对正弦型函数积分和导数的理解第七章:正弦型函数在坐标系中的应用7.1 教学目标学会在直角坐标系中绘制正弦型函数的图像能够利用正弦型函数解决实际问题7.2 教学内容利用直角坐标系绘制正弦型函数的图像解决实际问题:如测量角度、计算物理振动等7.3 教学步骤1. 讲解如何在直角坐标系中绘制正弦型函数的图像2. 通过实例演示如何利用正弦型函数解决实际问题7.4 练习与作业练习绘制不同类型的正弦型函数图像完成课后练习题,应用正弦型函数解决实际问题第八章:正弦型函数在三角变换中的应用8.1 教学目标理解三角恒等式及其应用学会利用正弦型函数进行三角变换8.2 教学内容三角恒等式:sin^2(x) + cos^2(x) = 1 等正弦型函数的三角变换:和差化积、积化和差等8.3 教学步骤1. 讲解三角恒等式的含义和应用2. 讲解如何利用正弦型函数进行三角变换8.4 练习与作业练习运用三角恒等式进行计算完成课后练习题,巩固对正弦型函数在三角变换中应用的理解第九章:正弦型函数在工程和技术中的应用9.1 教学目标了解正弦型函数在工程和技术领域的应用学会解决与正弦型函数相关的工程问题9.2 教学内容正弦型函数在信号处理、电子工程等领域的应用解决与正弦型函数相关的工程问题:如信号分析、电路设计等9.3 教学步骤1. 讲解正弦型函数在信号处理、电子工程等领域的应用实例2. 示例解决与正弦型函数相关的工程问题,引导学生应用正弦型函数的性质和图像9.4 练习与作业练习解决与正弦型函数相关的工程问题完成课后练习题,应用正弦型函数解决实际工程问题第十章:总结与拓展10.1 教学目标总结正弦型函数的图像和性质的主要内容了解正弦型函数在其他领域的拓展应用10.2 教学内容总结正弦型函数的图像和性质的关键点介绍正弦型函数在其他领域的拓展应用:如地球物理学、天文学等10.3 教学步骤1. 回顾正弦型函数的图像和性质的主要内容,强调重点和难点2. 介绍正弦型函数在其他领域的拓展应用,提供相关实例10.4 练习与作业复习正弦型函数的图像和性质的主要内容,巩固所学知识完成课后练习题,探索正弦型函数在其他领域的拓展应用重点和难点解析重点环节一:正弦函数的定义与图像理解正弦函数的定义:y = sin(x)掌握正弦函数图像的特点:周期性、振幅、相位、对称性重点环节二:正弦函数的性质掌握正弦函数的单调性:增减区间理解正弦函数的奇偶性:奇函数与偶函数认识正弦函数的周期性:周期为2π了解正弦函数的值域:[-1, 1]重点环节三:余弦函数的定义与图像理解余弦函数的定义:y = cos(x)掌握余弦函数图像的特点:周期性、振幅、相位、对称性重点环节四:正切函数的定义与图像理解正切函数的定义:y = tan(x)掌握正切函数图像的特点:周期性、振幅、相位、对称性重点环节五:正弦型函数的应用了解正弦型函数在物理、工程等领域的应用实例学会解决与正弦型函数相关的问题:如振动、波动、音乐等重点环节六:正弦型函数的积分与微分理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数重点环节七:正弦型函数在坐标系中的应用学会在直角坐标系中绘制正弦型函数的图像学会利用正弦型函数解决实际问题重点环节八:正弦型函数在三角变换中的应用理解三角恒等式及其应用学会利用正弦型函数进行三角变换重点环节九:正弦型函数在工程和技术中的应用了解正弦型函数在信号处理、电子工程等领域的应用实例学会解决与正弦型函数相关的工程问题重点环节十:总结与拓展总结正弦型函数的图像和性质的关键点了解正弦型函数在其他领域的拓展应用全文总结和概括:本教案涵盖了正弦型函数的图像和性质的各个方面,从基本定义到图像特点,再到性质和应用,每个环节都进行了深入的讲解和演示。
正弦函数的图像教案一、教学目标:1. 了解正弦函数的定义和性质。
2. 掌握正弦函数的图像的特点和绘制方法。
3. 理解正弦函数的周期性和对称性。
4. 发现正弦函数与实际问题的联系。
二、教学重点:1. 正弦函数的图像特点和绘制方法。
2. 正弦函数的周期性和对称性。
三、教学难点:1. 正弦函数的周期性和对称性的理解。
2. 正弦函数与实际问题的应用。
四、教学过程:步骤一:导入新课教师通过问学生如何描述周期性波动现象的特点以引出正弦函数的概念,并告诉学生正弦函数是描述周期性波动的数学模型。
步骤二:引出正弦函数的定义教师给出正弦函数的定义:y = A*sin(B(x-C))+D,A、B、C、D是常数。
解释A、B、C、D分别代表什么意义。
步骤三:正弦函数图像特点和绘制方法1. 教师通过白板上的示意图向学生展示正弦函数的图像特点:周期性、对称性、振幅、周期、相位。
2. 教师给出正弦函数图像的绘制方法:(1)找出一个周期内的特征点;(2)根据特征点的坐标信息绘制图像。
步骤四:周期性和对称性的理解教师通过实例向学生解释正弦函数的周期性和对称性的概念和特点,并与实物、实际问题相联系,帮助学生深入理解。
步骤五:习题训练教师出示一些正弦函数的函数式,让学生根据函数式绘制函数的图像,并解释图像的特点和性质。
五、课堂小结教师总结本节课的重点内容,强调正弦函数的图像特点和绘制方法,以及周期性和对称性的理解。
六、作业布置1. 完成课堂上未完成的练习题。
2. 进一步探究正弦函数的性质和应用,写一篇短文,总结正弦函数的特点和实际应用。
七、教学反思本节课通过引出问题、展示实例、练习训练等多种教学方法,使学生对正弦函数的图像有了更深入的理解。
但在教学过程中,应注意让学生动手实践,提高学生的参与度,使学生更好地理解和掌握正弦函数的概念、性质和应用。
