模拟信号数字化PPT课件
- 格式:ppt
- 大小:1.96 MB
- 文档页数:30
第2章信道与噪声模拟信号数字化技术第5章5.25.15.45.3引 言模拟信号的抽样抽样信号的量化脉冲编码调制(PCM)5.5增量调制(DM)5.6差分脉冲编码(DPCM)5.7音视频编码技术目录5.1引 言•将模拟信号转换成数字信号要经过抽样( sampling ,也称取样或采样)、量化(quantization)和编码(coding)三个过程。
•抽样的目的:实现时间的离散,但抽样后的信号(PAM信号)的幅度取值仍然是连续的,仍是模拟信号;•量化的目的:实现幅度的离散,故量化后的信号已经是数字信号,但它一般为多进制数字信号,不能被常用的二进制数字通信系统处理;•编码的目的:将量化后的多进制数字信号编码成二进制码。
5.2模拟信号的抽样假设模拟信号为f(t) ,梳状函数为δT (t),抽样后信号为f s (t)。
则1.低通抽样定理假设模拟信号为f(t)的频谱为F(ω),梳状函数的频谱为δT (ω),抽样后信号为f s (ω)。
则1.低通抽样定理1.低通抽样定理1.低通抽样定理5.2.1 低通与带通抽样定理2.带通抽样定理可以证明:假设带通信号f(t)的下限频率为f L,上限频率为f H,带宽为B。
当抽样频率f s满足f(t)可以由抽样点值序列f s(nT s)完全描述。
n为商(f H/B)的整数部分,n=l,2,…;k为商(f H/B)的小数部分,0<k<l。
1.自然抽样假设抽样脉沖序列为其中p(t)为任意形状的脉沖(脉冲宽度为τ),模拟信号为f(t),抽样后的信号为f s(t),则对于周期脉冲序列可利用傅里叶级数展开,即1.自然抽样1.自然抽样1.自然抽样1.自然抽样2.平顶抽样模拟信号f(t)和非常窄的周期性脉冲(近似冲激函数)δT(t)相乘,得到乘积f s(t),然后通过一个冲激响应是矩形的保持电路,将抽样电压保持一定时间。
2.平顶抽样2.平顶抽样5.3抽样信号的量化5.3.1 量化的基本原理设模拟抽样信号的取值范围在-V~V之间,量化电平数为L,则在均匀量化时的量化间隔Δv为为量化区间的端点mi若输出的量化电平q取为量化间隔的中点,则i对于给定的信号最大幅度V,量化电平数L越多,量化区间Δv越小,量化误差(噪声)越小,量化噪声具体可表示为压缩特性曲线A律压缩特性曲线1.A律压缩特性2.A律压缩的近似算法——13折线法3.μ律压缩特性μ律压缩特性曲线3.μ律压缩特性5.4脉冲编码调制(PCM)5.4.1 脉冲编码调制的基本原理PCM系统的原理图三种4位二进制码组折叠二进制码与自然二进制码相比,有两个突出的优点:(1)对于双极性的信号,若信号的绝对值相同,而只是极性不同,折叠二进制码就可以采用单极性的编码方法,这样可以简化编码电路。
第6 章模拟信号的数字化本章教学要求:1、掌握低通型抽样定理、PCM 基本工作原理。
掌握均匀量化原理、非均匀量化原理(A 律13折线)和编码理论。
2、理解时分复用和多路数字电话系统原理。
3、了解PCM 抗噪声性能、DM 和DPCM 系统原理。
§6.1 引言一、什么是模拟信号数字化?就是把模拟信号变换为数字信号的过程,即模数转化。
这是本章欲解决的中心问题。
二、为什么要进行模数转换?由于数字通信的诸多优点,数字通信系统日臻完善。
致使许多模拟信源的信号也想搭乘数字通信的快车;先将模拟信号转化为数字信号,借数字通信方式(基带或频带传输系统)得到高效可靠的传输,然后再变回模拟信号。
