磁化率
- 格式:ppt
- 大小:189.00 KB
- 文档页数:9
磁化率磁化率的概念magnetic susceptibility表征磁介质属性的物理量。
常用符号cm表示,等于磁化强度M与磁场强度H之比[1],即M=cmH对于顺磁质,cm>0,对于抗磁质,cm<0,其值都很小。
对于铁磁质,cm很大,且还与H有关(即M与H之间有复杂的非线性关系)。
对于各向同性磁介质,cm是标量;对于各向异性磁介质,磁化率是一个二阶张量。
在国际单位制(SI)中,磁化率cm是一个无量纲的纯数。
某一物质的磁化率可以用体积磁化率κ 或者质量磁化率χ来表示。
体积磁化率无量纲参数。
在CGS单位系统下的磁化率值是SI下的4π倍,即χ(CGS)=4πχ(SI)。
体积磁化率除以密度即为质量磁化率,亦即χ=κ/ρ,其单位为m^3/kg.磁化率的特性物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H′与外磁场强度H之和称为该物质的磁感应强度B,即B= H + H′ (1)H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。
还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达10,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。
物质的磁化可用磁化强度I来描述,H′=4πI。
对于非铁磁性物质,I与外磁场强度H成正比I = KH(2)式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。
在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是χm = K/ρ (3)χM = MK/ρ (4)式中,ρ和M分别是物质的密度和摩尔质量。
由于K是无量纲的量,所以χm和χM的单位分别是cm·g和cm·mol-1。
磁感应强度SI单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=10 4G。
2.分子磁矩与磁化率物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。
但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。
不同类型沉积物中磁化率的解释沉积物是地球表面最常见的地质材料之一,由各种物质在水体、风力或冰川等作用下沉积形成。
它们的特点是具有层状结构,并且包含了很多有关地球历史和环境演变的信息。
磁化率是描述物质对外加磁场响应的参数,对于研究沉积物的物理性质和环境条件非常重要。
沉积物中的磁化率主要来自于其中的磁性矿物。
在不同类型的沉积物中,磁化率的来源和特点有所不同。
首先,沉积物中的磁性矿物主要有磁铁矿和赤铁矿。
磁铁矿是一种含有铁和氧的矿物,具有较高的磁化率。
它在沉积过程中通常是由于氧化还原条件的改变而形成的。
赤铁矿是一种含有铁和硫的矿物,具有较低的磁化率。
它在沉积过程中通常是由于酸性条件形成的。
其次,不同类型的沉积物对磁化率的影响也不同。
例如,湖泊沉积物中的磁化率主要受到湖水中的悬浮物和沉积物的影响。
当湖泊水体富含悬浮物时,沉积物中的磁化率较高。
而海洋沉积物中的磁化率主要受到海洋生物活动和海洋环境变化的影响。
当海洋环境发生变化时,如海水温度、盐度和氧含量的变化,沉积物中的磁化率也会发生相应变化。
此外,沉积物中的磁化率还可以用于研究地球历史和环境演变。
通过分析不同层次的沉积物中的磁化率变化,可以了解地球表面的气候变化、地壳运动和地质事件等信息。
例如,在古地磁研究中,通过分析沉积物中的磁化率变化可以得到地球的磁场变化历史,进而研究地球内部的运动和地壳板块的演化。
