tg、tga热重分析仪
- 格式:ppt
- 大小:953.50 KB
- 文档页数:4
TG基本原理热重分析仪(TG)基本原理热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于⼀定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程。
⼴泛应⽤于塑料、橡胶、涂料、药品、催化剂、⽆机材料、⾦属材料与复合材料等各领域的研究开发、⼯艺优化与质量监控。
利⽤热重分析法,可以测定材料在不同⽓氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进⾏分析(包括利⽤TG测试结果进⼀步作表观反应动⼒学研究),可对物质进⾏成分的定量计算,测定⽔分、挥发成分及各种添加剂与填充剂的含量。
热重分析仪的基本原理⽰意如下:炉体(Furnace)为加热体,在由微机控制的⼀定的温度程序下运作,炉内可通以不同的动态⽓氛(如N2、Ar、He等保护性⽓氛,O2、air等氧化性⽓氛及其他特殊⽓氛等),或在真空或静态⽓氛下进⾏测试。
在测试进程中样品⽀架下部连接的⾼精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线(TG曲线)。
当样品发⽣重量变化(其原因包括分解、氧化、还原、吸附与解吸附等)时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发⽣的温度区域,并定量计算失/增重⽐例。
若对TG曲线进⾏⼀次微分计算,得到热重微分曲线(DTG曲线),可以进⼀步得到重量变化速率等更多信息。
典型的热重曲线如下图所⽰:100200300400500600700800900/ 温度 /℃406080100120140TG /%-20-15-10-5D TG /(%/m in)7样品称重:7.95mg 20K/min 升温速率:20K/min N2⽓氛:N2 Al2O3, 坩埚:Al2O3, 敞开式TG TG 典型图谱(图中所⽰为⼀⽔合草酸钙的分解过程)DTG DTG 曲线TG TG 曲线: -12.3%: -19.2%: -30.1% : 38残余质量: 38.4% 质量变化质量变化: 186峰值: 186.2 .2 ℃: 518峰值: 518.3 .3 ℃: 770峰值: 770.6 .6 ℃ : 489起始点: 489.2 .2 ℃ : 155起始点: 155.8 .8 ℃: 710起始点: 710.8 .8 ℃质量变化图谱可在温度与时间两种坐标下进⾏转换。
tga热重分析仪TGA热重分析仪是一种常用的实验仪器,它可以用于测量材料在加热过程中的质量变化以及热分解过程的温度范围和热分解特性。
TGA 是热重分析(Thermogravimetric Analysis)的缩写,利用其测量原理可以对各种材料的热稳定性和失重过程进行研究和分析。
TGA热重分析仪主要由加热炉、样品皿、天平、温度传感器、温度控制系统等组成。
在实验过程中,待测样品被放置在样品皿中,然后放入TGA热重分析仪中。
随后,通过控制加热炉的温度,对样品进行加热,并实时记录样品的质量变化,同时通过温度传感器对样品进行温度检测和控制。
TGA热重分析仪的原理是基于样品在加热过程中质量的变化来分析材料的性质。
当样品受热时,化学反应、热解、失水和失重等过程会导致样品质量的变化。
通过测量样品质量的变化,可以获得热解温度、失重速率等信息。
这些信息可以被广泛应用于材料科学、化学工程、聚合物材料、燃料研究等领域。
TGA热重分析仪在材料科学研究中有着广泛的应用。
例如,它可以用于研究材料的热稳定性,通过测量材料在不同温度下的失重情况来评估材料在高温环境下的稳定性。
此外,TGA还可以用于研究材料的热分解特性,通过分析样品的失重曲线和失重速率来确定材料热分解的温度范围和特征。
在聚合物材料领域,TGA热重分析仪也是一种常用的测试方法。
通过测量聚合物材料在加热过程中的失重情况,可以得到聚合物材料的热稳定性、热分解温度以及热解反应的动力学参数。
