仪控制系统接地和屏蔽
- 格式:pptx
- 大小:20.69 MB
- 文档页数:55
屏蔽技术1屏蔽的定义屏蔽可通过各种屏蔽体来吸收或反射电磁场骚扰的侵入, 达到阻断骚扰传播的目的; 或者屏蔽体可将骚扰源的电磁辐射能量限制在其内部, 以防止其干扰其它设备。
(对两个空间区域之间进行金属的隔离, 以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。
)1. 一种是主动屏蔽, 防止电磁场外泄;2. 一种是被动屏蔽, 防止某一区域受骚扰的影响。
屏蔽就是具体讲, 就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来, 防止干扰电磁场向外扩散; 用屏蔽体将接收电路、设备或系统包围起来, 防止它们受到外界电磁场的影响。
因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗) 、反射能量(电磁波在屏蔽体上的界面反射) 和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波) 的作用, 所以屏蔽体具有减弱干扰的功能。
2.屏蔽的分类屏蔽可分为电场屏蔽、电磁屏蔽和磁屏蔽三类。
电场屏蔽又包括静电场屏蔽和交变电场屏蔽; 磁场屏蔽又包括静磁屏蔽和交变磁场屏蔽。
1. 静电屏蔽常用于防止静电耦合和骚扰, 即电容性骚扰;2. 电磁屏蔽主要用于防止高频电磁场的骚扰和影响;3. 磁屏蔽主要用于防止低频磁感应, 即电感性骚扰。
2.1静电场屏蔽和交变电场屏蔽用来防止静电耦合产生的感应。
屏蔽壳体采用高导电率材料并良好接地,以隔断两个电路之间的分布电容偶合,达到屏蔽作用。
静电屏蔽的屏蔽壳体必须接地。
以屏蔽导线为例,说明静电屏蔽的原理。
静电感应是通过静电电容构成的,因此,静电屏蔽是以隔断两个电路之间的分布电容。
静电感应,既两条线路位于地线之上时,若相对于地线对导体1 加有V1的电压,则导体2 也将产生与V1成比例的电V2。
由于导体之间必然存在静电电容,若设电容为C10、C12 和C20,则电压V1 就被C12 和C20 分为两部分,该被分开的电压就为V2,可用下式加以计算;导体1 和2 之间加入接地板便可构成静电屏蔽。
仪器仪表的抗干扰措施1.电磁屏蔽:电磁波是仪器仪表最常见的干扰源之一、为了保护仪器仪表不受电磁波的干扰,可以在仪器周围设置金属屏蔽罩或屏蔽房,有效地隔离了外界的电磁波。
同时,在设计仪器的电路时,可以采用差模输入、偏置电压屏蔽等技术,来提高仪器的抗电磁干扰能力。
2.过滤和滤波技术:在仪器的电源输入、信号输入和输出等接口处,可以加装滤波电路,对电源或信号进行过滤,除去高频噪声和电磁干扰。
滤波技术常用的方法有低通滤波、带通滤波等,可以根据具体的需求进行选择和调整。
3.地线和接地:仪器仪表的地线和接地是抗干扰的重要手段。
通过合理设计和布线,将仪器仪表的接地电路与其他设备的接地点连接在一起,形成共同的地点,从而减小仪器仪表受到的电磁干扰。
在接地线路中,还可以采用接地网络、电流环路的方法,来提高抗干扰能力。
4.逆变器和放大器设计:对于大部分仪器仪表来说,逆变器和放大器都是重要的部分。
在逆变器的设计过程中,可以采用串联电抗、并联电容等方法,对输入信号进行滤波和调节,减小干扰信号的影响。
在放大器的设计中,可以采用差分输入、共模抑制等方法,提高放大器的抗干扰能力。
5.绝缘和屏蔽技术:绝缘和屏蔽技术在仪器仪表的抗干扰措施中也是非常重要的一部分。
通过合理设计绝缘和屏蔽结构,可以在一定程度上将仪器与外界的干扰隔离开来,保护仪器的正常工作。
6.温度和湿度控制:温度和湿度的变化也可能对仪器的性能产生影响。
