面板数据模型与stata软件的应用
- 格式:ppt
- 大小:188.50 KB
- 文档页数:38
面板数据分析与Stata应用_浙江大学中国大学mooc课后章节答案期末考试题库2023年1.关于xtabond2这一命令的使用,以下说法错误的是:答案:iv( ) 内放置的是内生的解释变量2.关于门限面板模型的估计,以下说法错误的是:答案:使用 xthreg 命令确定门限值时,是将门限变量的所有值逐一代入进行计算的3.以下哪组数据是短面板数据?答案:N=31,T=214.以下哪个不是非观测效应模型(存在不可观测的个体效应的模型)?答案:混合回归模型5.以下哪个选项符合随机效应模型的设定?答案:不可观测的个体效应与所有解释变量不相关6.使用xtscc命令估计,得到的标准误是:答案:Driscoll-Kraay标准误7.使用聚类稳健的标准误,不能解决以下三大问题中的哪一个?答案:截面相关8.短面板数据模型中的husman检验适用于哪两种模型之间的选择判断?答案:固定效应模型与随机效应模型9.以下命令中,无需其他选项就能够同时处理组内误差自相关、组间异方差和组间相关这三大问题的命令是?答案:xtscc10.以下哪个命令能够检验长面板数据的组间相关问题?答案:xttest211.以下哪个命令没有同时处理三大问题?答案:xtpcse lnc lnp lnpmin lny state2-state10 t, corr(ar1) hetonly12.三阶段最小二乘法的命令是:答案:reg313.以下哪个命令没有同时处理三大问题?答案:xtgls lnc lnp lnpmin lny state2-state10 t,corr(ar1) panels(heteroskedastic) 14.对于解释变量与误差项存在相关性这一内生性问题,以下说法错误的是:答案:其余选项均不正确15.关于两阶段最小二乘法,以下说法错误的是:答案:其余选项均不正确16.以下不属于内生性的三大检验的是:答案:异方差检验17.如果在强相关性检验中,发现当前使用的工具变量是弱工具变量,那么以下说法错误的是:答案:此时不存在任何可以解决的方法,IV方法不再适用18.关于理解DID方法的方式,以下说法错误的是:答案:其余选项均不正确19.以下关于DID模型的设定,表示错误的是:答案:多组多期:20.以下方法中,不属于安慰剂检验的是:答案:可以按照样本的异质性特征,将样本分为不同的小组,在不同组内进行回归21.如果对照组和处理组不满足共同趋势的假定,以下解决方法中不正确的是:答案:不必在意,不满足共同趋势假设也可以继续使用DID方法22.关于合成控制法,以下说法错误的是:答案:合成控制法无法解决选择控制组时存在的主观随意性问题23.关于合成控制法中合成地区的构建,以下说法正确的是:答案:其余三个说法都正确24.下图是上课所举案例在 stata 中运用合成控制法的 synth 命令得到的部分结果:根据上述运行结果,以下说法错误的是:答案:由于预测变量的拟合效果均很好,cigsale(1975)、cigsale(1980)、cigsale(1988) 这三个变量可以省去25.我们可以通过如下目标函数来确定最优带宽:,以下说法错误的是:答案:三角核函数相当于普通 OLS 回归,矩形核函数相当于加权的 OLS 回归26.对动态面板模型使用固定效应方法进行估计时,估计结果一定是有偏且不一致的。
面板空间计量之Stata应用:学习笔记【同舟共济】更新于2016年4月20日说明目前,在空间计量方面,Stata官方命令语句数量有限且较为零散,尚未形成系统的空间计量工具包。
因此,个人建议空间计量的初学者转向Matlab软件,James P. LeSage、J. P. Elhorst、Donald J. Lacombe等学者所开发的空间计量工具包,其功能相对更加完善,操作起来也比较方便。
本人已经习惯了使用stata,初次自学空间计量方面的操作,参考help文件及相关文献,在学习过程中做了简要总结,仅供初学者交流学习。
