机电一体化系统设计 第六章:机电结合分析
- 格式:ppt
- 大小:2.63 MB
- 文档页数:72
第六章机电一体化机电一体化(Mechatronik)是由机械(Mechanik)和电子(Elektronik)构成的合成词。
其中,电子代表“硬件”和“软件”;机械是“机械”和“液压”方法的总称。
它不是简单的通过“电子化”替代机械装置,而是与全面的角度看问题和设计方法学有关。
其目标是对机械、电子硬件和软件进行整体优化,从而在低成本、低重量、小空间且高质量的情况下实现更多功能。
在解决问题的过程中,能否将如今已被分离的学科作为一个整体进行观察,对机电一体化方式是否成功起决定性作用。
第一节机电一体化系统及其组成部件1.1 应用如今机电一体化系统及其组成部件几乎布满在整个车辆系统中:从发动机管理、汽油机和柴油机电喷,到变速箱控制,电热能量管理,直到不同的制动-驱动力控制系统。
此外还有满足不同控制需求的通信和信息系统。
除系统及其组成部件层面外,机电一体化还在微机械领域中扮演着越来越重要的角色。
1.2系统级实例为了实现车辆全自动导向和转向,系统的进一步开发呈现出一个通用趋势:即机械系统在未来将越来越多地被线控(X by Wire)系统所代替。
“Drive by wire”(线控驱动),即电子油门,就是一个已经实际运用的例子。
“线控制动系统”省去了制动踏板和车轮制动器间的机械-液压连接。
传感器获取驾驶员刹车指令,并把这一信息传给电控单元。
控制单元通过相应的执行机构在车轮处产生所需的制动作用。
“线控制动系统”的一种可能实现形式为电动液压制动(SBC,测控一体化制动控制)。
在实施制动时或者在通过电子稳定程序ESP进行稳定性干预时,SBC控制器计算出每个车轮上期望的理想制动压力。
由于每个车轮所需的理想制动压力单独计算,且每个车轮的实际制动力独立获取,所以能通过轮压调节器对每个车轮的制动压力进行独立调节。
这四个压力调节器各由一个输入和输出阀组成,由控制器的驱动电路控制,相互配合,从而获得最佳的制动压力闭环调节。
在共轨系统中,压力生成和喷射是解耦的。
机电一体化系统设计习题汇总第一章:概论1.关于机电一体化的涵义,虽然有多种解释,但都有一个共同点。
这个共同点是什么?2.机电一体化突出的特点是什么?重要的实质是什么?3.为什么说微电子技术不能单独在机械领域内获得更大的经济效益?4.机电—体化对我国机械工业的发展有何重要意义?5.试列举20种常见的机电一体化产品。
6.试分析CNC机床和工业机器人的基本结构要素,并与人体五大要素进行对比,指出各自的特点。
7.机电一体化产品各基本结构要素及所涉及的技术的发展方向。
8.机电一体化设计与传统设计的主要区别是什么?9.试举例说明常见的、分别属于开发性设计、适应性设计和变异性设计的情况。
10.为什么产品功能越多,操作性越差?为何产品应向“傻瓜化”方向发展?11.试结合产品的一般性设计原则,分析和理解按“有限寿命”设计产品的目的和意义。
第二章:机械系统设计1. 机电一体化产品对机械系统的要求有哪些?2. 机电一体化机械系统由哪几部分机构组成,对各部分的要求是什么?3. 常用的传动机构有哪些,各有何特点?4. 齿轮传动机构为何要消除齿侧间隙?5. 滚珠丝杠副轴向间隙对传动有何影响?采用什么方法消除它?6. 滚珠丝杠副的支承对传动有何影响?支承形式有哪些类型?各有何特点?7. 试设计某数控机床工作台进给用滚珠丝杠副。
己知平均工作载荷F=4000N,丝杠工作长度l=2m,平均转速=120r/min,每天开机6h,每年300个工作日,要求工作8年以上,丝杠材料为CrwMn钢,滚道硬度为58—62HRC,丝杠传动精度为±0.04mm。
8.导向机构的作用是什么?滑动导轨、滚动导轨各有何特点?9.请根据以下条件选择汉江机床厂的HJG—D系列滚动直线导轨。
作用在滑座上的载荷F=18000N,滑座数M=4,单向行程长度L=0.8m,每分钟往返次数为3,工作温度不超过120℃,工作速度为40m/min,工作时间要求10000h以上,滚道表面硬度取60HRC。
