计算方法第三章
- 格式:ppt
- 大小:360.50 KB
- 文档页数:31
第三章习题答案1.分别用梯形公式、Simpson公式、Cotes公式计算积分1,I=⎰并估计误差。
解:1)用梯形公式有:()()110.51[10.5]10.42678242f f⎛-≈+=+≈⎝⎭⎰()()()333333220.512.6042107.36571012124Tb aE f fηηη-----⎛⎫''=-=--=⨯≤⨯⎪⎝⎭事实上,()()()()()()110.430964410.50.510.4267767210.50.510.00418772Tf x II f fE f f f===-≈+=⎡⎤⎣⎦-∴=-+=⎡⎤⎣⎦⎰⎰2)Simpson公式()110.53111410.43093 642122f f f⎛-⎡⎤⎛⎫⎛⎫≈++=+=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭⎰[]()()44744211111522 1.1837710180218028Sb a b aE f fηη--⎛⎫--⎪⎛⎫--⎛⎫=-=--≤⨯⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭3122()''()48T f fb aE事实上,()()()10.510.50.510.5410.000030462SE f f f f-⎡+⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦⎰3)由Cotes公式有:()() ()111537270.5321232719084814.9497525.2982210.3923029.9332670.43096180f f f f f-⎡⎤⎛⎫⎛⎫⎛⎫≈++++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=++++=⎰15732127)18088()6116211294522 2.697410945464C E f η--⎛⎫⨯ ⎪⎛⎫=-⨯-≤⨯ ⎪ ⎪⎝⎭⎪⎝⎭7(6)945*42()()82Cf b aEf事实上,()0.0000003C E f =2.证明Simpson 公式()2.8具有三次代数精度。
计算方法第三章习题答案计算方法第三章习题答案计算方法是一门涵盖了数值计算和计算机编程的学科,它在现代科学和工程中扮演着重要的角色。
第三章是计算方法课程中的重要章节,主要涉及到数值计算中的误差分析和插值方法。
本文将为大家提供第三章习题的详细答案,帮助读者更好地理解和应用这些概念。
1. 误差分析误差分析是计算方法中非常重要的一部分,它帮助我们理解和评估数值计算中的误差来源。
以下是一些常见的误差类型:- 绝对误差:绝对误差是指数值计算结果与真实值之间的差异。
它可以通过计算两者之差来得到。
- 相对误差:相对误差是指绝对误差与真实值之间的比值。
通常以百分比的形式表示。
- 截断误差:截断误差是由于在计算过程中舍入或截断数字而引入的误差。
它通常是由于计算机的有限精度导致的。
- 舍入误差:舍入误差是由于将无限位数的小数截断为有限位数而引入的误差。
它通常是由于计算机的有限精度或计算方法的近似性质导致的。
2. 插值方法插值方法是一种用于通过已知数据点来估计未知数据点的技术。
以下是一些常见的插值方法:- 线性插值:线性插值是一种简单的插值方法,它假设两个已知数据点之间的未知数据点的取值在直线上。
通过已知数据点的斜率和截距,我们可以计算出未知数据点的值。
- 拉格朗日插值:拉格朗日插值是一种使用多项式来逼近已知数据点的方法。
它通过构造一个满足通过已知数据点的多项式来估计未知数据点的值。
- 牛顿插值:牛顿插值是一种使用差商来逼近已知数据点的方法。
它通过构造一个满足通过已知数据点的差商多项式来估计未知数据点的值。
3. 习题答案以下是一些第三章习题的答案,供大家参考:- 习题1:已知函数f(x)在区间[a, b]上连续,且在[a, b]上的导数存在且连续,证明存在一点c∈(a, b),使得f(b) - f(a) = (b - a)f'(c)。
这是拉格朗日中值定理的一个特例,根据定理的条件,我们可以得到上述结论。
- 习题2:已知函数f(x)在区间[a, b]上连续,且在(a, b)内可导,证明存在一点c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)。