其中若有不当之处,敬请批评指正,谢谢!E-mail: ares0825@【Stata】Abd Elmessih Shehata (Econpapers)URL: /RAS/psh494.htmFederico Belotti (Econpapers)URL: /RAS/pbe427.htmP. Wilner Jeanty (Econpapers)URL:/RAS/pje95.htmMaurizio PisatiURL:/people/maurizio-pisatiYihua Yu (Econpapers)URL:/RAS/pyu79.htm目录第一章Stata空间计量命令语句安装 1 第二章中国31省市自治区(不含港澳台、附属岛屿)shp制作 3 第三章Stata空间权重制作8 第四章Stata 空间相关性检验27 第五章Stata 空间面板数据回归39面板空间计量之Stata应用:学习笔记第一章Stata空间计量命令包安装更新于2016-03-151.空间计量-Stata命令包Archive of user-written Stata packagesURL: /statistics/stata-blog/stata-programming/ssc_stata_package_list.php图1 Stata用户自拟命令语句列表另外,在IDEAS(URL: https:///)中可以查询相关命令,顺便推荐几个论坛,大家可以经常逛逛:Stata官方论坛URL: /UCLA-Idre论坛URL: /stat/stata/Stata Daily URL: /index/2.安装单击图1左侧红色框内命令名称,即可下载对应的压缩包,安装过程参考非官方命令手动安装说明(URL:/thread-2420580-1-1.html);单击图1右侧蓝色框内的各命令所对应的描述性语句,即可看到该命令的详细说明及应用举例。
引言概述面板数据(Paneldata)是一种特殊类型的数据,它同时包含了横向和纵向的信息。
对于研究人员来说,面板数据的分析具有重要的意义,因为它可以对个体、时间和个体在不同时间上的变异进行深入研究。
Stata是一种流行的统计软件,具备强大的面板数据分析功能,可以处理各种面板数据相关的统计问题。
本文将介绍Stata分析面板数据的方法与技巧。
正文内容一、数据准备与导入1.定义面板变量:在Stata中,我们需要先将面板数据转换为面板变量。
可以使用“xtset”命令来定义面板变量,并指定个体和时间的标识变量。
例如,命令“xtsetidyear”可以将变量“id”作为个体标识变量,“year”作为时间标识变量。
2.导入面板数据:Stata支持多种数据格式的导入,如Excel、CSV等。
可以使用“importdelimited”命令导入CSV格式的面板数据。
命令格式如下:“importdelimitedfilename,varnames(1)”.其中,filename是文件名,varnames(1)表示将第一行作为变量名。
二、面板数据的描述统计分析1.描述性统计:在面板数据分析中,我们首先需要对数据进行描述性统计。
可以使用“summarize”命令计算平均值、标准差、最小值、最大值等统计指标。
例如,“summarizevarname”可以计算变量varname的平均值、标准差等。
2.变量相关分析:面板数据中的变量通常具有时间序列的特征,因此,变量之间的相关性也具有时间相关性。
可以使用“xtcorr”命令来计算面板数据中变量的相关系数矩阵。
命令格式如下:“xtcorrvar1var2,pwcorr”.其中,var1和var2是需要计算相关系数的变量。
三、面板数据的固定效应模型分析1.固定效应模型简介:固定效应模型是一种常见的面板数据分析方法,它考虑了个体固定效应,并通过个体虚拟变量来捕捉个体固定效应对因变量的影响。
STATA面板数据模型操作命令要点STATA是一种常用的统计分析软件,它提供了强大的面板数据模型操作命令,方便用户进行数据分析和模型构建。
面板数据模型是一种可以通过同时考虑跨个体和跨时间的数据集来分析经济和社会现象的方法。
以下是STATA中面板数据模型操作命令的要点:1.面板数据模型设置:STATA中可以通过设置数据集的面板特征,包括个体维度和时间维度。
个体维度通常表示被观测的个体,如公司、国家等;时间维度通常表示观测的时间周期,如年度、季度等。
可以使用STATA中的面板数据命令,如“xtset”来设置面板数据的个体和时间维度。
2.面板数据统计描述:面板数据模型中,首先需要对数据进行统计描述,了解变量的分布情况和相关性。
可以使用STATA中的“xtsum”命令进行面板数据的统计描述,包括平均值、标准差、最大值、最小值等统计指标,还可以使用“xtcorr”命令计算变量之间的相关系数。
3.面板数据的面板单位固定效应模型:面板单位固定效应模型是面板数据模型中常用的一种方法,可以通过控制个体特定的时间不变因素来估计个体变量对于其他变量的影响。
可以使用STATA中的“xtreg”命令来估计面板单位固定效应模型。
在命令中需要指定固定效应变量,并使用特殊符号“i.”加在变量名称前。
4.面板数据的面板时间固定效应模型:面板时间固定效应模型是面板数据模型中另一种常用的方法,可以通过控制时间特定的个体不变因素来估计时间变量对于其他变量的影响。
