第七章正弦波振荡器2010
- 格式:ppt
- 大小:3.98 MB
- 文档页数:92
详解正弦波振荡器输出信号为正弦波的振荡器称为正弦波振荡器。
正弦波振荡器由放大电路和反馈电路两部分组成,反馈电路将放大电路输出电压的一部分正反馈到放大电路的输入端,周而复始即形成振荡,如图7-2所示。
图7-2 正弦波振荡器原理正弦波振荡器包括变压器耦合振荡器、三点式振荡器、晶体振荡器、RC振荡器等多种电路形式。
1.变压器耦合振荡器变压器耦合振荡器电路如图7-3所示,LC谐振回路接在晶体管VT 集电极,振荡信号通过变压器T耦合反馈到VT基极。
图7-3 变压器耦合振荡器电路正确接入变压器反馈绕组L1与振荡绕组L2的极性,即可保证振荡器的相位条件。
R1、R2为VT提供合适的偏置电压,VT有足够的电压增益,即可保证振荡器的振幅条件。
满足了相位、振幅两大条件,振荡器便能稳定地产生振荡,经C4输出正弦波信号。
变压器耦合振荡器工作原理如图7-4所示。
L2与C2组成的LC并联谐振回路作为VT的集电极负载,VT的集电极输出电压通过变压器T的振荡绕组L2耦合至反馈绕组L1,从而又反馈至VT基极作为输入电压。
图7-4 变压器耦合振荡器原理电路由于VT的集电极电压与基极电压相位相反,所以变压器T的2个绕组L1与L2的同名端接法应相反,使变压器T同时起到倒相作用,将集电极输出电压倒相后反馈给基极,实现了形成振荡所必需的正反馈。
因为并联谐振回路在谐振时阻抗最大,且为纯电阻,所以只有谐振频率f0能够满足相位条件而形成振荡,这就是LC回路的选频作用。
电路振荡频率变压器耦合振荡器的特点是输出电压较大,适用于频率较低的振荡电路。
2.三点式振荡器三点式振荡器是指晶体管的3个电极直接与振荡回路的3个端点相连接而构成的振荡器,如图7-5所示。
3个电抗中,Xbe、Xce必须是相同性质的电抗(同是电感或同是电容),Xcb则必须是与前两者不同性质的电抗(电容或电感),才能满足振荡的相位条件。
图7-5 三点式振荡器原理电路三点式振荡器有多种形式,较常用的有电感三点式振荡器、电容三点式振荡器、改进型电容三点式振荡器等。
正弦波振荡器振荡器——就是自动地将直流能量转换为具有一定波形参数的交流振荡信号的装臵。
和放大器一样也是能量转换器。
它与放大器的区别在于,不需要外加信号的激励,其输出信号的频率,幅度和波形仅仅由电路本身的参数决定。
应用范围:在发射机、接收机、测量仪器(信号发生器)、计算机、医疗、仪器乃至电子手表等许多方面振荡器都有着广泛的应用。
主要技术指标:1.振荡频率f及频率范围2.频率稳定度:调频广播和电视发射机要求:10-5~10-7左右标准信号源:10-6~10-12要实现与火星通讯:10-11要为金星定位:10-123.振荡的幅度和稳定度一、反馈式振荡器的工作原理1.反馈振荡器的组成反馈振荡器由放大器和反馈网络两大部分组成。
反馈型振荡器的原理框图如图4-1所示。
由图可见, 反馈型振荡器是由放大器和反馈网络组成的一个闭合环路, 放大器通常是以某种选频网络(如振荡回路)作负载, 是一调谐放大器, 反馈网络一般是由无源器件组成的线性网络。
自激振荡:没有外加输入信号,但输出端有一定幅度的电压.oU输出,即实现了自激振荡。
自激振荡只可在某一频率上产生,不能在其它频率上产生。
当接通电源时,回路内的各种电扰动信号经选频网络选频后,将其中某一频率的信号反馈到输入端,再经放大→反馈→放大→反馈的循环,该信号的幅度不断增大,振荡由小到大建立起来。
随着信号振幅的增大,放大器将进入非线性状态,增益下降,当反馈电压正好等于输入电压时,振荡幅度不再增大进入平衡状态。