为了保证仪器仪表的稳定性和精确性,在使用仪器仪表的过程中要控制好环境的温湿度,并且对于一些对温度和湿度比较敏感的仪器,还可以采取外部冷却装置和湿度控制设备等措施。
总而言之,仪器仪表的抗干扰措施包括电磁屏蔽、过滤和滤波技术、地线和接地、逆变器和放大器设计、绝缘和屏蔽技术以及温度和湿度控制等。
只有采取有效的抗干扰措施,才能确保仪器仪表在复杂的工作环境中能够正常工作,提高仪器仪表的可靠性和准确性。
仪表自控系统的接地工程设计文章阐述了仪表自控系统接地的分类及主要原则。
参照相应标准规范,介绍了不同类型接地在工程中的实施方法。
结合工程实际经验,就设计人员在接地工程设计中易出现的错误和注意事项给出了建议。
關键词:仪表接地;等电位连接;屏蔽;抗干扰接地是仪表自控系统工程设计的重要环节,合理的接地系统是仪表自控系统安全可靠运行和操作人员人身安全的保障。
本文从设计人员的角度,通过对国标及行业规范的解读,结合工程经验,对仪表自控系统接地的工程设计方法及注意事项进行了阐述。
1 接地分类仪表自控系统接地按其作用分为安全接地和工作接地两大类。
安全接地用于保护人身安全和设备安全,其包括:保护接地、防静电接地、防雷接地。
工作接地是为了保障仪表及控制系统的正常工作,其包括:回路接地、屏蔽接地和本安接地。
1.1 安全接地保护接地是将用电仪表及设备正常时不带电的金属部分用接地线与大地相连。
当发生某些故障时,会造成这些正常时不带电的金属部分带危险电压,而保护接地线可以将这些危险电压迅速导入大地,避免人员触电和对用电设备造成损害。
此外,保护接地还可以防止静电的积聚。
防静电接地是将带静电物体或有可能产生静电的物体通过接地线与大地相连,防止静电电流窜入仪表及控制系统对人员和设备造成直接伤害和电磁干扰。
防雷接地是将雷电产生的雷电浪涌通过接地线导入大地、防雷接地包含外部防雷接地和内部防雷接地。
外部防雷由电气专业负责,不在本文讨论范围之内。
内部防雷接地包括电缆屏蔽的接地、机柜的屏蔽接地、浪涌保护器的接地等,由自控仪表专业负责。
1.2 工作接地回路接地是指在自动化系统和计算机等电子设备中,非隔离的信号需要建立一个统一的信号参考点并做接地,通常为直流电源的公共端。
屏蔽接地是将电缆的屏蔽层、排扰线、仪表的屏蔽接地端子做接地以消除电磁干扰。
还有一种屏蔽接地指的是控制室建筑物内的钢筋、金属门窗等连接起来,形成一个屏蔽网并接地,这种屏蔽接地由建筑专业负责。
在一般情况下,DCS控制系统需要两种接地:保护地和工作地(逻辑地、屏蔽地等)。
对于装有安全栅防爆措施的系统如化工行业所用的系统,还要求有本安地。
1.1.1保护地(CG,Cabinet?Grounding)?是为了防止设备外壳的静电荷积累、避免造成人身伤害而采取的保护措施。
DCS系统所有的操作员机柜、现场控制站机柜、打印机、端子柜等均应接保护地。
保护地应接至厂区电气专业接地网,接地电阻小于4Ω。
1.1.2逻辑地:也叫机器逻辑地、主机电源地,是计算机内部的逻辑电平负端公共地,也是+5V等的电源输出地。
如CPU的正负5伏、正负12伏的负端。
需要接入公共接地极。
1.1.3屏蔽地(AG,Analog?Grounding)?也叫模拟地,它可以把现场信号传输时所受到的干扰屏蔽掉,以提高信号精度。
DCS系统中信号电缆的屏蔽层应做屏蔽接地。
线缆屏蔽层必须一端接地,防止形成闭合回路干扰。
铠装电缆的金属铠不应作为屏蔽保护接地,必须是铜丝网或镀铝屏蔽层接地。
接入公共接地极。
1.1.4本安地?应独立设置接地系统,接地电阻≤4Ω。
本安地的接地系统应保持独立,与厂区电气地网或其它仪表系统接地网的距离应在5m以上。
1.2DCS系统接地方式?DCS系统一般接地方式1.2.1利用电气接地网作为DCS接地网,即与电气接地网共地;?1.2.2设DCS系统专用独立的接地网;1.2.3设DCS专用接地网,经接地线、再接至电气接地网;由于第三种接地方式与第二种接地方式有较多相同处,过去,计算机或DCS系统曾经较多的采用过专用的接地网。