总之,沉积物中的磁化率是研究地球表面物质性质和环境条件的重要参数。
它的来源和特点与沉积物的类型和形成过程密切相关。
通过研究不同类型沉积物中的磁化率变化,可以了解地球历史和环境演变的信息,为地质学和环境科学的研究提供重要依据。
磁化率单位si磁化率是描述物质磁性的物理量,它是指物质在外加磁场作用下所表现出的磁化程度。
本文将从以下几个方面详细介绍磁化率的定义、计算方法、单位以及应用。
一、磁化率的定义磁化率是一个描述物质对外加磁场响应的物理量,它表示单位体积内物质在外加恒定磁场下所产生的极化强度。
在外加恒定磁场H下,物质的极化强度P与外加磁场H之间有如下关系:P=χH其中,χ就是所谓的“磁化率”,它是一个无量纲量。
二、计算方法1. 根据电荷密度和速度来计算从微观角度来看,电子围绕原子核运动时会产生一个轨道角动量和自旋角动量,这些角动量会导致电子具有一定的“自旋”和“轨道”磁矩。
当外加恒定磁场H作用于这些电子时,它们会受到一个力而发生运动,并且在运动过程中会产生一个额外的“感应”磁场B。
这个感应磁场B又会影响电子的运动轨迹和角动量,最终导致物质整体表现出一定的磁性。
根据这个机理,可以得到磁化率的计算公式:χ=μ0(μ-1)/ρ其中,μ是物质的磁导率,ρ是物质的电荷密度。
2. 根据磁化强度和磁场强度来计算从宏观角度来看,当外加恒定磁场H作用于物质时,它会引起物质内部原子或分子中电子自旋和轨道运动发生变化,从而使得物质整体呈现出一定的磁性。
这个过程可以用磁化强度M来描述。
根据定义可知:M=VχH其中,V是物质的体积。
将上式中的χ代入可得:M=Vμ0(μ-1)/ρH进一步将H表示成B/μ0,则有:M=VB(μ-1)/ρ三、单位根据国际单位制(SI),磁化率的单位是“安培每米”(A/m)或“亚当每千克”(A·kg^-1)。
其中,“安培每米”表示单位长度内所产生的极化强度,而“亚当每千克”则表示单位质量内所产生的极化强度。
四、应用磁化率是一个非常重要的物理量,它在材料科学、物理学、地球物理学等领域中都有广泛的应用。
以下列举几个具体的例子:1. 金属材料的磁性研究金属材料在外加磁场下会表现出不同的磁性行为,这与其晶体结构、电子结构和微观缺陷等因素密切相关。
磁化率1定义2磁化率的正负号:反磁性和其它种磁性3测量磁化率的方法4张量磁化率5微分磁化率6国际单位制与CGS单位制之间的单位转换7质量磁化率和莫耳磁化率8磁化率表格9参阅10参考文献定义磁化率,通常标记为,以方程式定义为;其中,是物质的磁化强度(单位体积的磁偶极矩),是辅助磁场。
满足这定义的物质,通常称为线性介质。
采用国际单位制,定义为;其中,是真空磁导率,是磁场。
所以,可以表达为;其中,是相对磁导率,是磁导率。
磁化率与相对磁导率的关系方程式为。
磁化率与磁导率的关系方程式为。
磁化率的正负号:反磁性和其它种磁性若为正值,则1\,\!"src=",物质的磁性是顺磁性、铁磁性、亚铁磁性或反铁磁性。
对于这案例,物质的置入会使得增强;若为负值,则,物质的磁性是反磁性,物质的置入会使得减弱[1]。
对于顺磁性或反磁性物质,通常的绝对值都很小,大约在10-6到10-5之间,大多时候可以忽略为0。
在真空里,磁化率是0,相对磁导率是1,磁导率等于真空磁导率,值为。
测量磁化率的方法简言之,施加具有梯度的磁场于物质样品,然后测量样品感受到的作用力差值,代入相关公式,即可得到磁化率[2]。
早期,科学家使用古依天平(英语:Gouybalance)来测量磁化率。
测试的样品悬挂在电磁铁的两极之间。
由于电磁铁作用,样品的表观重量会与磁化率成正比[3]。
读得古依天平所显示的表观重量值后,代入相关公式中。
即可得到磁化率。
现今,高端测量系统使用超导磁铁来得到更准确的磁化率。
还有一种新颖的产品,称为艾凡斯天平(英语:Evansbalance),广泛地使用于全世界的课堂及研发实验室。