5.4.1 正弦函数、余弦函数的图象【教学目标】1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象. 3.能利用正弦函数、余弦函数的图象解决简单问题.【要点梳理】1.正弦曲线正弦函数y =sin x ,x ∈R 的图象叫正弦曲线,是一条“波浪起伏”的连续光滑曲线.2.正弦函数图象的画法 (1)几何法①利用正弦线画出y =sin x ,x ∈[0,2π]的图象; ②将图象向左、向右平行移动(每次2π个单位长度). (2)五点法①画出正弦曲线在[0,2π]上的图象的五个关键点(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0),用光滑的曲线连接;②将所得图象向左、向右平行移动(每次2π个单位长度). 3.余弦曲线余弦函数y =cos x ,x ∈R 的图象叫余弦曲线.它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.4.余弦函数图象的画法(1)要得到y =cos x 的图象,只需把y =sin x 的图象向左平移π2个单位长度即可,这是由于cos x=sin ⎝⎛⎭⎫x +π2.(2)用“五点法”:画余弦曲线y =cos x 在[0,2π]上的图象时,所取的五个关键点分别为(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1),再用光滑的曲线连接. 温馨提示:(1)“五点法”作图中的“五点”是指函数的最高点、最低点以及图象与坐标轴的交点,这是作正弦函数、余弦函数图象最常用的方法.(2)“五点法”画正弦函数、余弦函数的图象时要注意图象的对称性和凸凹方向.【思考诊断】判断正误(正确的打“√”,错误的打“×”) (1)函数y =cos x 的图象与y 轴只有一个交点.( ) (2)将正弦曲线向右平移π2个单位就得到余弦曲线.( )(3)函数y =sin x ,x ∈⎣⎡⎦⎤π2,5π2的图象与函数y =cos x ,x ∈[0,2π]的图象的形状完全一致.( ) (4)函数y =sin x ,x ∈[2k π,2(k +1)π]k ∈Z ,且k ≠0的图象与y =sin x ,x ∈[0,2π]的图象形状完全一致.( )[答案] (1)√ (2)× (3)√ (4)√【课堂探究】题型一 用“五点法”作简图【典例1】 用“五点法”作出下列函数的简图. (1)y =sin x -1,x ∈[0,2π]; (2)y =2+cos x ,x ∈[0,2π].[思路导引] 利用“五点法”作函数简图时,应先列表,再描点,再连线. [解] (1)列表:描点连线,如图所示.(2)列表:描点连线,如图所示.[名师提醒]用“五点法”画函数y =A sin x +b (A ≠0)在[0,2π]上的简图的步骤 (1)列表(2)描点:在平面直角坐标系中描出下列五个点:(0,y 1),⎝⎛⎭⎫π2,y 2,(π,y 3),⎝⎛⎭⎫3π2,y 4,(2π,y 5).(3)连线:用光滑的曲线将描出的五个点连接起来. [针对训练]1.利用“五点法”作出下列函数的简图: (1)y =1+2sin x ,x ∈[0,2π]; (2)y =1-cos x ,x ∈[0,2π]. [解] (1)列表:在直角坐标系中描出五点(0,1),⎝⎛⎭⎫π2,3,(π,1),⎝⎛⎭⎫3π2, -1,(2π,1),然后用光滑曲线顺次连接起来,就得到y =1+2sin x ,x ∈[0,2π]的图象.如图.(2)列表:在直角坐标系中,描出五点(0,0),⎝⎛⎭⎫π2,1,(π,2),⎝⎛⎭⎫3π2,1,(2π,0),然后并用光滑的曲线连接起来,就得到y =1-cos x ,x ∈[0,2π]的图象.如图.题型二 正、余弦函数图象的简单应用【典例2】 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合. (1)sin x ≥12;(2)cos x ≤12.[思路导引] 先在[0,2π]上找到使等式成立的关键点,再依据图象或三角函数线找到不等式的解.[解] (1)作出正弦函数y =sin x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为⎣⎡⎦⎤π6+2k π,5π6+2k π,k ∈Z . (2)作出余弦函数y =cos x ,x ∈[0,2π]的图象,如图所示,由图象可以得到满足条件的x 的集合为⎣⎡⎦⎤π3+2k π,5π3+2k π,k ∈Z . [名师提醒]用三角函数图象解三角不等式的步骤(1)作出相应的正弦函数或余弦函数在[0,2π]上的图象(也可以是[-π,π]上的图象); (2)在[0,2π]上或([-π,π]上)写出适合三角不等式的解集; (3)根据公式一写出定义域内的解集. [针对训练]2.求下列函数的定义域.(1)y =lg(-cos x );(2)y =2sin x - 2.[解] (1)为使函数有意义,则需要满足-cos x >0,即cos x <0. 由余弦函数图象可知满足条件的x 为π2+2k π<x <3π2+2k π,k ∈Z .所以原函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪π2+2k π<x <3π2+2k π,k ∈Z . (2)为使函数有意义,则需要满足2sin x -2≥0,即sin x ≥22. 由正弦函数图象可知满足条件的x 为π4+2k π≤x ≤3π4+2k π,k ∈Z .所以原函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪π4+2k π≤x ≤3π4+2k π,k ∈Z . 【课堂小结】1.本节课要牢记正、余弦函数图象中“五点”的确定y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象上的关键五点分为两类:(1)图象与x 轴的交点;(2)图象上的最高点和最低点.2.用“五点法”在[0,2π]内做出正、余弦函数的简图,再通过平移即可得到正、余弦曲线.【随堂验收】1.用“五点法”画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎫π6,12 B.⎝⎛⎭⎫π2,1 C .(π,0)D .(2π,0)[解析] 五个关键点为(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0),故选A. [答案] A2.