第三章 能带的计算方法周期场中的单电子波动方程除了少数几种简单的理想模型外,都只能用近似方法求解。
目前,主要的近似方法有:准自由电子近似,紧束缚近似,原胞法,正交化平面波法,赝势法和P K•法等。
每一种近似方法都有其优点,也有其局限性,只能用于一定的情况。
在这一章中简单介绍两种。
§3-1准自由电子近似法在这种近似方法中假设原子的外层电子在晶体的周期性势场中运动,且势能的周期性变化部分很小,可作为微扰来处理。
这种处理,电子的运动一方面和自由电子相近,另一方面又能反映出周期场中运动的电子所具有的周期性特征。
这种方法较粗糙,适用于金属中的电子。
一.一维情况设周期为a 、长度为L 的线状晶体沿x 方向。
电子波动方程为)()()](2[222x E x x V dxd m ψψ=+- (3-1) 式中,∑∑≠≠+=+=02000)(m ax mi m m x iK m eV V e V V x V m π (m aK m π2=为任意倒格矢)具有晶格的周期性,V 0是电子在晶体中的平均势能。
由于V(x)为实数,故有*m m V V =-令:W(x)为势函数中周期性变化部分,则 ∑≠=02)(m ax mi meVx W π (3-2)于是波函数可改写为)()()](2[0222x E x x W V dxd m ψψ=++- (3-3) 根据准自由电子近似的基本假设,W(x)很小,可当作微扰。
从而可先求解无微扰的电子波动方程)()(]2[0000222x E x V dxd m k k ψψ=+- (3-4) 其解为平面波ikx k e Lx 1)(0=ψ (3-5)相应的能量谱值02202)(V mk k E += (3-6) 这里,k 是平面波的波矢量。
在周期性边界条件下,k 只能取断续值:l Lk π2=, ,3,2,1,0±±±=l 这些满足周期性边界条件的平面波彼此正交并归一化'''',,0)(20)(11l l k k L Lxl l i L x k k i dx e Ldx eL δδπ===⎰⎰-- (3-7)当存在周期性变化的微扰W(x)时,波动方程的零级能量谱值为E 0(k)。
第三章 插值法与最小二乘法1. 已知下列表值x 10 11 12 13 lnx 2.3026 2.3979 2.4849 2.5649用线形插值与二次Lagrange 插值计算ln11.75的近似值,并估计误差。
解:(1)线形插值说明:当插值点落在被插区间之内,这种方法称为内插法,此时插值精度较好。
x ],12,11[75.11∈=故选择x 0=11,x 1=12,求线形插值函数。
11001y x l y x l x P ⨯+⨯=∴)()()(=10100101y x x x x y x x x x ⨯--+⨯--=4849.21112113979.2121112⨯--+⨯--x x=2.4849(x-11)-2.3979(x-12))1275.11(3979.2)1175.11(4849.2)75.11(75.11ln 1---=≈∴p =2.46315(2)二次拉格朗日插值选择插值结点:x 12,11,10210===x x P 2211002)()()()(y x l y x l y x l x ++= =212021012101200201021))(())(())(())(())(())((y x x x x x x x x y x x x x x x x x y x x x x x x x x ----+----+----=4849.2)1112)(1012()11)(10(3979.2)1211)(1011()12)(10(3026.2)1210)(1110()12)(11(----+----+----x x x x x x=1.1513(x-11)(x-12)-2.3979(x-10)(x-12)+1.24425(x-10)(x-11))1175.11)(1011075(24245.1)1275.11)(1075.11(3979.2)1275.11)(1175.11(1513.1)75.11(75.11ln 2--+-----=≈∴P =1.15133125.124245.14375.03979.2)1875.0(⨯+⨯+-⨯ =2.4639282. 已知下列表值求f(x)在[0,2]之间零点近似值。