这些数据可以用于评估聚合物材料的可用性、稳定性和耐高温性能。
除了以上的应用领域,TGA热重分析仪还可以用于燃料研究、催化剂研究以及环境科学等领域。
在燃料研究中,TGA可以用于测量燃料的热值、燃烧性能和燃烧过程中的质量变化情况。
在催化剂研究中,TGA可以用于评估催化剂的稳定性、活性和失重过程。
在环境科学中,TGA可以用于分析和评估大气颗粒物、污染物和有机物的热分解特性。
综上所述,TGA热重分析仪是一种非常重要的实验仪器,可以通过测量样品在加热过程中的质量变化来研究和分析材料的热稳定性、热分解特性以及失重情况。
热重分析仪(TGA)分析测试及应用热重分析仪(Thermo Gravimetric Analyzer)是一种利用热重法检测物质温度-质量变化关系的仪器。
热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。
分析方法当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。
这时热重曲线就不是直线而是有所下降。
通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质,(如CuSO4·5H2O 中的结晶水)。
从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。
通过TGA实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
热重分析通常可分为两类:动态(升温)和静态(恒温)。
热重法试验得到的曲线称为热重曲线(TG曲线),TG 曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。
工作原理热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。
最常用的测量的原理有两种,即变位法和零位法。
所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。
零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。
由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。
分析应用热重法的重要特点是定量性强,能准确地测量物质的质量变化及变化的速率,可以说,只要物质受热时发生重量的变化,就可以用热重法来研究其变化过程。
热重法所测的性质包括腐蚀,高温分解,吸附/解吸附,溶剂的损耗,氧化/还原反应,水合/脱水,分解,黑烟末等,目前广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。
TGA原理仪器介绍及应用TGA(热重分析仪)是一种非常常见且广泛应用于材料科学和化学研究领域的仪器。
TGA基于样品在加热过程中失重的原理,通过测量样品质量随温度变化的关系,可以获得样品热分解、蒸发、氧化和还原等反应的详细信息。
本文将介绍TGA的原理、仪器构造以及应用领域。
TGA的原理:TGA的原理基于样品质量的变化。
当样品在升温的过程中发生物理或化学变化时,会产生质量损失或质量增加。
这些质量变化可以是由于样品的热分解、蒸发、氧化、还原以及失水等反应引起的。
在TGA中,样品被置于一个恒定温度下的炉中,并通过比较样品前后的质量差异来确定该样品的失重情况。
TGA的仪器构造:TGA通常包含以下几个主要部件:样品炉、天平、温度控制系统和数据采集系统。
样品炉是一个能够加热样品的腔体,通常由石英制成以保证高温下的炉内环境。
天平用于测量样品的质量变化,当样品失重时,天平可以检测到质量的变化。
温度控制系统用于控制样品炉的温度,可以精确地控制样品的升温速率和升温范围。
数据采集系统用于记录和分析样品热分解和质量变化的数据,通常采用计算机进行数据处理和存储。