对于余弦函数y =cos x 的图象,有以下三项描述:①向左向右无限延伸; ②与x 轴有无数多个交点;③与y =sin x 的图象形状一样,只是位置不同. 其中正确的有( ) A .0个 B .1个 C .2个 D .3个[解析] 如图所示为y =cos x 的图象.可知三项描述均正确. [答案] D3.函数y =1-sin x ,x ∈[0,2π]的大致图象是( )[解析] 列表描点与选项比较,可知选B. [答案] B4.在[0,2π]内,不等式sin x <-32的解集是( ) A .(0,π) B.⎝⎛⎭⎫π3,4π3 C.⎝⎛⎭⎫4π3,5π3D.⎝⎛⎭⎫5π3,2π[解析] 画出y =sin x ,x ∈[0,2π]的图象如下:因为sin π3=32,所以sin ⎝⎛⎭⎫π+π3=-32,sin ⎝⎛⎭⎫2π-π3=-32. 即在[0,2π]内,满足sin x =-32的是x =4π3或x =5π3. 由图可知不等式sin x <-32的解集是⎝⎛⎭⎫4π3,5π3. [答案] C5.画出函数y =1+sin x ,x ∈[0,2π]的图象,并利用图象判断与直线y =32的交点个数.[解] 在同一坐标系内画出y =1+sin x 和y =32的图象(如图所示),观察可得交点的个数为2.。
《正弦函数图像》教学设计一、教材分析:1、教材的地位与作用《正弦函数图像与性质》是高中数学必修四第一章第五节的内容.本节课是在学习了三角函数的定义之后进行的,由正弦函数的定义可知,由于角的变化,而引起正弦函数值的变化,如何直观的反映角的变化所引起的函数值的变化,自然考虑到函数的图像,这也是研究函数的一般规律. 一般函数图像的研究都是通过“列表、描点、连线”三步完成的,当然,正弦函数也是采用一般方法,但是由于如何计算正弦函数的值,我们只知道几个特殊锐角的正弦值,对于推广后的角的正弦值还不清楚,因此,这种常规思路难以进行,但是,我们已经知道了正弦函数的定义以及正弦线,那么,利用正弦线来刻画正弦函数值的变化,及准确又直观,这便是本节课借助于正弦线来描述正弦函数图像的依据.同时,有了正弦函数图像之后,就可以借助于图像来直观的反映正弦函数的性质. 也是为后继的学习做好铺垫. 因此,本节的学习有着承上启下的作用.2、教学重点和难点教学重点:用“五点作图法”画长度为一个周期的闭区间上的正弦函数图像.教学难点:利用单位圆画正弦函数图像二、目标分析根据《普通高中数学课程标准》的要求和教学内容的结构特征,依据学生学习的心里规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目的如下:知识目标:能够借助于正弦线说出正弦函数值的变化特点,画出正弦函数的图像,并初步掌握“五点作图法”的基本要领.能力目标:培养观察能力、分析能力、归纳能力和表达能力等;培养数形结合和化归转化的数学思想方法.德育目标:渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点;培养学生勇于探索,勤于思考的精神;培养学生合作学习和数学交流的能力;、三、教法分析根据上述教材分析和目标分析,贯彻启发性教学原则,特显以教师为主导,以学生为主体的教学思想,神话教学改革,确定本节课的教法为:1、计算机辅助教学、借助多媒体教学手段引导学生利用单位圆中的正弦线画出正弦函数的图像,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图像,给人以美得享受.2、讨论式教学、通过观察课件的演示,让学生交流,总结,说出正弦函数的主要特征和函数的图像中起着关键作用的点.1.讲义结合教学、教师耐心引导,分析,讲解和提问,并及时对学生的意见进行肯定与评议.四、学法分析引导学生认真观察教学课件的演示,指导学生进行讨论交流,促进学生知识体系的建构和数学思想方法的形成,注意面向全体学生,培养勇于探索,勤于思考的精神,提高合作学习和数学交流的能力.五、教学过程的设计(一)情景设置、提出问题我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,前面我们已经探讨了各三角函数的定义以及相关的诱导公式,那么它们的图像是怎样的呢?这节课让我们来共同探讨这一问题(板书课题)(二)问题探索、统一认识问题1、对于以前所学的一次函数、二次函数、指数函数、对数函数等,其作函数图像的方法是什么?对于正弦函数的图像呢?思路:对于前面所学的函数,其作图像的方法步骤都是列表,描点,连线.如果我们仍用描点法来画正弦函数的图像,我们只知道几个特殊的锐角的正弦函数值,对于其它角的正弦值需要利用计算器才能得到,而且大多数是一些近似值,因此不容易描出对应点的准确位置,因而画出的图像不够准确. 为此,我们考虑用一种新的方法来作出正弦函数的图像.【设计意图】一方面是复习函数图像的作图方法,另一方面,对于正弦函数又提出新的挑战,利用“列表、描点、连线”很难完成.问题2、一般情况下,我们在遇到困难时,总是“返璞归真”,寻找相应的定义来找到突破口,那么,借助于正弦函数的定义或者正弦线,能否描出正弦函数图像上的点呢?思路:用几何画板演示单位圆上的正弦线随着角的变化而变化的规律,如图所示. 以单位圆与x轴的交点A为起点,以点A为起点,若按照逆时针方向旋转,对于函数,对于x的任意一个值,例如:当时,其正弦线为MP,即,把角的正弦线平移到直角坐标系中的x轴上表示的点的位置,就可以描出点,同样地,利用几何画板把描出内的每一个值的正弦线对应到图像中的点,这些点便形成了函数在区间上的图像.【设计意图】:通过正弦函数定义和正弦线的概念,借助于几何画板,让学生直观的认识正弦线对应到正弦函数图像上的相应点,得到正弦函数的图像并领会转化意图.y问题3、如何作出函数,的图像?x结合前面的描点方法,学生小组合作完成,教师巡视学生完成情况,出现问题教师及时纠正. 其步骤为:(1)建立直角坐标系,并在轴左侧画单位圆(2)以单位圆与x轴的交点为一个分点,将单位圆12等份,过单位圆上的各点作轴的垂线,可以得到对应于,···角的正弦线(3)把轴上从0到这一段分成12 等份,分别得到x轴的数,……对应的点.