它测量的是,在置入样品之前与之后,强大磁铁所感受到的作用力差值[4]。
另外,对于样品溶液,应用核磁共振科技,可以测量出其磁化率。
只要比较样品溶液与参考溶液的核磁共振频率的差异,代入公式,即可求得样品溶液的磁化率[5][6][7]。
张量磁化率大多数晶体的磁化率不是纯量。
2%的铁磁化率
磁化率是表征物质对外加磁场强度响应程度的物理量,它的大小与物质的磁性有关。
对于铁来说,其磁化率的大小与铁矿石的矿石类型、纯度以及晶格结构等因素有关。
普通铁常用的是铁磁体,其磁化率一般较高。
根据磁性材料的分类,铁磁体的磁化率分为永磁铁磁体和临时铁磁体。
永磁铁磁体具有较高的磁化率,一般在10^3~10^4之间;临时铁磁体的磁化率较低,一般在10^0~10^1之间。
因此,如果给定的是2%的铁的磁化率,并不能准确判断是永磁铁磁体还是临时铁磁体,还需了解更多具体的材料信息。
实验报告:磁化率测定一、实验目的1. 掌握古埃(Gouy)磁天平测定磁化率的原理和方法。
2. 测定三种络合物的磁化率,求算未成对电子数,判断分子配键的类型。
二、实验原理1 .磁化与磁化率外加磁场作用下:B=B0+B′=μ0H+B′其中,B0为外磁场的磁感应强度;B′为物质磁化产生并附加的磁感应强度;H为外磁场强度。
μ0为真空磁导率,数值为4π×10−7。
物质的磁化强度用M表示M=χHχ为体积磁化率,又分为质量磁化率χm=χ/ρ和摩尔磁化率χM=Mχ/ρ2. 摩尔磁化率和分子磁矩物质在外磁场作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场。
物质被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关:H‘=4πχH0物质在外磁场作用下的磁化现象有三种:第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩μm = 0。
当它受到外磁场作用时,内部会产生感应的“分子电流”,相应产生一种与外磁场方向相反的感应磁矩。
如同线圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。
这种物质称为反磁性物质,如Hg、Cu、Bi等。
它的χm称为反磁磁化率,用χ反表示,且χ反< 0。
第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分子磁矩μm≠ 0。
这些杂乱取向的分子磁矩在受到外磁场作用时,其方向总是趋向于与外磁场同方向,这种物质称为顺磁性物质,如Mn、Cr、Pt等,表现出的顺磁磁化率用χ顺表示。
但它在外磁场作用下也会产生反向的感应磁矩,因此它的χm是顺磁磁化率χ顺与反磁磁化率χ反之和。
因|χ顺|≫|χ反|,所以对于顺磁性物质,可以认为χm=χ顺,其值大于零。
第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。
这种物质称为铁磁性物质。
对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μm关系可由居里——郎之万公式表示:χm=χ顺=Lμm2μ03kT这个公式是在顺磁性下的近似计算。
磁化率单位si
磁化率是磁性材料磁化程度的描述,其单位为国际单位制(SI)
中的亨利/米(H/m)。
磁化率是磁场强度和磁矩之间的比例关系,磁
通量密度也可以使用这个比例系数来计算。
在物理学中,磁化率是一个非常重要的物理量,因为它可以用来
描述物质对磁场的响应。
同时,磁化率还可以被用来描述导体的磁性
特性和电感的大小等物理量。
磁化率从理论上来讲是一个可以被计算出来的量,但是在实际的
测量中,其值往往会受到样品的制备方式、温度、磁场强度和频率等
因素的影响。
因此,为了获得准确的磁化率值,需要设计严谨的实验,并根据实验结果进行适当的处理和分析。