三、怎样进行数字化?就目前通信中使用最多的模数转换方法—脉冲编码调制(PCM)为典型,它包含三大步骤:1.抽样(§2 和§3);2.量化(§4);3.编码(§5)1.抽样:每隔一个相等的时间间隙,采集连续信号的一个样值。
2.量化:将量值连续分布的样值,归并到有限个取值范围内。
3.编码:用二进制数字代码,表达这有限个值域(量化区)。
2、解调3、抽样定理从频谱图清楚地看到,能用低通滤波器完整地分割出一个F(ω)的关键条件是ωs≥2ωm,或f s≥2f m。
这里2f m 是基带信号最大频率,2f m 叫做奈奎斯特抽样频率。
抽样定理告诉我们,只要抽样频率不小于2f m,从理想抽样序列就可无失真地恢复原信号。
二、带通抽样带通信号的带宽B=f H-f L,且B<<f H,抽样频率f s 应满足f s=2B(1+K/N)=2f H/N 式中,K=f H/B-N,N 为不超过f H/B 的最大整数。
由于0≤K<1,所以f s在2B~4B 之间。
当f H >> B 即N >>1 时f S =2B。
当f S > 2B(1+R/N) 时可能出现频谱混叠现象(这一点是与基带信号不同的)例:f H= 5MHz,f L = 4MHz,f S =2MHz 或3MHz 时,求M S(f)§6.3 脉冲幅度调制(PAM)理想抽样采用的单位冲击序列,实际中是不存在的,实际抽样时采用的是具有一定脉宽和有限高度的窄脉冲序列来近似。
模拟信号的数字化一、 实验原理与目的模拟信号的数字化包括:抽样,量化和编码。
本文主要是对模拟信号从采样到量化再到编码的整个过程做一个比较全面的matlab仿真,同时也对不同的采样频率所采取的信号进行了比较。
模拟信号首先被抽样,通常抽样是按照等时间间隔进行的,虽然在理论上并不是必须如此的。
模拟信号抽样后,成为了抽样信号,它在时间上离散的,但是其取值仍是连续的,所以是离散的模拟信号。
第二步是量化,量化的结果使抽样信号变成量化信号,其取值是离散的。
故量化信号已经是数字信号了,它可以看成多进制的数字脉冲信号。
第三步是编码,最基本的和最常用的编码方法是脉冲编码调制(PCM ),它将量化后的信号变成二进制码。
由于编码方法直接和系统的传输效率有关,为了提高传输效率,常常将这种PCM 信号进一步作压缩编码,再在通信系统中传输。
二、 抽样抽样:在等时间间隔T 上,对它抽取样值,在理论上抽样可以看作是用周期单位冲激脉冲和模拟信号相乘,在实际上是用周期性窄脉冲代替冲激脉冲与模拟信号相乘。
对一个带宽有限的连续模拟信号进行抽样时,若抽样速率足够大,则这些抽样值就能够完全代替原模拟线号,并且能够由这些抽样值准确地恢复出原模拟信号。
因此,不一定要传输模拟信号本身,可以只传输这些离散的抽样值,接受端就能恢复原模拟信号。
描述这一抽样速率条件的定律就是著名的抽样定律,抽样定律为模拟信号的数字化奠定了理论基础。
抽样定律指出采样频率是:2sH ff对于本文中的信号定义为()(sin)s t A t 其中2ft 。
三、 量化模拟信号抽样后变成在时间上离散的信号,但是仍然是模拟信号,这个抽样信号必须经过量化后成为数字信号。
本文主要采用的是均匀量化,设模拟信号的取值范围是在a 和b 之间,量化电平时M,则在均匀量化时的量化间隔为b a M且量化区间的端点为i a i m若量化输出电平是i q取为量化间隔的中点,则:12i i im m q显然,量化输出电平和量化前信号的抽样值一般不同,即量化输出电平有误差。