(4)将角……的正弦线向右平移到所对应的相应数的位置,即得到函数图像上相应的点.(5)用平滑的曲线将12个点依次从左到右连接起来,即可得的图像【设计意图】在几何画板演示的基础上,通过动手实践,一方面对正弦线及其变化规律进一步熟悉,另一方面掌握画正弦曲线的方法步骤.问题4、我们通过正弦线描点法画出了正弦函数的图像,如何作在上的图像?【设计意图】因为终边相同的角有相同的三角函数值,所以函数的图像与的图像形状完全相同,只是位置不同. 只需要将上述函数向左或向右平移(每次平移个单位长度),就可以得到正弦函数的图像. 再用几何画板予以演示.问题5、我们已经画出了正弦函数的图像,但是在实际操作的过程中,虽然函数的图像可以通过函数的图像平移得到,但是,要画出的图像还是比较繁琐的,能否寻找出图像中的几个具有典型意义的点,通过这几个典型的点就可以轻松的画出正弦函数的图像呢?这些点又是什么呢?【设计意图】虽然学生可能会找出、、……等这些特殊角对应的点,但是要引导学生发现、、、、这5个点更具有典型意义,因为它们分别是图像与x轴的交点和最值点. 这样的作图称之为“五点作图法”.问题6、有了“五点作图法”,就可以列表得到相应点的函数值,按照作函数图像的“列表、描点、连线”,用五点法作正弦函数的图像.步骤:列表:0100描点、连线【设计意图】通过“五点作图法”与利用正弦线作图法的比较,让学生认识到“五点作图法”在作正弦函数图像时的快捷、直观.(三)及时巩固、不断强化问题7、利用“五点作图法”分别作出函数、在区间上的图像.【设计意图】进一步熟悉五点作图法的方法步骤.步骤:列表0100001012101描点、连线xxy=sin x-1追问、由图像看出,函数的图像与函数、图像之间有何关系?【设计意图】既然在同一坐标系中作出了函数与、的图像,很有必要让学生认识它们之间的关系,为研究三角函数图像变换做好相应的铺垫.(四)小结归纳、理顺思路问题8、通过本节课的学习,我们都可以用哪些方法可以画出正弦函数的图像?具体的操作步骤是什么?在实际操作时,你会选择用什么方法画正弦函数的图像?【设计意图】对正弦函数图像画法中的正弦线法、五点作图法的画法步骤进一步复习巩固. 特别是对五点作图法是今后画正弦函数图像最快捷、最简便的方法.(五)作业布置用“五点法”画出下列函数在区间上的简图(1)(2) (3)【设计意图】进一步熟悉五点作图的方法,并认识它们图形之间的关系,为下节课学习正弦函数的性质打好基础.1.反思与体会在利用单位圆来画正弦函数图像的过程中教材是对单位圆12等分,并且等分的份数越多画出的图像就越精确,但传统教法无法把这个过程动态的展示出来,我用几何画板课件把这个过程演示出来,克服了传统教法的不足,极大地调动了学生的学习热情.借助于几何画板,通过单位圆上的点的运动,得到正弦函数图像重复出现这一过程,直观的把终边相同的角有相同的三角函数值动态显示,使得在由的图像得出的图像这一环节的教学水到渠成,同时也渗透了正弦曲线的周期性等性质,为下一节学习正弦函数的性质做了铺垫.画正弦函数的图像确实也是学生的难点,通过课堂巡视也可以看出,虽然学生的描点都比较正确,但是在连线后,画出的图像有些“生硬”,因此,不断地让学生参与到知识的形成过程中,在小组合作练习与独立训练的过程中,不断强化图像的画法,使学生听有所思,思有所获,增强学生学习数学的信心和兴趣.。
正弦函数的图像教案【篇一:正弦函数的图像与性质教案】《正弦函数的图像与性质》(第一课时)(教案)神木职教中心数学组刘伟教学目标:1、理解正弦函数的周期性;2、掌握用“五点法”作正弦函数的简图;3、掌握利用正弦函数的图像观察其性质;4、掌握求简单正弦函数的定义域、值域和单调区间;5、初步理解“数形结合”的思想;6、培养学生的观察能力、分析能力、归纳能力和表达能力等教学重点:1、用“五点法”画正弦函数在一个周期上的图像;2、利用函数图像观察正弦函数的性质;3、给学生逐渐渗透“数形结合”的思想教学难点:正弦函数性质的理解和应用教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学教学过程:Ⅰ知识回顾终边相同角的诱导公式:Ⅱ新知识1、用描点法作出正弦函数在最小正周期上的图象(1)、列表(2)、描点(3)、连线因为终边相同的角的三角函数值相同,所以y=sinx的图像在?,同2、正弦函数的奇偶性由诱导公式sin(-x)=-sinx,x∈r得:①定义域关于原点对称②满足f(-x)=-f(x)所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性、值域由图像观察可得:正弦函数在??-?2得到最大值为1,最小值为-1,所以值域为[-1,1]Ⅲ知识巩固例1 作下列函数的简图(1)解:(1)①列表②描点③连线(2)①列表②描点③连线例2 求下列函数的单调区间(1)y=sin(-x) (2)y=sin(x-解:(1)因4)y=sin(-x)=-sinx2所以函数在??-?2(2)由题知:-4≤24324≤所以函数在??-44?4??4?练习(师生互动,分层次提问)1.课本第120页练习第1题 2.求函数y=sin(x+解:由题知: -4)的单调性24≤224≤所以函数在??-44?4??4?Ⅳ小结本节课我们学习了用“五点法”作正弦函数的图像,利用正弦函数的简图可以观察到正弦函数的一些基本性质,如奇偶性、单调性、周期性等。
正弦函数的图像教学设计一、教材分析背景地位:教材的背景与地位,三角函数是基本初等函数之一,也是解决实际问题的工具,又是学习后继内容和相关学科的基础。
《三角函数图象与性质》是高中数学人教B版必修4第一章第三节而本节为第一课时;之前学生已经学习函数图像的画法,还学过三角函数线,在此基础上来学习正弦函数的图象既是对已学知识进一步应用,又为今后研究正弦函数、余弦函数的性质打下基础,在此起承上启下的重要作用。
二、学生情况分析1、对象:省示范性高中的理科学生,有一定的思维能力。