机电一体化系统设计机电一体化系统设计是一种将机械结构、电气控制、传感器及计算机信息技术整合在一起,以实现自动化和智能化生产的工程设计。
机电一体化系统设计与传统的机械设计、电气设计有所不同,它要求设计人员具备广泛的专业知识,从机械、电气、传感器、控制、计算机等多个方面考虑,才能实现系统的各项性能指标。
机电一体化系统的设计过程通常包括系统需求分析、系统结构设计、电气控制设计、机械设计及系统软件编程等几个方面。
其中,系统需求分析是整个系统设计的关键,需要通过对用户需求、功能要求和性能指标等进行分析,来确定系统的技术方案和设计目标。
系统结构设计是机电一体化系统设计的第二个重要环节。
在系统结构设计阶段,设计人员需要考虑机械、电气、传感器、控制及计算机等相关因素,以确定最佳的系统结构和指标要求。
为了达到这个目标,设计人员通常需要运用多学科知识和专业技能,才能找到最佳的解决方案。
电气控制设计是机电一体化系统设计的关键部分,能够直接影响系统的性能指标和工作效率。
设计人员需要考虑不同的电气控制器和传感器,以实现针对不同工作条件和环境的多功能控制。
在进行电气控制设计时,设计人员需要先制定控制策略,然后选择适合的电气控制器和传感器设备,并设计相应的电路和软件程序,来实现系统的自动化、智能化和高效化。
机械设计是机电一体化系统设计的另一个重要环节。
在进行机械设计时,设计人员需要考虑机械结构的稳定性、刚度、精度、寿命等因素,并与电气控制和计算机等相关组成部分进行整合,以满足系统的各项性能指标。
设计人员还需要运用CAD软件等工具,完成机械结构的三维建模和分析等工作。
系统软件编程是机电一体化系统设计的最后一个环节。
在进行系统软件编程时,设计人员需要运用不同的编程语言,如C、C++、Java等,来实现系统的各种功能要求。
为了达到系统的高可靠性和高效率,设计人员还要进行功能测试和调试等相关工作,确保系统在生产环境下能够正常运行。
总之,机电一体化系统设计是一项复杂且综合性能强的工程设计,需要设计人员具备广泛的专业知识和多学科技能,以实现高效、精确、智能化的生产过程和产品。
机电一体化系统设计一、引言机电一体化系统是指将机械和电气控制系统相结合,实现自动化控制和监测,以提高生产效率和产品质量。
在现代制造业中,机电一体化系统已经成为不可或缺的重要部分。
本文将探讨机电一体化系统设计的重要性、原则和实施步骤。
二、机电一体化系统设计的重要性1.提高生产效率机电一体化系统可以实现自动化生产,减少人为操作,提高生产效率。
通过优化机械和电气系统的配合,可以实现更高的生产速度和稳定性。
2.优化产品质量机电一体化系统可以实现精准控制和监测生产过程,减少因人为因素引起的错误,提高产品质量和一致性。
3.节约能源资源机电一体化系统可以实现能源的合理利用和分配,优化能源消耗结构,降低生产成本。
4.提升生产安全性机电一体化系统可以实现安全监测和自动报警,减少生产过程中的安全隐患,提高生产操作的安全性。
5.降低维护成本机电一体化系统可以实现在线监测和故障诊断,及时发现和排除问题,减少维护和维修成本。
三、机电一体化系统设计的原则1.整体性原则机电一体化系统设计要以整体性为原则,全面考虑机械和电气系统之间的协调和配合,确保系统各部分之间的一致性和稳定性。
2.可靠性原则机电一体化系统设计要考虑到系统的可靠性,选择高品质的机械和电气元器件,确保系统长期稳定运行。
3.灵活性原则机电一体化系统设计要具有一定的灵活性,能够根据生产需求进行调整和改进,适应市场的变化。
4.通用性原则机电一体化系统设计要具有一定的通用性,可以适用于不同的生产场景和环境,提高系统的适用性和可扩展性。
5.安全性原则机电一体化系统设计要考虑到系统的安全性,确保生产过程中的操作安全和人员安全,防止事故的发生。
四、机电一体化系统设计的实施步骤1.需求分析首先进行生产需求分析,明确机电一体化系统的功能和性能要求,确定系统的基本架构和设计方案。
2.系统设计根据需求分析的结果,进行系统设计,包括机械结构设计、电气控制系统设计、传感器和执行器的选择等。
