玻璃2-玻璃的熔制试验
- 格式:ppt
- 大小:347.50 KB
- 文档页数:11
玻璃的熔制过程玻璃是一种广泛应用于制造建筑材料、器皿、光学仪器、电子仪器等工业领域的无机非金属材料。
玻璃的基础原料主要是硅酸盐类物质,包括石英砂、长石、白云石等。
玻璃的制造涉及到多种工艺步骤,其中最主要的过程是熔制。
玻璃的熔制过程,一般分为两个阶段:玻璃原料熔融和玻璃成形。
1. 玻璃原料熔融玻璃原料熔融是制造玻璃的第一步。
首先要将玻璃原料送到炉中,然后在炉内进行高温熔化。
玻璃熔化的温度通常在1300-1600℃之间。
炉内的高温条件有助于熔化原料,并促进原料之间的充分混合。
玻璃熔化过程中,炉内的温度、炉膛的结构、炉膛的加热方式、气氛以及熔化时间等因素都对玻璃性质有很大的影响。
其中,炉温的控制是其中最为关键的一个因素。
炉温过低时,原料无法充分熔化,熔击出来的玻璃比较粗糙;而炉温过高时,虽然玻璃可以很快熔化,但却会使得玻璃成分中的气体难以释放,造成玻璃内部气泡增多,影响玻璃的质量。
同时,熔制过程中原料的混合也是影响玻璃质量的重要因素之一。
原料混合过程中必须注意保持物料配比的稳定,以确保每份原料的比例都是正确的,否则会影响玻璃性能的均匀性和稳定性。
2. 玻璃成形玻璃原料熔融后,需要将其通过成形工艺,将其变成需要的形状。
玻璃成形技术大致可以分为两大类,即自由成形技术和模压成形技术。
自由成形技术包括吹制、拉伸、浸涂等;模压成形技术包括平板压制、吹瓶、挤出等。
自由成形技术中的吹制是最常用的一种方法。
吹制工艺是先将玻璃熔液通过玻璃管或小片,吹成一个球体,然后在模具上加工形状,最后风冷固化。
玻璃吹制的工艺简单,成本低,成品形态多,应用非常广泛。
而模压成形技术,如平板压制、吹瓶、挤出等,则需要利用模具或挤压机来对玻璃进行成形。
这类制品比较规整且饱满,常常用于制备工艺精密的玻璃器具、仪器件等。
总之,玻璃熔制过程经历了玻璃原料熔融和玻璃成形两个阶段。
通过高温下的熔融,使玻璃原料混合均匀,在成型过程中呈现出所需的形态,从而制备成建筑材料、器皿、光学仪器、电子仪器等多种应用领域中的产品。
综合设计性材料实验报告实验名称:配置熔融温度范围在700~900℃的玻璃试样学生姓名:谢万熠学号: 201130451108 指导老师:罗婷时间: 2014年3月18日景德镇陶瓷学院科技艺术学院2014年3 月18 日一、实验目的和要求1.按照确定的原料配方和所用的化学成分进行配合料的计算。
2.了解玻璃熔制温度和温度制度对材料性能的影响。
3.掌握实验室常用高温仪器、设备的使用方法。
4.通过实验学会分析材料的熔制缺陷,制定合理的烧成制度。
二、实验仪器设备研钵,电子称,小瓷舟,箱式实验炉,小勺子,塑料杯三、实验原理玻璃是由熔融物冷却硬化而得到的非晶态固体,其内能和构形熵高于相应的晶体,结构为短程有序、长程无序。
由熔融状态转变为固态的温度称为玻璃转变温度Tg。
玻璃具有四个通性:各向同性、介稳性、固态和熔融态间转变的渐变性和可逆性、性质随成分变化的连续性和渐变性。
玻璃按组成可分为元素玻璃(如硫玻璃和硒玻璃)、氧化物玻璃(如硅酸盐玻璃、硼酸盐玻璃、磷酸盐玻璃)和非氧化物玻璃(如卤化物玻璃和硫族化合物玻璃)。
玻璃是在熔体急速冷却时形成的。
具有相应的热力学和动力学条件。
热力学上,同组成晶体和玻璃态内能差别越小,越容易生成玻璃。
动力学上,生成玻璃的关键在于熔体在凝固点附近具有较大的粘度。
由于急速冷却时,由于粘度迅速增大,内部质点来不及进行规则排列从而形成玻璃。
本实验采用熔融淬冷法制备玻璃。
先由所给组分计算、称取、混合得到混合料。
由配合料熔制成玻璃液、淬冷得到玻璃可以分为以下几个阶段:(1)硅酸盐形成。
在此阶段中粉末混合料在高温下进行固相反应,并逸出大量气体,最后变成各种硅酸盐和未起反应的石英颗粒所组成的烧结物。