2、学情:学生通过前面的学习,作函数图象的能力已经初步形成,但存在个别差异。
3、心理:厌倦教师的单独说教,希望教师能创设便于他们进行思考探索的空间,给他们发表自己见解和表现才华的机会。
教材的重点、难点教学重点:理解几何法作正弦函数y=sinx的图象,从而掌握“五点法”作图。
教学难点:用“几何法”作出正弦函数y=sinx的图象。
三、教学目标分析1、知识与技能:通过对“正弦曲线”的作图,能正确理解使用“几何法”和“五点法”作图从而为进一步研究正弦型函数“y=Asin(ωx+φ) ”的图象打好基础。
2、过程与方法:通过画出正弦函数图象,观察、分析,渗透数形结合思想,培养学生主动探索、勇于发现的求知精神, 在学会知识的过程中,培养学生运用数学方法解决问题的能力。
3、情感、态度、价值观:在参与作图及问题讨论并获得解决过程中渗透由简单到复杂,由特殊到一般化归的数学思想,从而达到从感性认识到理性认识的飞跃。
四、教学策略分析1、教法:根据高中学生的认知特点和情感特点,充分考虑对本课的教材处理,拟采用合作、探究的教学方法为学生创造一个良好的学习环境2、教学手段:利用多媒体技术优化课堂教学,体现辅助功能展现正弦函数运动变化的美,增加课堂容量提高课堂效率。
3、学法:这是一节抽象的概念作图课,教师应注重创设认知情境,帮助学生在原有经验上对新知识主动建构,在交流合作中学习,使学生由学会变成会学,乐学。
1.4.1《正弦函数余弦函数的图像》教案一、教学目标1. 知识与技能:掌握正弦函数和余弦函数的定义和性质,能够准确地绘制正弦函数和余弦函数的图像,并用函数图像表示周期现象。
2. 过程与方法:通过观察和分析,培养学生绘制函数图像的能力,提高数学思维和分析问题的能力。
3. 情感态度和价值观:培养学生对数学知识的兴趣,增强学习数学的自信心。
二、教学重点与难点1. 教学重点:正弦函数和余弦函数的定义和性质,函数图像的绘制方法。
2. 教学难点:函数图像的周期性表现。
四、教学过程1. 引入问题为了引起学生的兴趣,可以通过提出一个问题引入正弦函数和余弦函数的教学内容,比如:在日常生活中我们经常遇到周期性的现象,比如四季更替、日升月落等,你知道如何用数学函数来描述这些现象吗?2. 理论学习教师介绍正弦函数和余弦函数的定义,及其性质,包括周期性、奇偶性、对称性等。
然后,通过示范和解释,教师讲解如何绘制正弦函数和余弦函数的图像,包括如何确定周期、振幅、相位等参数。
3. 练习与训练让学生进行简单的练习,让他们根据已知的函数,绘制相应的函数图像,加强他们的绘图能力和对函数图像的认识。
4. 拓展应用通过讲解正弦函数和余弦函数在日常生活中的具体应用,比如声音的频率、天体运动的规律等,引导学生将知识应用于实际问题中,并启发他们对数学知识的兴趣。
5. 总结反思教师对本节课的重点内容进行总结,并引导学生进行反思,总结学习方法和技巧,以及重点难点的突破方法。
五、教学手段1. 课件2. 黑板3. 教学实例4. 练习题六、教学评价1. 练习题考核通过练习题考核学生对正弦函数和余弦函数的理解和掌握程度。
2. 课堂表现评价通过观察学生的课堂表现,包括思维活跃程度、问题解决能力等来评价学生的学习情况。
七、教学反思本节课教学设计是以学生为中心的,注重培养学生的数学思维能力和实际应用能力,通过引入问题、理论学习、练习训练、拓展应用等环节,使学生能够全面地理解和掌握正弦函数和余弦函数的知识,并能在日常生活中灵活运用。
《正弦函数的图像》教学设计方案教学阶段教学内容师生活动设计意图及时间引入课题一、首先让学生观看动画单摆的简谐运动形成的曲线,然后告诉学生这条美妙的曲线就是本节课我们将要研究的正弦函数的图像,引出课题。
教师用多媒体呈现教学内容,学生观看多媒体课件展示的动画。
3分钟这样引出课题的过程既让学生感知正弦函数来源于生活,同时激发了学生学习的兴趣。
讲授新课合作探究一:正弦函数的周期性的探讨环节一:完成表格x…ππ46-ππ26-6πππ26+ππ46+…xsin……环节二:回答问题串问题1:口答当时Rx∈,()?2sin=+κπx若设(),sin xxf=则上式还可以写成其它的什么形式?问题2:对比()()0,2≠∈=+κκκπ且Zxfxf与()()x fTxf=+的形式上的相似之处。
问题3:回答问题串:函数xy sin=是周期函数吗?周期T有哪些?最小正周期T是多少?合作探究二:“五点法”作正弦函数[]π2,0,sin∈=xxy的图像的探究活动1:多媒体演示描点法作图。
①借助 excel软件演示作出正弦函数图像的过程;②用多媒体演示描点法作出正弦函数[]π2,0,sin∈=xxy的图像的过程。
列表学生通过计算特殊角的正弦值完成下面的表格。
学生小组合作探究,根据小组讨论结果回答问题,教师补充说明。
学生观看多媒体演示图像形成过程。
回答观察后的想法,思考如果动手画函数图像会出现哪些困20分钟完成表格的过程唤起了学生对诱导公式的回忆。
通过对问题串的梳理,使学生对正弦函数的周期有了比较清晰的认识,为研究正弦函数的图像埋下伏笔。
通过比较多媒体演示的两种作图法导学案附后正弦函数x的图像导学案y sin班级:__________ 小组:___________姓名:_____________学习目标:一.【三维目标】知识目标:通过引导反复观察正弦函数[]π2,0,sin ∈=x x y 的图像直观找到“五个关键点”,并会使用“五点法”作正弦函数在[]π2,0 上的简图。
高中数学正弦函数图像教案
一、教学目标:
1. 理解正弦函数的定义及其基本性质。
2. 掌握正弦函数的图像特点。
3. 能够解决与正弦函数相关的数学问题。
二、教学重点:
1. 正弦函数的定义及性质。
2. 正弦函数的图像特点。
三、教学难点:
1. 正弦函数的变量与图像之间的关系。
2. 正弦函数的周期性及振幅。
四、教学内容:
1. 正弦函数的定义及性质:y = A*sin(ωx + φ)。
2. 正弦函数的图像特点:周期性、对称性、振幅。
五、教学过程:
1. 引入:通过实际问题引入正弦函数的概念。
2. 概念讲解:介绍正弦函数的定义及其性质。