TGA的应用:TGA在材料科学和化学研究中有广泛的应用,以下列举几个常见的应用领域:1.热稳定性研究:TGA可以用于评估材料的热稳定性,检测材料在不同温度下的质量损失情况,从而确定材料的热分解温度和热分解反应的机理。
2.含水率测定:TGA可以用于测量材料的含水率,通过加热样品并测量样品的质量损失,可以得到样品中的水分含量。
3.材料蒸发和升华性质研究:TGA可以用于研究材料的升华性质,包括升华温度和升华速率等,对于研究材料的结构和纯度有重要意义。
4.聚合物热性能研究:TGA可以用于研究聚合物的热性能,例如热分解温度、热分解速率等,对于聚合物材料的设计和开发具有指导意义。
5.催化剂热稳定性研究:TGA可以用于评估催化剂的热稳定性,通过在TGA中加热催化剂并观察质量变化,可以了解催化剂在高温下的失活机理。
热重分析仪原理热重分析仪(TGA)是一种广泛应用于材料科学、化学、生物学等领域的分析仪器,它通过对样品在受热条件下的质量变化进行监测和分析,来研究样品的热稳定性、热分解过程、吸附性能等。
热重分析仪的原理主要基于样品在受热条件下质量的变化,下面将详细介绍热重分析仪的原理。
首先,热重分析仪的基本原理是利用样品在受热条件下的质量变化来进行分析。
在实验中,样品被置于热重分析仪的样品盘中,并且在恒定的升温速率下进行加热。
在加热的过程中,热重分析仪会不断地记录样品的质量变化,从而得到样品在不同温度下的质量-温度曲线。
通过分析这条曲线,可以得到样品的热重损失情况,从而了解样品的热稳定性和热分解过程。
其次,热重分析仪的原理还涉及到样品在受热条件下的物理、化学变化。
在样品受热的过程中,会发生各种物理和化学反应,比如样品的蒸发、热分解、氧化等。
这些反应会导致样品的质量发生变化,从而在热重-温度曲线上留下明显的变化趋势。
通过分析这些变化趋势,可以了解样品的热分解温度、热分解产物等信息。
另外,热重分析仪的原理还涉及到样品的吸附性能。
在实验中,可以通过在热重分析仪中加入气体(比如氮气、空气)来研究样品的吸附性能。
在样品受热的过程中,吸附在样品表面的气体会逐渐被释放出来,从而导致样品的质量发生变化。
通过分析质量-温度曲线上的吸附峰,可以得到样品的吸附量、吸附热等信息。
总的来说,热重分析仪的原理是基于样品在受热条件下的质量变化来进行分析。
通过对样品的质量-温度曲线进行分析,可以得到样品的热重损失情况、热分解温度、吸附性能等信息。
这些信息对于材料科学、化学、生物学等领域的研究具有重要意义,因此热重分析仪在科研和生产中得到了广泛的应用。
热重分析仪的原理与适用热重分析仪(Thermogravimetric Analyzer, 简称TGA)是一种测试材料物性的实验仪器。
它利用样品在一定温度条件下质量随时间的变化,测量材料在不同温度下的热重变化,从而分析材料在不同温度下的热稳定性、降解温度、失重率等参数。
热重分析技术已广泛应用于材料科学、化学、环境科学、生物医学等领域。
原理TGA主要由天平、炉膛、温度控制系统、气体流动控制系统和检测系统等组成。
在实验中,将样品放置在包括天平的仪器中,并控制间歇加热,实时测量样品随温度变化的质量变化,在一定的温度范围内计算样品的热重衰减曲线。
在操作过程中是通过电磁炉等装置升温,从而使测量材料的蒸发和焦化变得可供测量。
热重数据的分析可通过计算样品失重速率来实现。
因为TGA系统本身具有高精度的天平传感器,因此可测量极小质量的样品。
另外,有些TGA可以与其他分析仪器(如DSC、MS等)联用,进行复杂性、多种分析。
适用TGA广泛应用于陶瓷材料、高分子材料、有机无机杂化材料、催化剂、食品添加剂等领域。
以陶瓷材料为例,热重分析可以用来研究陶瓷材料的降解行为,尤其是针对一些高温烧结陶瓷材料,可以使用TGA来研究其中的氧化还原反应机理。
在高分子材料中,可以通过TGA的方式来测量这些材料在不同温度下的降解过程,研究其热稳定性和降解物的生成机理。
在有机无机杂化材料研究中,热重分析可用于研究有机物与无机物相互作用的过程,探究其热稳定性。
而在催化剂研究领域,TGA也是必不可少的仪器。
TGA可以用来研究催化剂或催化剂载体的物化性质、比表面积、孔径分布、孔结构等,同时通过TGA-DTA联用方法可以研究催化剂的热迁移性质和降解动力学过程。