2. 反馈式正弦振荡器分类LC 振荡器 RC 振荡器 石英晶体振荡器 3. 平衡和起振条件 (1)平衡条件平衡状态——反馈电压.f U 等于.i U 时,振荡器能维持等幅振荡,且有稳定的电压输出,称此时电路达到平衡状态看电路可知:电压放大系数...io U A U =反馈系数:..f .oU F U =达到平衡状态时:..f i U U =则平衡条件为:......f f ....i i1o o o o U U U UAF U U U U ∙∙===而根据数学中复数分析:..A F A F ϕϕ∠+=AF 可得出振幅平衡条件为:AF =1相位平衡条件为:A F A F ϕϕϕϕ∠++==+ 2(0123.......)n n π=、、、 (2)起振条件——为了振荡器振荡起来必需满足的条件由振荡的建立过程可知,为了使振荡器能够起振,起振之初反馈电压U f 与输入电压Ui 在相位上应同相(即为正反馈);在幅值上应要求U f >U i , 即:振幅起振条件:AF >1相位起振条件:A F A F ϕϕϕϕ∠++==+ 2(0123.......)n n π=、、、4. 主要性能指标(1)振荡器的平衡稳定条件平衡状态有稳定平衡和不稳定平衡,振荡器工作时要处于稳定平衡状态。
目录第一章设计任务 (8)一. 设计目的 (8)二. 设计要求和步骤 (8)三.方案设计及选择 (8)1.振荡器的选择 (8)2.信号输出波形的仿真选择 (8)第二章单元电路设计与参数计算 (9)一. LC三点式振荡组成原理图 (10)二.起振条件 (12)三.频率稳定度 (13)四. LC振荡模块设计 (14)第三章总原理图及元器件清单 (15)一.总原理图 (15)二. 元件清单 (17)第四章调试步骤 (18)一. 按设计电路安装元器件 (19)二. 测试点选择 (20)三. 调试 (20)四. 实验结果与分析 (20)五. 频率稳定度 (20)第五章供参考选择的元器件 (21)第六章设计心得和体会 (22)第七章参考文献 (23)第一章设计任务一设计目的(1). 熟悉LC正弦波振荡器的工作原理,以及示波器的原理及用法。
(2).掌握LC正弦波振荡器的基本设计方法。
(3). 理解LC正弦波振荡回路并掌握LC振荡器的设计,装载,调试,及其主要性能参数的测试方法和如何选择电路的测试点。
(4). 了解外界因素、元件参数对振荡器工作稳定性及频率稳定度的影响情,以便提高振荡器的性能。
二设计要求和步骤(1). 设计一个LC正弦波频振荡器。
(2). 利用三端式振荡器原理产生正弦波信号,采用的具体电路不限。
要求给出所选电路的优点和缺点并通过测量值进行证明。
也可以进行不同三端式振荡器的性能比较。
(3).了解电路分布参数的影响及如何正确选择电路的静态工作点。
(4).电路的基本原理,LC正弦波振荡器是各种接收机和发射机中一种常见的电路,常用作载波振荡、本振混频振荡等。
其典型形式为“三点式”振荡电路,其电路简单、频率稳定度高,它的工作原理是在正反馈的基础上,将直流电源提供的能量变成正弦交流输出。
(5)选择所需的方案,画出有关的电路原理图。
三方案设计与选择1.振荡器的选择LC振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。
正弦波振荡器摘要: 正弦波振荡器在无线电技术领域应用十分广泛,在电子测量中,正弦波信号必不可少的基准信号源。
正弦波振荡器主要有决定振荡频率的选频网络和维持振荡的正反馈放大器组成。
正弦波振荡器可分为有LC振荡器、RC振荡器、石英晶体振荡器等。
本论文主要讲述了高频高精度的石英晶体正弦波振荡器的产生。
介绍了该振荡器的基本工作原理、设计电路、性能和测试指标等。
此外,还具体说明了电路设计的制作过程和元器件的检测、安装、焊接、调试等过程。
阐述了技术指标要求测试方法和数据记录。
并对实测数据进行了分析和总结。
由于在工程应用上对高频信号的要求稳定度极高,因此我所设计的基于石英晶体正弦波振荡器具有体积小、频率准确度和稳定度高、受外界干扰小、工作温度范围宽的特点。
石英晶体元器件作为优良的频率选择与控制器件,用途极为广泛,现在向高基频、高性能、高可靠和微小化发展。
关键词:石英晶体振荡频率稳定度第一章引言晶体振荡器作为电子设备的重要器件,对电子设备的总体性能指标起着非常重要的作用。
本文介绍高频高精度正弦波振荡器的研制,高频高精度振荡器具有体积小、中心频率稳定、输出幅度稳定、频率稳定度高、非线性失真小的特点。
振荡器是一种能自动的将直流能量转换成有一定波形的振荡器信号能量的转换电路。
它与放大器的区别在于无需外加激励信号就能产生具有一定频率,一定波形和一定振幅的交流信号。