此阶段随成分的不同约在800-900℃结束。
(2)玻璃液的形成。
此阶段包括烧结物的熔融和石英颗粒的溶解,变成了含有大量气泡、条纹、成分不均匀的玻璃液。
这一阶段约在900℃结束。
(3)玻璃液的澄清。
此阶段温度较高,目的是使玻璃液在较小的粘度下释放出可见气泡,并建立起炉气、气泡中气体、玻璃液中溶解气体平衡。
2 2 2 2 5朱冬梅 , 周万城 , 赵宏生(西北工业大学凝固技术国家重点实验室 ,陕西 西安 710072)率 45570 ,线色散率 (一级) 0 . 8nm/ mm 。
摘 要 : 研究了 Pb Br 2 - PbC l 2 - Pb F 2 - PbO - P 2 O 5 系统的玻 璃在熔融过程中的变化 。
发现在玻璃的熔制过程中 ,元素 P 、Pb 和 Br 的损失量最大 。
化学分析和理论计算表明 ,这些元素是以 PbC l 2 、PbBr 2 和 P 2 O 5 的形式挥发的 。
而且 ,随着配料成分中含 量的增加 , P bC l 2 、PbBr 2 和 P 2 O 5 的挥发量也随之增加 。
关键词 : 成分变化 ;化合物形式 ;挥发 结果和讨论3 3 . 1 玻璃的光谱半定量分析在试样的熔制过程中 ,所用容器为陶瓷坩埚 。
为了讨论使用陶瓷坩埚是否会引入侵蚀产物 ,我们采用光谱半定量分析法 对试样 1 的成分进行了分析 ,结果表明 ,试样中元素 S i 和 Al 的 含量总和仅为 7 ×10 - 5 左右 ,这说明在玻璃的熔制过程中 ,使用 陶瓷坩埚对玻璃成分的影响不大 。
3 . 2 玻璃成分的化学分析为了探索玻璃成分的变化 ,我们对玻璃的实际成分进行了 分析 。
表 1 列出了一些玻璃的设计成分与分析成分的对比 。
从 表中可以看出 ,玻璃中元素的实际含量与设计含量有很大差别 , 其中 P 、Pb 和 Br 的含量变化相对较大 。
同时 ,由于 P 、Pb 和 Br 的损失 ,使得其它元素的相对含量升高 ,因此 ,无法说明它们是 否损失 。
表 1 一些玻璃由配料成分换算得的组元成分和化学分析成分 Tab le 1 C alcu lat ed element al batch co m po sitio n and chemical analy 2sis of g lasses中图分类号 : TQ171 文献标识码 :A1 引 言具有低的熔融温度 、好的化学稳定性的玻璃 ,在许多领域都 有应用 。
1. 实验目的:玻璃的结构和性质1、掌握玻璃组成的设计方法和配方的计算方法;2、了解玻璃熔制的原理和过程以及影响玻璃熔制的各种因素;3、熟悉高温炉和退火炉的使用方法和玻璃熔制的操作技能。
2。
实验试剂:玻璃的原料及其作用注:原料混合需要加水,防止原料反应的粉尘污染而且可以增大物料之间的反应表面积。
但含水率太高,在批料加热熔融时,水分蒸发要多消耗热能,延长融融时间。
所以含水率要控制在5%以下.着色剂的投放应循序渐进,不要一下子投放太多,否则玻璃会出现偏色时会很难纠正.(1)玻璃设计配方:此方被称为768 号玻璃,其组成成分(%)如下:SiO2 75 ,B2O3 0. 54 ,CaO 3.7 ,MgO 1。
08 ,PbO 0. 48 ,ZnO 0。
74 ,K2O 0。
91 ,Na2O 17. 3。
组成中除含有17. 3 %的Na2O 外,还有B2O3 、PbO等,硬化速度较慢,属于“长”(慢凝)玻璃,由于轻瓶壁厚减薄,冷却速度加快,采用“长”玻璃,可使玻璃液在模型中合理分布,壁厚均匀,有利于提高强度和热稳定性.熔制温度为1480~1500 ℃,成型温度为1200 ℃,退火温度为540 ℃,退火质量对强度影响较大,可使强度变化20 %或更多。