可以使用STATA中的“xtreg”命令来估计面板时间固定效应模型。
在命令中需要指定固定效应变量,并使用特殊符号“t.”加在变量名称前。
5.面板数据的随机效应模型:随机效应模型是面板数据模型中一种较为灵活的方法,可以同时估计个体和时间变量的影响。
可以使用STATA中的“xtreg”命令来估计面板数据的随机效应模型。
在命令中需要加入“, re”选项来指定估计随机效应模型。
6.面板数据的固定效应与随机效应比较:面板数据模型中,固定效应和随机效应模型都是常用的方法,但它们对于个体不变因素的处理方式不同。
面板数据逐步回归法stata面板数据逐步回归法Stata 面板数据逐步回归法(Panel data stepwise regression)是Stata的一种数据分析方法,它结合了面板数据和逐步回归法的优点,可以对时间序列面板数据进行多方面的分析,包括探究内部联系以及了解各因素之间的关联性。
下面我们具体介绍一下面板数据逐步回归法的定义、适用范围、基本原理和应用方法。
一、定义面板数据逐步回归法是一种利用逐步回归法实现对面板数据分析的方法。
面板数据又叫纵向数据或追踪数据,主要指同一时间段内对同一个样本进行多次测量。
面板数据逐步回归法,主要是基于纵向数据的统计分析方法,通过逐步回归对面板数据进行分析,探究变量之间的内部联系和因素之间的关联性。
二、适用范围面板数据逐步回归法适用于时间序列分析中的面板数据,特别是适用于跨国企业、宏观经济、产业集中度等领域的分析。
面板数据逐步回归法可以对时间序列面板数据进行多方面的分析,包括探究内部联系以及了解各因素之间的关联性。
三、基本原理面板数据逐步回归法的基本原理是利用逐步回归分析面板数据中的自变量与因变量之间的关系,确定变量中的主导因素以及变量之间的相关性。
逐步回归法是利用最小二乘法进行回归分析,它会根据事先设定的显著水平,每次选取最显著的变量,逐渐建立模型,直到模型中的所有变量都显著。
四、应用方法面板数据逐步回归法在Stata中的实现主要依赖于regress命令,该命令可以对时间序列面板数据进行回归分析,包括面板数据逐步回归法。
以下是具体步骤:1. 搜集面板数据首先需要搜集所需面板数据,建立数据集。
2. 导入面板数据打开Stata,输入import命令,将我们所搜集到的面板数据导入到Stata中。
3. 运行描述性统计命令输入sum命令,运行描述性统计命令,检查数据是否存在缺失值和异常值。
4. 运行面板数据逐步回归分析命令输入regress命令,选择需要分析的自变量和因变量,根据设定的显著水平,选取最显著的变量,逐步建立模型。
面板数据、工具变量选择和HAUSMAN检验的若干问题*第一节关于面板数据PANEL DATA1、面板数据回归为什么好一般而言,面板数据模型的误差项由两部分组成,一部分是与个体观察单位有关的,它概括了所有影响被解释变量,但不随时间变化的因素,因此,面板数据模型也常常被成为非观测效应模型;另外一部分概括了因截面因时间而变化的不可观测因素,通常被成为特异性误差或特异扰动项(事实上这第二部分误差还可分成两部分,一部分是不因截面变化但随时间变化的非观测因素对应的误差项Vt,这一部分一般大家的处理办法是通过在模型中引入时间虚拟变量来加以剥离和控制,另一部分才是因截面因时间而变化的不可观测因素。
不过一般计量经济学的面板数据分析中都主要讨论两部分,在更高级一点的统计学或计量经济学中会讨论误差分量模型,它一般讨论三部分误差)。
非观测效应模型一般根据对时不变非观测效应的不同假设可分为固定效应模型和随机效应模型。
传统上,大家都习惯这样分类:如果把非观测效应看做是各个截面或个体特有的可估计参数,并且不随时间而变化,则模型为固定效应模型;如果把非观测效应看作随机变量,并且符合一个特定的分布,则模型为随机效应模型。
不过,上述定义不是十分严谨,而且一个非常容易让人产生误解的地方是似乎固定效应模型中的非观测效应是随时间不变的,是固定的,而随机效应模型中的非观测效应则不是固定的,而是随时间变化的。
一个逻辑上比较一致和严谨,并且越来越为大家所接受的假设是(参见Wooldridge的教材和Mundlak1978年的论文),不论固定效应还是随机效应都是随机的,都是概括了那些没有观测到的,不随时间而变化的,但影响被解释变量的因素(尤其当截面个体比较大的时候,这种假设是比较合理的)。
非观测效应究竟应假设为固定效应还是随机效应,关键看这部分不随时间变化的非观测效应对应的因素是否与模型中控制的观测到的解释变量相关,如果这个效应与可观测的解释变量不相关,则这个效应成为随机效应。