但这种接地方式存在的缺点是:占地面积太大,投资高,电缆及接地网钢材耗量大,距厂房有相当的距离(因不易在厂房内找到合适的位置),管理、维护、测量及查找接地极和接地线不方便,且效果不甚良好。
根据实际运行表明,设置专用的DCS接地网是既困难又不安全的。
如某电厂曾因接地问题,造成机组跳闸数十次。
根据调查,不少电厂DCS后来改用电气接地网接地,取得了良好的效果。
一.动力电缆多芯动力电缆在电缆中间接头处,其电缆铠装、金属屏蔽层应各自又良好的电气连接并相互绝缘;在电缆终端头处,电缆铠装层、金属屏蔽层应用接地线分别引出,并应接地良好。
交流系统单芯电力电缆金属层接地方式和回流线的选择应符合设计要求。
对于后面一句话的理解,因为这里面涉及的情况比较复杂,需要考虑很多因素和进行一些计算,需要由设计院给出明确要求。
但是对于35KV 以下,线路不长的情况下一般都采用单点接地。
二.电气控制电缆铠装电缆的铠装两侧应进行保护接地。
电气控制电缆金属屏蔽层的接地方式应符合下列规定:1.计算机控制系统的模拟信号回路控制电缆屏蔽层不得构成两点或多点接地,应集中式一点接地;2.集成电路,微机保护的电流、电压和信号的控制电缆屏蔽层应再开关安置场所与控制室同时接地;除本条第1款、第2款情况外的控制电缆屏蔽层,当电磁感应的干扰较大时,宜采用两点接地;静电感应的干扰较大时,可采用一点接地;3.双重屏蔽或复合式总屏蔽宜对内、外屏蔽分别采用一点、两点接地。
三.仪表电缆铠装电缆的铠装两侧应进行保护接地。
仪表电缆的屏蔽层应在控制室仪表盘柜侧接地,同一回路的屏蔽层应有可靠的电气连续性,不应浮空或重复接地。
在中间接线箱内,主电缆分屏蔽层应用端子将对应的二次电缆屏蔽层进行连接,不同的屏蔽层应分别连接,不应混接,并应绝缘。
综上所述铠装电缆的两侧是都需要进行接地的,这里介绍几种常规的电缆铠装层接地方式。
1. 使用gland对铠装层进行接地。
铠装层通过gland内部的两个小组件C和R来保证铠装层与整个gland 的电气导通性。
2. 使用cable transit对铠装层接地,应用场景可参考下图。
这个就需要使用特制的模块,我从Roxtec网站上随便找了一个能够用来实现接地功能产品。
但是这种型制的总体造价较高,相对于gland 来说使用的不是很广泛。
3. 使用铜编织带和恒力弹簧对铠装层进行接地,这个现在主流的成套高低压电缆终端制作套装里都配套的这些。
仪表和控制系统接地和屏蔽1 仪表和控制系统接地的作用仪表和控制系统接地的作用有两个:一是安全,即保护人身安全和仪表及控制系统的安全;二是保障仪表和控制系统稳定、准确地运行,也就是保证信号通畅、抗御各种干扰。
2 仪表和控制系统接地的分类根据上述接地目的,仪表和控制系统的接地可作如下分类。
2.1保护接地、静电接地用电仪表的金属外壳及自控设备正常不带电的金属部分,由于各种原因(如绝缘破坏)而有可能带危险电压者,均应作保护接地。
保护接地就是给危险电压提供一条通路,使之不经过人体。
针对危险电压,各国都有安全电压值的规定。
有些国家规定为50V和25V,日本规定为60V,我国习惯采用36V和12V,有些规定采用36V。
绝缘体或高电阻体由于感应或摩擦等原因均可能造成电荷积聚。
积聚的电荷可能对仪表和控制信号造成干扰,静电荷放电可能损坏仪表设备。
为防止静电的危害,一方面采取措施抑制静电的产生,另一方面应采用接地的方法给静电提供宣泄的通路,使之不能积聚。
已作保护接地的地方,即可认为已作了静电接地。
2.2工作接地工作接地又可分为信号回路接地、屏蔽接地和本安接地。