(3)玻璃原料的作用SiO2 ;玻璃的主要成分,占玻璃65~75%以上.Al2O3;提高玻璃的化学稳定性,热稳定性,机械强度、硬度和折射率,减轻玻璃对耐火材料的侵蚀。
Fe2O3;与Cr2O3共用,可制得绿色玻璃。
Ca O :作稳定剂,但含量大于12.5%时,能使玻璃结晶化增大,发脆.MgO : 作稳定剂。
BaO :作助溶剂,防辐射。
Na2O :降低玻璃粘度,使之易于熔融和成型.Cuso:使物质对光线产生选择性吸收,显出蓝绿色。
Na2SO4 :作澄清剂,在玻璃熔制过程中能分解产生气体,或能降低玻璃的粘度,促进排除玻璃液中气泡.3.实验原理:根据玻璃制品的性能要求,设计玻璃的化学成分组成,并为此为主要依据进行配料,制备好的配合料在高温下加热,将进行一系列的物理的、化学的、物理化学的变化,变化的结果使各种原料的机械混合物变成复杂的熔融物,即没有气泡、结石、均匀的玻璃液,然后均匀地降温以供成型需要。
玻璃的熔制过程通常分为以下五个主要阶段,每个阶段对最终玻璃质量起着至关重要的作用:
1. 原料准备
•玻璃熔制的原料主要包括硅砂(SiO2)、碱金属氧化物(如Na2O)和助熔剂(如CaO)。
原料需要经过筛分、混合、干燥等处理,确保原料均
匀并去除杂质。
通常还会加入碎玻璃(废玻璃),帮助提高熔化效率。
2. 熔化
•在熔窑中,混合好的原料在高温(1300-1500℃)下加热熔化,形成均匀的液态玻璃。
熔化过程需要较长时间,以确保所有成分充分反应,减少
气泡和夹杂物。
这一阶段至关重要,决定了玻璃的基本性质。
3. 澄清
•在熔化完成后,玻璃液需要经过澄清阶段。
此时,熔融玻璃中的气泡和未完全溶解的固体颗粒会逐渐上升并排出。
通常会通过提高温度或使用
澄清剂(如硝酸钾或硝酸钠)来加速气泡的消除。
4. 均化
•在气泡排除后,玻璃液需要均化,即通过搅拌或控制温度,使玻璃液中的各成分分布更加均匀,确保不同区域的化学成分和物理性质一致。
这
一过程能够防止玻璃内部出现成分不均或结构缺陷。
5. 成形与退火
•成形:玻璃液冷却至适当温度后,会进行成形,常见的成形方法包括浮法(用于生产平板玻璃)、吹制法(用于生产瓶子、玻璃器皿)等。
•退火:成形后的玻璃需要经过退火炉进行缓慢冷却。
退火过程可以缓解玻璃内部的应力,防止玻璃在冷却过程中因热应力而开裂。
这五个阶段共同作用,确保玻璃的结构完整性、透明度和机械性能。
实验1玻璃的高温熔制一实验的目的与意义在实际生产中,玻璃熔制是关键环节。
在教学、科研和生产中,玻璃的熔制实验也是一项非常重要的实验,因为在进行玻璃新品种的开发或对玻璃生产工艺进行改革中,就必须通过多次或反复进行玻璃的熔制实验来寻找合理玻璃成分、了解玻璃熔制过程各种因素的影响、提出合理熔制工艺制度和具有指导生产实践的各种数据。
玻璃的高温熔制实验的目的如下:①在实验条件下,依据指定配方进行配合料的制备,并根据玻璃熔制制度(温度制度、压力制度、气氛制度、液面制度),进行玻璃的熔制和成形,完成一整套玻璃材料制备过程的基本训练(玻璃熔制和成形由指导教师操作)②了解熔制玻璃的设备及其测试仪器,掌握使用方法③观察熔制温度、保温时间对熔化过程的影响④根据实验结果分析玻璃成分、熔制制度的合理性注意:由于学院实验条件所限,玻璃成分的设计、原料的选择、配料计算和制定玻璃熔制制度在课堂教学阶段中进行说明,,指导教师做配料、玻璃熔制和成形演示实验,学生记录实验结果并进行分析,做实验报告。
二实验原理玻璃的熔制过程是一个复杂的过程,它包括一系列物理变化、化学变化和物理化学变化过程。
物理变化是配合料的加热、吸附水分的蒸发排除、某些单独组分的熔融、某些组分的多晶转变、个别组分的挥发;化学变化是固相反应、各种盐类的分解、水化合物的分解、化学结合水的排除、组分间的相互反应及硅酸盐的生成;物理化学变化是低共熔物生成、组分或生成物间的相互溶解、玻璃和炉气介质之间的相互作用、玻璃液和耐火材料的相互作用及玻璃液和其中夹杂气体的相互作用。