《机电一体化系统设计课程设计》设计说明书一、课程设计的目的机电一体化系统设计是一门综合性很强的课程,通过本次课程设计,旨在让我们将所学的机电一体化相关知识进行综合运用,培养我们独立设计和解决实际问题的能力。
具体来说,课程设计的目的包括以下几个方面:1、加深对机电一体化系统概念的理解,掌握系统设计的基本方法和步骤。
2、熟悉机械、电子、控制等多个领域的知识在机电一体化系统中的融合与应用。
3、培养我们的工程实践能力,包括方案设计、图纸绘制、参数计算、器件选型等。
4、提高我们的创新思维和团队协作能力,为今后从事相关工作打下坚实的基础。
二、课程设计的任务和要求本次课程设计的任务是设计一个具有特定功能的机电一体化系统,具体要求如下:1、确定系统的功能和性能指标,包括运动方式、精度要求、速度范围等。
2、进行系统的总体方案设计,包括机械结构、驱动系统、控制系统等的选择和布局。
3、完成机械结构的详细设计,绘制装配图和零件图。
4、选择合适的驱动电机、传感器、控制器等器件,并进行参数计算和选型。
5、设计控制系统的硬件电路和软件程序,实现系统的控制功能。
6、对设计的系统进行性能分析和优化,确保满足设计要求。
三、系统方案设计1、功能需求分析经过对任务要求的仔细研究,确定本次设计的机电一体化系统为一个小型物料搬运机器人。
该机器人能够在规定的工作空间内自主移动,抓取和搬运一定重量的物料,并放置到指定位置。
2、总体方案设计(1)机械结构采用轮式移动平台,通过直流电机驱动轮子实现机器人的移动。
机械手臂采用关节式结构,由三个自由度组成,分别实现手臂的伸缩、升降和旋转,通过舵机进行驱动。
抓取机构采用气动夹爪,通过气缸控制夹爪的开合。
(2)驱动系统移动平台的驱动电机选择直流无刷电机,通过减速器与轮子连接,以提供足够的扭矩和速度。
机械手臂的关节驱动选择舵机,舵机具有控制精度高、响应速度快等优点。
抓取机构的气缸由气泵提供气源,通过电磁阀控制气缸的动作。
机电的一体化系统设计机电一体化系统设计是指将机械、电子、电气、自动化等技术相结合的一种综合性设计。
它通过将机械结构、电气设备、传感器、执行器和控制系统等有机地结合在一起来实现系统的功能。
一体化设计能够提高系统的整体性能和运行效率。
因为机械、电子和自动化等不同专业领域的知识被集成在一起,可以更好地协同工作,提升系统的综合效益。
在机电一体化系统设计中,首先需要进行系统分析和需求分析,明确系统的功能和性能要求。
然后进行系统设计,包括机械结构设计、电气设计、自动化控制设计等方面。
机械结构设计是机电一体化系统设计的重要组成部分。
在设计机械结构时,需要考虑系统的稳定性、刚度和强度等因素。
同时还需要考虑材料的选择和加工工艺的优化,以提高系统的可靠性和寿命。
电气设计是机电一体化系统设计的另一个重要方面。
在电气设计时,需要选择适当的电气设备和元件,并设计电路图和布线图。
同时还需要进行电气参数计算和控制系统设计,以实现对整个系统的控制和监测。
此外,还需要考虑系统的电磁兼容性和安全性等因素。
自动化控制设计是机电一体化系统设计中的关键一环。
通过使用传感器和执行器,可以实现对系统的自动化控制。
在自动化控制设计中,需要选择合适的传感器和执行器,并进行控制算法的设计和优化。
同时还需要进行系统的建模和仿真,以验证设计的正确性和可行性。
在机电一体化系统设计中,还需要考虑系统的可拓展性和模块化设计。
通过模块化设计,可以将整个系统划分为若干个独立的子系统,每个子系统都具有独立的功能和自主控制。
这样可以提高系统的灵活性和可维护性,同时也方便对系统进行拓展和更新。
此外,在机电一体化系统设计中还需要考虑系统的能效和环保性。
通过优化设计和选择节能设备和材料,可以提高系统的能源利用效率和减少对环境的影响。
综上所述,机电一体化系统设计是一项复杂而综合的工作。
它需要综合运用机械、电子、自动化等多个学科的知识,进行系统的分析、设计和优化。
只有通过科学的设计和综合考虑各个方面的因素,才能确保机电一体化系统具有良好的性能和可靠性。