在仪表和控制系统中,信号分为隔离信号和非隔离信号,隔离信号一般可以不接地,非隔离信号需要建立一个公共参考点(一般为直流电源的负极)。
同时,这种电路的共模抑制电压通常很小,为了减少由此引进的共模干扰,也需对此公共点实行接地。
屏蔽接地是用来降低电磁场干扰、电缆的屏蔽层、排扰线、电缆保护管、电缆槽等均应接地才能起到屏蔽作用。
本安接地是指齐纳安全栅的接地(隔离型安全栅采用了隔离保护技术,不必作专门的接地)。
一般齐纳安全栅由直流24~30V供电,因此齐纳安全栅接地必须与直流电源公共端相连接。
另一方面,为了实现对交流短路的保护,安全栅接地又必须与交流供电中线连接。
3 仪表和控制系统的接地方式3.1单独接地早期国内一些规定及某些DCS制造厂要求,仪表和控制系统的保护接地接入电气安全接地网,工作接地则采用独立的、干净的接地装置与大地相接,两种接地网之间距离至少保持5m。
1.0. 1本规适用于石油化工企业自动控制工程的仪表、PLC、DCS、计算机系统等的接地设计,装置的改造可参照执行。
本规不适用于操作控制室、DCS机房、计算机机房等的防靜电接地设计。
1.0. 2接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。
1.0. 3执行本规时,尚应符合现行有关标准规的要求。
2保护接地2.0. 1用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。
它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。
2.0. 2 24V或低于24Y供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。
2.0. 3安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。
3工作接地3.0. 1仪表、PLC、DCS、计算机系统等,应作工作接地。
工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。
3.0. 2当仪表、PLC、DCS、计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。
3.0. 3当PLC、DCS、计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。
3. 0. 4仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屛蔽接地。
除信号源本身接地者外,屏蔽接地应在控制室侧实施。
3.0.5本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。
3. 0. 6本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一4仪表系统防雷接地4.0. 1位于多雷击区或强雷击区的石油化工装置,当控制室PLC、DCS、计算机系统仪表电缆引入处及现场仪表已设置了电涌保护器时,电涌保护器应进行仪表系统防雷接地。
仪表控制系统安全小常识化工厂任何一个测量仪表出现故障,都将会对整个生产工艺带来麻烦,甚至造成生产工艺的中断或引起安全问题。
1.切勿把信号电缆与供电电缆混用一根多心电缆。
2.氧管线仪表设备维护切勿粘油,禁油变送器及压力表切勿与普通表混装。
3.维修仪表拆线时,一定得注意把线头包好,防止短路。
4.电缆不应有中间接头。
5.点的屏蔽接地,一般在控制室侧屏蔽接地。
6.防护软管一定要低于仪表进线口防止仪表进水。
7.漏天仪表应该增设仪表保护箱或用尼龙塑料袋包裹。
8.电缆在槽架中敷设时,本安电缆、电源电缆、信号电缆要用隔板分开。