振荡器输出的信号频率、波形、幅度完全由电路自身的参数决定。
振荡器在现代科学技术领域中有着广泛的应用。
例如,在无线电通信、广播、电视设备中用来产生所需的载波信号和本地振荡信号;在电子测量和自动控制系统中用来产生各种频段的正弦波信号等。
正弦波振荡器主要有决定振荡频率的选频网路和维持振荡的正反馈放大器组成,这就是正反馈振荡器。
高频正弦波振荡器可分为LC振荡器、石英晶体振荡器等。
正弦波振荡器的主要性能指标是振荡频率的准确度和稳定度、振荡幅度的大小其稳定性、振荡波形的非线性失真、振荡器的输出功率和效率。
使振荡器从静态到动态(即起振)补充能量使振荡达到足够的幅度并能使之稳定下来(防止自A 0判断下图所示两极互感耦合振荡电路能否起振。
振幅条件是可以满足的,所以只要相位条件满足,就可以起振。
利用瞬时极性判断法,根据同名端位置,可以得到:21()e e υυ↓→↓可见电路是负反馈,不能产生振荡。
C oC g L g R g电感性f qf p电感性与振荡器会工作在f fC 1C cC eR b1R b2R eL 1LE cJ TC 2C 1C 2L 1J TOSCf C L >1121π令晶体工作与呈感性则C L ,11荡器构成电感反馈型三端振R b1R b2R cR eC eC oC 1C 2LC bE Cu bi eU E+U BE _各变量的动态变化级回路时,振荡频率也会随之变化,甚至产生频率跳变.这一现象通R b1R b2C bR cR eC eC 1C 2C 3R 2E C负载C 3C 2C 1C e R 1R 2R b2R b1R e R c E cR C RCU 1+U c -U oU 1+UR -U oIIU oU CU 1φφ两种相移网络具有如下特点:相移电路所产生的相移在0—90o 之间,但最大相移不超输出电压幅度也随频率变化而变化,但输出电压总小于输入电压,且相移越大,输出越小,当相移90o 时,输出趋于零.,至少要用三节移相网络,且可以证明相移网络,振荡频率为: )(61不易调整RC f π=I U RR 3R 4R 1R 2C 1C 2u 2+u 1-1/3 RCf π210=Iωφ基于运放的数字时钟振荡器I k形成正反馈基于运放的数字时钟振荡器I k形成正反馈。
二思考题3-1.反馈型LC振荡器从起振到平衡,放大器的工作状态是怎么样变化的?它与电路的哪些参数有关?3-2.图思3-2是变压器反馈振荡器的交流等效电路,请标明满足相位条件的同名端。
图思3-23-3.电容三点式振荡器电路如思图3-3所示。
(1)画出其交流等效电路。
(2若给定回路谐振电阻R e 及各元件参数,求起振条件g m >?(R e 为从电感两端看进去的谐振阻抗,管子输入、输出阻抗影响可略〉3-4.电感三点式振荡器如思图3-4所示。
(1)画出交流通路。
(2)给定R e ,L 1′及L 2′,计算起振条件g m >?(R e 为从电容两端看进去的谐振阻抗;L 1′、L 2′是把电感L的两部分等效为相互间不再含有互感的两个独立电感时的数值,它们与总电感L 之比为匝数之比。
即/L=N 1/N, L 2/L=N 2/N 。
管子输入、输出阻抗影响可略)图思3-3 图思3-43-5.在振幅条件已满足的前提下,用相位条件去判断思图3-5所示各振荡器(所画为其交流等效电路)哪些必能振荡?哪些必不能振荡?哪去仅当电路元件参数之间满足一定的条件时方能振荡?并相应说明其振荡频率所处的范围以及电路元件参数之间应满足的条件。
图思3-53-6.图3-6所示为一个三回路振荡器,试确定以下四种情况下振荡频率范围。
.(1)L1Cl>L2C2>L3C3;(2)L1C1<L2C2<L3C3;(3)L1C1=L2C2>L3C3;(4)L1C1<L2C2=L3C3。
图思3 -6 3-7 图3-7所示各电路中,哪些能振荡?哪些不能振荡?图思3-73-8试用相位条件判断图3-8中各交流通路哪些不能振荡,哪些可能振荡,并确定可能振荡的频率范围。
图题3-83-9 LC振荡电路如图题3-9所示。
画出各电路的交流通路并判别是哪种类型的振荡器。
若要调整振荡频率,试说明在不改变反馈系数的前提下应调整哪个电容的数值。