除了在物理学领域中的应用,磁化率在各个工程领域中也有着广
泛的应用。
例如,在制造磁性材料时,需要掌握材料的磁性能,以确
保所生产的产品符合标准要求;在电子工程领域中,磁化率可以用来
描述电感器的大小,为电路设计提供重要的参考依据。
总之,磁化率作为一个重要的物理量,应用广泛,在材料和电子
工程等多个领域都有着重要的作用。
因此,我们需要加强对磁化率和
其单位的认识,以更好地理解和应用这个重要的物理量。
超导磁化率
摘要:
1.超导的定义及其特性
2.磁化率的定义及其与超导的关系
3.超导磁化率的测量方法
4.超导磁化率的应用
正文:
一、超导的定义及其特性
超导,是指某些材料在低温下电阻为零的物理现象。
具备这一特性的材料被称为超导材料,其电阻转变温度被称为超导临界温度。
超导材料在超导状态下,具有极高的电导率和磁通排斥能力,广泛应用于磁浮列车、高速计算机、高能物理等领域。
二、磁化率的定义及其与超导的关系
磁化率,又称磁化强度,是指材料在外加磁场作用下产生磁化的能力。
它是描述材料磁性能强弱的重要参数。
超导材料在超导状态下,其磁化率通常为零,因为超导材料具有完美的抗磁性,能够完全排斥磁场。
三、超导磁化率的测量方法
超导磁化率的测量方法有多种,其中较为常见的有:直流磁化率测量法、交流磁化率测量法、脉冲磁化率测量法等。
这些方法的原理都是通过测量材料在外加磁场下的磁化程度,从而得出磁化率的大小。
四、超导磁化率的应用
超导磁化率在实际应用中具有重要意义。
它不仅可以用来评价超导材料的质量,还可以用于研究超导现象及其相关理论。
此外,在超导磁体的设计与制造、超导磁浮列车的运行、高能物理实验等领域,超导磁化率的应用也发挥着关键作用。
总之,超导磁化率作为描述超导材料磁性能的重要参数,对于研究和应用超导技术具有重要意义。
ccm磁化率磁化率(CCM)是描述材料在外加磁场下磁化程度的物理量。
它反映了磁场对材料的磁响应能力。
磁化率是磁性材料的重要参数,对于磁性材料的设计和应用具有重要的指导作用。
下面将介绍CCM的定义、计算方法、磁化率对材料性能的影响以及一些与CCM相关的实验方法和应用领域。
磁化率定义:磁化率是材料在外加磁场下,单位体积内的磁矩和磁场强度之间的比值。
它用于描述材料对外加磁场的响应程度。
磁化率分为磁场强度的线性磁化率和非线性磁化率,分别表示材料对弱磁场的响应和强磁场的响应。
计算方法:线性磁化率可以通过磁化曲线测量得到。
实验中,通过对材料施加不同大小的磁场,测量材料的磁化强度,然后通过计算磁化强度和磁场强度的比值得到线性磁化率。
非线性磁化率则是通过非线性磁化曲线得到的。
磁化率对材料性能的影响:磁化率与材料的磁性能密切相关。
磁化率越大,表示材料的磁化程度越高,其对外磁场的敏感度也更高。
高磁化率的材料可以用于制造强磁场设备和磁性储存器等。
此外,磁化率还与材料的磁滞损耗、饱和磁感应强度等指标有关。
常见的实验方法:1. 振荡式法:通过测量材料在交变磁场中的磁化状态,对磁化率进行测量。
该方法适用于高频范围内的材料磁性测试。
2. 霍尔效应法:利用霍尔效应原理,测量材料在磁场中的磁电势差和霍尔电流,从而得到磁化率。
该方法适用于表面和体积电导率差异大的材料。
3. 样品共振法:通过测量样品在变磁场中的共振频率和品质因数,推导出材料的磁化率。
该方法适用于高频范围和高精度磁化率测量。
4. 磁滞回线法:通过测量材料在不同磁场强度下的磁化曲线,得到材料的磁滞回线和磁化率。
该方法适用于磁性材料的综合性能评估。
磁化率的应用:1. 电子设备:磁化率的大小和调控能力与电子设备的性能有关,如储存器、传感器、电感等。
2. 电力工程:磁化率是电力传输与配电系统中重要的电磁参数,在电力设备和变压器的设计和运行中起到重要作用。
3. 材料科学:通过了解材料的磁化率,可以推导出材料的导电性、磁导率等与磁性相关的物理量。