9.在接线时,补偿导线不能用接线鼻子(片),避免两种不同导体接触,引起测量误差。
10.生产时,如果仪表要处理问题,包括室内和室外,一定要按手续或规程办理,尤其要通知到操作人员,有时还必须要有书面签字。
11.遇有防雷地区现场仪表经浪涌保护器后接入安全栅再接入DCS、SIS等控制系统,为避免多余的柜间接线,现场机柜室内的浪涌保护器与相应回路的安全栅在机柜内尽可能同侧安装。
12.控制室一定要做好防小动物的措施,就因为老鼠在ESD卡件上面撒尿引起整个装置停车,损失可谓大。
13.仪表安装前一定要完成单体调试,安装完成后一定要完成回路调试才能联调。
14.在装置运行时,对仪表的维修,工艺人员一定要在场。
此点切记,出了问题就不是小事了。
15.仪表现场维护一定要和工艺人员联系,问明工艺状况带电源的仪表拆卸时一定要先关闭电源,再用万用表确实电源是否关闭,要知道生命是自己的。
16.流量仪表设计时,一定要根据测量介质、温度、压力选用合适的流量计类型,做好流量补偿。
安装时应注意流量仪表的各种特殊要求。
17.仪表设计进控制室的槽板时,为了防止雨水进入控制室,必须考虑上下弯,且做好密封处理。
18.仪表风从总管引进时,阀门必须在管线正中心以上,最好在管线上方90度的位置,避免风线中的赃物:进入仪表阀门中。
19.屏蔽层不得两头均接地;室外电缆保护管口应有防雨措施;防爆环境注意管口的密封。
仪表接地设计规范1.范围本规范规定了仪表接地分类、接地方法、接地系统、接地连接方法、接地系统接线、接地电阻等内容。
本规范规定的仪表及控制系统接地种类有:保护接地、工作接地、本质安全系统接地(以下简称:本安系统接地)、防静电接地和防雷接地。
本规范适用于企业新建及扩建项目的仪表及自动控制系统工程的仪表、分散型控制系统(DCS)、可编程序控制系统(PLC)、工业控制计算机系统(IPC)、安全仪表系统(SIS)、火灾及可燃气体和有毒气体检测系统(FGS)、过程控制计算机系统(PCCS)等的接地系统设计。
改造设计可参照执行。
2.接地分类2.1保护接地2.1.1保护接地(也称为安全接地)是为人身安全和电气设备安全而设置的接地。
仪表及控制系统的外露导电部分,正常时不带电,在故障、损坏或非正常情况时可能带危险电压,对这样的设备,均应实施保护接地。
2.1.2低于36V供电的现场仪表,可不做保护接地,但有可能与高于36V 电压设备接触的除外。
2.1.3当安装在金属仪表盘、箱、柜、框架上的仪表,与已接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。
2.2工作接地2.2.1仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。
本规定中的工作接地,均指仪表及控制系统工作接地。
2.2.2隔离信号可以不接地。
这里的“隔离”是指每一输入信号(或输出信号)的电路与其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。
2.2.3非隔离信号通常以直流电源负极为参考点,并接地。
信号分配均以此为参考点。
2.2.4仪表工作接地的原则为单点接地,信号回路中应避免产生接地回路,如果一条线路上的信号源和接收仪表都不可避免接地,则应采用隔离器将两点接地隔离开。
2.3本安系统接地2.3.1采用隔离式安全栅的本质安全系统,不需要专门接地。
2.3.2采用齐纳式安全栅的本质安全系统则应设置接地连接系统。
2.3.3齐纳式安全栅的本安系统接地与仪表信号回路接地不应分开。
关于仪表控制电缆屏蔽层接地原则要求
1、采用双层总屏蔽的控制电缆:
敷设到位后需测量两个总屏蔽层间的绝缘电阻,应符合要求。
外层总屏蔽在电缆两端接地,用于防雷电等强干扰,接相应区域的防雷接地端子。