总的来说,TGA是一个非常全面、广泛用途的实验仪器,可以用于研究各种材料在特定条件下的热失重过程,是许多实验室不可或缺的仪器之一。
热重分析仪常见故障原因及解决方案热重分析仪(Thermogravimetric analyzer,TGA)是一种测量材料质量随温度和时间的变化情况的仪器。
该仪器能够定量评估材料的热稳定性、分解机理、含水率等特性。
在实际使用中,热重分析仪可能会遇到一些故障,本文将介绍常见故障原因及解决方案。
故障一:残留质量不为零使用热重分析仪进行样品测试时,如果测试结束后残留质量不为零,可能出现以下几种情况:1.样品存在吸附物,例如水分、空气、溶剂等。
2.仪器内部有杂质或污垢。
3.样品中含有分子筛、活性炭等多孔材料。
对于这些情况,可以尝试以下解决方案:1.在测试样品之前,将样品放置于真空烘箱中,并加热1-2小时,去除吸附物。
2.定期清洁热重分析仪以保证内部的干净装置状态。
3.对于多孔材料的样品,考虑使用气流式热重分析仪(TG-DSC-MS)进行测试,避免干扰。
故障二:结果误差较大在进行热重分析仪测试时,若结果误差较大,可能是由于以下原因导致:1.操作不当。
2.样品质量不均匀。
3.测量过程中有干扰因素。
尝试以下解决方案:1.在进行测试之前,仔细阅读使用说明书,了解仪器操作方法。
2.在测量之前,使用精密量天平对样品进行称量,并保障样品质量的均匀性。
3.对于热重分析仪测试过程中不能避免的干扰,采用平均值添加法处理数据。
故障三:加热速率慢在进行热重分析仪测试时,若加热过程过于缓慢,可能是由以下原因导致:1.加热体不良或者老化损坏。
2.加热功率不足。
针对以上情况,应尝试以下解决方案:1.及时对老化损坏的陶瓷加热体进行更换。
2.检查加热功率是否与核定参数匹配,如不匹配可通过设置加热功率达到要求。
以上仅是热重分析仪可能出现的一些常见故障及其解决方案,实际情况可能更为复杂,请在日常使用及维护过程中,仔细阅读说明书、配合厂家维护人员,及时处理故障,保障实验的准确性。
热重分析热重分析(Thermogravimetric Analysis,TG或TGA),是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组份。
TGA在研发和质量控制方面都是比较常用的检测手段。
热重分析在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。
目录多少物质(如CuSO4·5H2O中的结晶水)。
从热重曲线上我们就可以知道CuS O4·5H2O中的5个结晶水是分三步脱去的。
TGA 可以得到样品的热变化所产生的热物性方面的信息。
种类热重分析通常可分为两类:动态法和静态法。
1、静态法:包括等压质量变化测定和等温质量变化测定。
等压质量变化测定是指在程序控制温度下,测量物质在恒定挥发物分压下平衡质量与温度关系的一种方法。
等温质量变化测定是指在恒温条件下测量物质质量与温度关系的一种方法。
这种方法准确度高,费时。
热重分析仪结构2、动态法:就是我们常说的热重分析和微商热重分析。
微商热重分析又称导数热重分析(Derivative Thermogravimetry,简称DTG),它是TG曲线对温度(或时间)的一阶导数。
以物质的质量变化速率(dm/dt)对温度T(或时间t)作图,即得DTG曲线。
仪器构造进行热重分析的基本仪器为热天平,它包括天平、炉子、程序控温系统、记录系统等几个部分。
除热天平外,还有弹簧秤。
热重分析仪数据分析热重分析仪结构:1、试样支持器;2、炉子;3、测温热电偶;4、传感器;5、平衡锤;6、阻尼和天平复位器;7、天平;8、阻尼信号影响因素影响热重法测定结果的因素,大致有下列几个方面:仪器因素,实验条件和参数的选择,试样的影响因素等等。
1、浮力及对流的影响。
浮力和对流引起热重曲线的基线漂移。
热天平内外温差造成的对流会影响称量的精确度。
解决方案:空白曲线、热屏板、冷却水等。
2、挥发物冷凝的影响。
解决方案:热屏板。