3. 示例分析:通过示例分析正弦函数的图像特点。
4. 练习巩固:进行练习,加深学生对正弦函数的理解。
5. 总结提升:总结正弦函数的特点,引导学生思考更深层次的问题。
六、教学辅助手段:
1. 教材、课件等教学用具。
2. 板书、投影等教学辅助手段。
七、教学评估:
1. 课堂练习:考查学生对正弦函数的理解程度。
2. 课堂讨论:引导学生讨论与解决正弦函数相关的问题。
八、教学反思:
1. 及时调整教学方法,根据学生实际情况灵活运用各种教学手段。
2. 定期评估学生学习效果,及时对学生提出指导性意见和建议。
课题:5.4.1 正弦函数、余弦函数的图像(第一课时)一、教学内容:正弦函数、余弦函数的图像二、教学目标:(一)、了解正弦函数、余弦函数图象的来历,掌握“五点法”画出正弦函数、余弦函数的图象的方法.达成上述目标的标志是:学生能先根据正弦函数的定义绘制一个点,再绘制正弦函数在一个周期[0,2π]内的图象,最后通过平移得到正弦函数的图象;学生能用图象变换的方法,由正弦函数的图象绘制余弦函数的图象,并能就一个具体的点清晰地解释图象的变换方式及原因;能说出正弦函数、余弦函数图象的五个特殊点,并能用五点法绘制正弦函数的图象.(二)、正、余弦函数图象的区别与联系达成上述目标的标志是:先选择一个具体的点,进行分析,然后上升到对一般点的分析.得到只要将函数y=sinx图象上的点向左平移π2个单位长度,即可得到函数y=cosx的图象.(三)、正、余弦函数图象的简单应用.达成上述目标的标志是:会用“五点法”作出与正、余弦函数相关的函数简图.三、教学重点及难点(一)重点:正弦函数、余弦函数的图象.(二)难点:用单位圆中的正弦线作正弦函数的图象的方法;探究正、余弦函数图象间的联系.四、教学过程设计问题1:三角函数是我们学习的一类新的基本初等函数,按照函数研究的方法,学习了三角函数的定义之后,接下来应该研究什么问题?怎样研究?追问:(1)研究指数函数、对数函数图象与性质的思路是怎样的?(2)绘制一个新函数图象的基本方法是什么?(3)根据三角函数的定义,需要绘制正弦函数在整个定义域上的函数图象吗?选择哪一个区间即可?师生活动:教师提出问题,学生回忆函数研究的路线图,师生共同交流、规划,完善方案. 预设的答案如下.研究的线路图:函数的定义——函数的图象——函数的性质.绘制一个新函数图象的基本方法是描点法.对于三角函数,单位圆上任意一点在圆周上旋转一周又回到原来的位置,这一特性已经用公式一表示,据此,可以简化对正弦函数、余弦函数图象与性质的研究过程,比如可以先画函数y=sinx,x∈[0,2π]的图象,再画正弦函数y=sinx,x∈R的图象.设计意图:规划研究方案,构建本单元的研究路径,以便从整体上掌握整个内容的学习进程,形成整体观念.问题2:在[0,2π]上任取一个值x0,如何利用正弦函数的定义,确定正弦函数值sinx0并画出点T(x0,sinx0)?师生活动:方法1:一起作图探讨,如图5.4.1,在直角坐标系中画出以原点O为圆心的单位圆,⊙O与x轴正半轴的交点为A(1,0).在单位圆上,将点A绕着点O旋转x0弧度至点B,根据正弦函数的定义,点B的纵坐标y0=sinx0.由此,以x0为横坐标,y0为纵坐标画点,即得到函数图象上的点T(x0,sinx0).追问:如何科学地将单位圆上每一点对应的图像画出?师生活动:若把x轴上从0到2π这一段分成12等份,使x0的值分别为0,π6, π3, π2,…,2π,它们所对应的角的终边与单位圆的交点将圆周12等分,再按上述画点T(x0,sinx0)的方法,就可画出自变量取这些值时对应的函数图象上的点(图5.4.2).方法2:利用信息技术,可使x0在区间[0,2π]上取到足够多的值而画出足够多的点T(x0,sinx0),将这些点用光滑的曲线连接起来,可得到比较精确的函数y=sinx,x∈[0,2π]的图象.设计意图:通过正弦函数的定义,得到点的坐标,通过分析点的坐标的几何意义,准确描点.进一步熟悉,描点连线成图,即点动成线的作图过程.问题3:根据函数y=sinx,x∈[0,2π]的图象,你能想象函数y=sinx,x∈R 的图象吗?师生活动:由诱导公式一可知,函数y=sinx,x∈[2kπ,2(k+1)π ],k∈Z且k≠0的图象与y=sinx,x∈[0,2π]的图象形状完全一致.因此将函数y =sinx , x ∈[0,2π]的图象不断向左、向右平移(每次移动2π个单位长度),就可以得到正弦函数y =sinx , x ∈R 的图象(图5.4.4).知识梳理:正弦函数的图象叫做正弦曲线(sinecueve ),是一条“波浪起伏”的连续光滑曲线.追问:确定正弦函数的图象形状时,应抓住哪些关键点?师生活动:观察图5.4.3,在函数y =sinx , x ∈[0,2π]的图象上,以下五个点:(0,0),(π2,1),(π,0),(3π2,−1),(2π,0) 在确定图象形状时起关键作用.描出这五个点,函数数y =sinx , x ∈[0,2π]的图象形状就基本确定了.知识梳理:在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种作图方法近似地称为“五点(画图)法”,今后作简图是非常实用的.设计意图:观察函数图象,概括其特征,获得“五点法”画图的简便画法.问题4:由三角函数的定义可知,正弦函数、余弦函数是一对密切关联的函数.你能利用这种关系,借助正弦函数的图象画出余弦函数的图象吗?师生活动:学生先用排除法观察诱导公式,选择简洁的公式,作为正弦函数、余弦函数关系 研究的依据.教师引导学生通过比较进行选择.从数的角度看,对于函数y=cosx,由诱导公式cosx=sin(x+π2)得,y=cosx=sin(x+π2),x∈R.追问1:你认为应该利用正弦函数和余弦函数的哪些关系,通过怎样的图形变换,才能将正弦函数的图象变换为余弦函数的图象?师生活动:函数y=sin(x+π2),x∈R 的图象可以通过正弦函数y=sinx,x∈R 的图象向左平移π2个单位长度而得到.将正弦函数的图象向左平移π2个单位长度,就得到余弦函数的图象,如图5.4.5 所示.