内总屏蔽层用于信号抗干扰接地,采用单端接地方式,接到仪表控制室侧。
2、采用单层总屏蔽的电缆:
屏蔽层单端接地,接到仪表控制室侧。
3、分对屏蔽电缆屏蔽接地:单端接地,接到仪表控制室侧。
4、当存在仪表和电气联络信号时,将电气配电间视作装置现场。
5、要求保证电缆桥架、穿线管、仪表外壳接地良好
6、采用单端接地时,非接地端屏蔽层需剪断,所用信号剥线长度
在满足使用要求时尽可能短。
7、安装后剥线部位必须在设备内,不得将无屏蔽部位安装于设备
外以保证屏蔽效果。
系统接地三种方式:
1、浮地方式各电子装置的系统地连接,但与大地绝缘,即悬浮方式,适用于机电
控制、无模数转换、低增益低速的小型控制设备;
2、共地方式系统地直接接大地,适用于大规模或高速电控装置;
3、电容接地方式系统地通过数微法电容接大地,适用于系统地与大地可能有直流
或低频电位差的设备。
屏蔽接地八种方式:
1、低频信号电缆采用一端接地,一般在控制装置侧接地;
2、高频敏感信号电缆,屏蔽层两端接地;
3、热电偶传感器电缆,在被测装置侧接地;
4、双重屏蔽电缆,外屏蔽层接屏蔽地,内屏蔽层接系统地;
5、交流进线电缆,屏蔽层接保护地;
6、进线滤波器外壳接保护地;
7、电源变压器的屏蔽层接保护地,如有二次屏蔽层则接系统地或屏蔽地;
8、晶闸管脉冲变压器的屏蔽层接保护地,如有二次屏蔽层泽杰晶闸管阴极。
电控装置及成套设备的接地系统采用的接地方式:
1、浮地系统系统地线悬浮,保护与屏蔽地线接大地,适用于机电控制装置及小型
低速控制装置;
2、共地系统系统地、保护地、屏蔽地共接于装置的同一个接地端子,适用于独立
的小型高速控制装置。
3、接地母线系统将每一个装置的三种地线分别接到设备的接地母线,各个接地母
线分别接大地或一起接地,适用于大型设备、组合装置及强弱电混合的独立装置。
仪表系统接地设计规定-HG/T 20513-2000仪表系统接地设计规定-HG/T 20513-20001:保护接地:用电仪表的金属外壳及自控设备正常不带电的金属部分,由于各种原因(如绝缘破坏)而有可能带危险电压者,均应做保护接地。
低于36V的仪表如无特殊需要可以不做。
2:工作接地:工作接地的内容为信号回路接地,屏蔽接地,本质安全仪表接地。
3:信号回路接地:自动化系统和计算机等电子设备中,非隔离的信号需要建立一个统一的信号参考点,并应进行信号回路接地(通常为直流电源负极)。
隔离信号可以不接地。
这里指的隔离应当是每一输入(出)的信号和其它输入(出)信号的电路是绝缘的,对地是绝缘的,电源是独立的,相互隔离的。
4:屏蔽接地:仪表系统中用以降低电磁干扰的部件如电缆的屏蔽层,排扰线,仪表上的屏蔽接地端子均应做屏蔽接地。
在强雷区,室外架空区不带屏蔽层的多芯电缆,其备用芯应按照屏蔽接地。
5:本质安全仪表接地:本质安全仪表系统在安全功能上必须接地的部件,应根据仪表制造厂的要求作本安接地。
齐纳安全栅的汇流条必须与供电的直流电源公共端相连,齐纳安全栅的汇流条应做本安接地。
隔离型安全栅不需要接地。
6接地系统由接地联接和接地装置两部分组成。
接地联接包括:接地连线,接地汇流排,接地分干线,接地汇总板,接地干线。
接地装置包括:总接地板,接地总干线,接地极。
如下图1-17当电气专业已经把建筑物或装置的金属结构,基础钢筋,金属设备,管道,进线配电箱PE母排,接闪器引下线形成等电位联接时,仪表系统各类接地也应汇接到该总结地板,实现等电位联接,与电气装置合用接地装置与大地连接。
如图1-28现场仪表接地连接方法:现场仪表的接地一般应在控制室侧接地。
如图1-3对于被要求或必须在现场接地的现场仪表,应在现场侧接地。
如图1-4对于现场仪表和控制室同时要求接地的应将两个接地点做电气隔离。
如图1-5现场仪表接线箱两侧的电缆屏蔽层应在箱内跨接。