知识梳理:余弦函数y=cosx,x∈R的图象叫做余弦曲线(cosinecurve).它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.追问2:你能在两个函数图象上选择一对具体的点,解释这种平移变换吗?师生活动:这是教学的难点,教师要首先进行示范.教师可以先选择一个具体的点,进行分析,然后上升到对一般点的分析.得到图象之后还可以再利用图象进行验证.设(x0,y0)是函数y=cosx图象上任意一点,则有y0=cosx0=sin(x0+π2).令x0+π2=t0,则y0=sinxt0,即在函数y=sinx图象上有对应点(t0,y0).比较两个点:(x0,y0)与(t0,y0).因为x0+π2 =t0即x0=t0-π2.所以点(x 0,y 0)可以看做是点(t 0,y 0)向左平移π2个单位得到的,只要将函数y =sinx 图象上的点向左平移π2个单位长度,即可得到函数y =cosx 的图象,如图5.4.5 所示.知识梳理:余弦函数y =cosx ,x ∈R 的图象叫做余弦曲线(cosinecurve ).它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.设计意图:利用诱导公式,通过图象变换,由正弦函数的图象获得余弦函数图象;增强对两 个函数图象之间的联系性的认识.问题5:类似于用“五点法”画正弦函数的图象,你能找出余弦函数在区间[-π,π]上相应的五个关键点吗?可以画出y =cosx ,x ∈[-π,π]的简图吗?师生活动:画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).用光滑曲线顺次连接这五个点,得到余弦曲线的简图.设计意图:观察余弦函数图象,掌握其特征,获得“五点法”. 问题6:例题分析:如何用“五点法”作出下列函数的简图?(1)y =1+sin x ,x ∈[0,2π];(2)y =-cos x ,x ∈[0,2π].师生活动:老师点拨:在[0,2π]上找出五个关键点,用光滑的曲线连接即可.预设学生:在直角坐标系中描出五点,然后用光滑曲线顺次连接起来,就得到y=1+sin x,x∈[0,2π]的图象.追问:你能利用函数y=sin x,x∈[0,2π]的图象,通过图象变换得到y=1+sin x,x∈[0,2π]的图象吗?同样地,利用函数y=cos x,x∈[0,2π] 图象,通过怎样的图象变换就能得到函数y=-cos x,x∈[0,2π] 的图象?师生活动:学生先独立完成,然后就解题思路和结果进行展示交流,教师点评并给出规范的解答.设计意图:巩固学生对正弦函数、余弦函数图象特征的掌握,熟练“五点法"画图,掌握画图的基本技能.通过分析图象变换,深化对函数图象关系的理解,并为后续的学习作好铺垫.五、课堂小结1.正弦函数和余弦函数的图象.正、余弦函数的图象每相隔2π个单位重复出现,因此,只要记住它们在[0,2π]内的图象形态,就可以画出正弦曲线和余弦曲线.2.“五点法”是作三角函数图象的常用方法,“五点”即函数最高点、最低点与x轴的交点.3.列表、描点、连线是“五点法”作图过程中的三个基本环节,注意用光滑的曲线连接五个关键点.六、目标检测设计(一)课前预习整理1、正弦曲线和余弦曲线1.可以利用单位圆中的______线作y=sin x,x∈[0,2π]的图象.2.y=sin x,x∈[0,2π]的图象向____、____平行移动(每次2π个单位长度),就可以得到正弦函数y=sin x,x∈R的图象.3.正弦函数y=sin x,x∈R的图象和余弦函数y=cos x,x∈R的图象分别叫做__________和__________.整理2、正弦曲线和余弦曲线“五点法”作图 “五点法”作图的一般步骤是______⇒______⇒______. 设计意图:预习知识,引发思考.(二)课堂检测1.用“五点法”作函数y =cos 2x ,x ∈R 的图象时,首先应描出的五个点的横坐标是( )A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π32.用“五点法”画出y =cos (3π2-x ),x ∈[0,2π]的简图.设计意图:强化知识目标3 课后作业:(1)教科书第200页练习题.(2)习题5.4/1.设计意图:巩固知识,提升动手操作能力.七、教学反思。
正弦函数的图像教案教案标题:正弦函数的图像教案教案目标:1. 了解正弦函数的定义和性质。
2. 掌握如何绘制正弦函数的图像。
3. 理解正弦函数在数学和实际问题中的应用。
教案步骤:引入:1. 引导学生回顾三角函数的概念和性质,特别是正弦函数的定义。
2. 提出问题:你知道正弦函数的图像是什么样的吗?为什么正弦函数在数学和实际问题中如此重要?探究:3. 向学生介绍正弦函数的图像特点:周期性、振幅、相位差等。
4. 提供一组正弦函数的表格数据,让学生通过计算得到对应的函数值。
5. 引导学生根据表格数据绘制正弦函数的图像,并观察图像的特点。
6. 指导学生总结正弦函数图像的一般规律和特点。
拓展:7. 提供一些实际问题,引导学生将问题转化为正弦函数的图像。
8. 引导学生分析实际问题中的振幅、周期和相位差的含义,并解决问题。
9. 鼓励学生思考正弦函数在其他学科和领域中的应用,如物理、音乐等。
巩固:10. 给学生提供一些练习题,让他们应用所学知识绘制正弦函数的图像。
11. 引导学生分析不同参数对正弦函数图像的影响,如振幅变化、相位差变化等。
总结:12. 总结正弦函数的定义、性质和图像特点。
13. 强调正弦函数在数学和实际问题中的重要性,并鼓励学生继续探索和应用。
评估:14. 设计一些评估题目,考察学生对正弦函数图像以及应用的理解程度。
15. 对学生的表现进行评估和反馈,指出需要加强的地方并提供进一步的指导。
延伸活动:16. 鼓励有兴趣的学生进行更深入的研究,如探究其他三角函数的图像特点、探索更复杂的正弦函数应用等。
17. 提供一些拓展阅读资源,让学生进一步了解正弦函数在不同学科和领域的应用。
希望以上教案建议和指导能够帮助您撰写《正弦函数的图像教案》。
祝您教案撰写顺利,并取得良好的教学效果!。
正弦函数图象教学设计
利津县第二中学 静
一、教材分析:
1.教材容与地位
本节共分两个课时,本课为第一课时,主要是利用正弦线画出sin y x =,[]0,2x π∈的图象,考察图象的特点,介绍“五点作图法”。
2.教学目标
根据《普通高中数学课程标准(实验)》的要求和教学容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下: (1)知识和技能目标:
◆ 理解用正弦线画正弦函数的图象
◆ 会用“五点法”画出正弦函数 的简图 (2)过程和方法目标:
◆ 提升学生的观察能力和作图技能;
◆ 渗透数形结合和转化化归的数学思想方法;
◆ 通过问题驱动,让学生在质疑、交流、讨论中形成良好的数学思维品质。
(3)情感、态度、价值观目标:
◆ 通过作图,使学生感受波形曲线的流畅美、对称美,使学生体会事物周期变化的奥秘。
3.重点、难点
教学重点:用“五点法”画出正弦函数的简图 教学难点:利用单位圆画正弦函数图象
二、学情分析
优势:
思维较活跃,对具体形象的实例比较感兴趣,具有一定数学基础及分析解决问题的能力
劣势:
对学习抽象理论知识存在畏难情绪,缺乏主动性
三、教法、学法分析
1.教法
根据上述教材分析和目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为:
(1)情境教学法
设置实物演示实验,激发学生学习兴趣,消除学生对学习数学知识的畏惧感。
(2)问题驱动教学法
解决问题是数学的灵魂,设置问题情境能激发学生强烈的学习动机,让学生跃跃欲试,让学生分组讨论、交流、总结,让学生更大程度的参与学习。
(3)计算机辅助教学法
借助多媒体教学手段引导学生理解利用单位圆中的正弦线画出正弦函数的图象,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图象,给人以美的享受。
2.学法
引导学生认真观察教学课件的演示,指导学生进行分组讨论交流,促进学生知识体系的建构和数学思想方法的形成,注意面向全体学生,培养学生勇于探索、勤于思考的精神,提高学生协作学习和认识分析解决问题的能力。
四、教学过程:
(一)创设情境、提出问题
以沙漏单摆实物演示实验开始本节课的学习,
激发学生的学习兴趣。
(二)问题驱动,探索新知 问题一:初中时,我们如何画一次函数、二次函数的图象?
步骤:列表、描点、连线
问题二:用上述方法能画出正弦函数图象吗?
问题三:用描点法画出的正弦函数图象是精确的吗? 如果我们仍用描点法来画正弦函数图象,由于对于角的每一个取值,在计算相应的函数值时,都是利用计算器或数学用表得来的,大多数是一些近似值,因此不易描出对应点的准确
位置,因而画出的图象不够准确。
为此,我们应考虑用其它方法来作正弦函数的图象。
几何作图法
(1) 等分;
(2) 作正弦线;
(3) 平移;
(4) 连线.
问题四:如何作正弦函数在R 上的图象? 因为终边相同的角有相同的三角函数值,所以函数sin y x =在[]2,2(1)x k k ππ∈+,k Z ∈,0k ≠的图象与函数sin y x =,[]0,2x π∈的图象的形状完全一样,只是位置不同,于是
解决问题是数学的灵魂,设置问题情境能激发学生强烈的学习动
机,让学生跃跃欲试,为本节容展开奠定心理和情感基础.
交待由于列表描点时计算三角函数值
(理论上)
的不精确性,这样画出来的图象就不
精确。
为了精确,我们
要借助单位圆中的正弦
线来作(几何作图法)。
引导学生考虑使用三角
函数线作图。
通过课件演示突破利用
单位圆画正弦函数图象这一难点。
培养学生观察能力、分析能力。
注意渗透由抽象到具体的思想,促进学生数学思想方法的形成,引导学生确实掌握“数形结合”的思想方法。
终边相同的角的同一三
角函数值相等。
sin(2)sin k παα+=
只要将它向左、右平行移动(每次2π个单位
长度),就可以得到正弦函数sin
y x
=,x R
∈的
图象,即正弦曲线。
问题五:观察 y = sin x ,xÎ[ 0,2 p]
图象的最高点、最低点和图象与 x 轴的交
点?坐标分别是什么?
五个关键点:
)0,
2(
),1
,
2
3
(
),
0,
(
),1,
2
(
),
0,0(π
π
π
π
-
事实上,描出这五个点,函数x
y sin
=,
[]π2,0
∈
x的图象的形状就基本确定了。
今后在
精确度要求不太高时,常常先找出这五个关键
点,用光滑曲线将它们连结起来即可得到函数
的简图,我们把这种方法称为“五点作图法”。
(三)实战演练,巩固新知
例1用五点法作函数1sin,
y x
=+[]
0,2
xπ
∈的
图象.
解:按五个关键点列表
由学生观察图象中
起关键作用的五点,学
生可能说不全,应进行
耐心引导。
提出问题,培养学生认
真观察和勇于探索、勤
于思考的精神。
根据不同层次的学生的
回答,教师给予不同的
评价。
利用正弦函数的特征描点画图:
变式练习:用“五点法”画出下列函数在区间[0,2π]
的简图
(1)y=-sin x; (2)y=sin x-2.
(四)总结反思,提高认识
(五)任务延后,自主探究
必做题:P39 练习B 1
必做题:预习正弦函数的性质容。
选做题:求出下列函数取得最大值、最小值的自变量x的集合,并分别写出最大值、最小值是多少?提问学生,由学生小结,再次深化对本节课知识的学习。
作业布置分层,满足不同学生的需求。
5sin
y x
=2sin
y x
=-(1) (2)
六、设计反思:
本节课我主要采用了问题探究的教学模式,让学生积极的参与到数学教学中,通过小组讨论交流,协作学习分析解决问题,完成本节课的教学任务。
而实行启发式教学的关键,在于使学生有思考问题、发现问题、解决问题的要求,教师的责任就是创造条件,使学生成为学习的主人。
这样整堂课体现了以学生为主体,以老师为主导的教学理念。
当然在实际教学中还可能存在其他问题,我将根据实际教学加以改进。