正因为有了这些反应和现象,由各种原料通过机械混合而成的配合料才能变成复杂且具有一定物理化学性质的熔融玻璃液。
若以硅酸盐玻璃为例,依据熔制过程中的不同实质,大致可分为硅酸盐形成、玻璃的形成、澄清、均化和冷却五个阶段。
但必须指出,这五个阶段不是严格顺序进行的,而是彼此之间有着相互密切的关系,各个阶段有交叉。
不管怎样,玻璃熔制就是配合料经高温加热熔化成均匀的、无气泡的并符合成形要求的玻璃液的过程。
一、实验目的1. 了解玻璃的成分和性质;2. 掌握玻璃的熔制方法;3. 学习玻璃制品的制作工艺;4. 提高动手实践能力和团队协作能力。
二、实验原理玻璃是一种非晶态的固体,主要由硅酸盐、硼酸盐、碳酸盐等化合物组成。
在高温下,这些化合物熔融后,通过冷却和固化形成玻璃。
玻璃具有良好的透明度、硬度、耐热性等特性,广泛应用于日常生活和工业生产中。
三、实验器材1. 玻璃熔炉;2. 玻璃棒;3. 玻璃模具;4. 玻璃原料(如:石英砂、硼砂、碳酸钠等);5. 搅拌棒;6. 防护眼镜;7. 实验记录本。
四、实验步骤1. 玻璃熔制(1)称取适量的玻璃原料,放入玻璃熔炉中;(2)点燃熔炉,调节温度至约1500℃;(3)用玻璃棒搅拌熔融的玻璃,使其充分混合均匀;(4)观察玻璃熔融状态,当熔融的玻璃呈清澈透明时,表示玻璃已熔制完成。
2. 玻璃成型(1)将熔融的玻璃倒入玻璃模具中;(2)用玻璃棒轻轻搅拌,使玻璃在模具中均匀分布;(3)待玻璃冷却固化后,取出玻璃制品。
3. 玻璃制品的加工(1)用磨砂纸对玻璃制品表面进行打磨,去除气泡和杂质;(2)用抛光膏对玻璃制品进行抛光,提高其透明度和光泽度;(3)根据需要,对玻璃制品进行切割、雕刻等加工。
五、实验结果与分析1. 实验结果通过本次实验,我们成功制作出玻璃制品,并对其进行了加工。
实验过程中,我们掌握了玻璃的熔制方法、成型工艺和加工技术。
2. 实验分析(1)玻璃熔制过程中,温度的控制至关重要。
过高或过低的温度都会影响玻璃的熔融质量和成型效果;(2)玻璃成型过程中,玻璃的流动性和冷却速度会影响制品的形状和尺寸。
因此,要合理选择模具和冷却条件;(3)玻璃制品的加工过程中,磨砂、抛光等工艺对制品的外观和质量有很大影响。
要掌握合适的加工参数,以达到理想的加工效果。
六、实验总结本次玻璃制作实验,使我们了解了玻璃的成分、性质和制作工艺。
通过实验,我们掌握了玻璃熔制、成型和加工的基本技能,提高了动手实践能力和团队协作能力。
玻璃新型熔制技术玻璃的熔制过程。
在玻璃生产过程中,配和料经过加热形成玻璃的过程称为玻璃的熔制过程。
玻璃的熔制是玻璃生产过程中的重要阶段,熔制的质量和速度决定着产品的质量和产量。
玻璃的熔制过程大体分为以下五个阶段:1.硅酸盐的形成阶段;配合料约在800~1000度的温度作用下,发生一系列的物理化学变化,如水分的分解蒸发、盐类的分解、多晶转变,组分熔化及石英砂与其它组分之间进行固相反应,使配合料变成由硅酸盐和游离二氧化硅组成的不透明的烧结体物。
2.玻璃液的形成阶段;配合料加热到1200度时,形成各种归硅酸盐,出现一些熔融体还剩下一些未起变化的石英颗粒,继续升高温度时,硅酸盐和石英砂完全熔于熔融体中,成为可见大量气泡的在化学成分和温度上都不够均匀的透明玻璃。
3.玻璃的澄清阶段:在玻璃液形成阶段结束后,整个熔融体包含许多气泡,从玻璃液中除去肉眼可见的气体夹杂物,消除玻璃液中气孔组织的阶段称为澄清阶段,因为玻璃液的黏度随温度升高而降低,因此高温有利于玻璃的澄清,这个阶段玻璃液的温度约为1400度左右。
4.玻璃的均化阶段:玻璃液形成后,其化学成分和温度都不均匀,为消除不均匀性,需要进行均化,它与澄清过程在一起,没有明显的界限,可以看成是边澄清边均化,均化阶段的结束往往在澄清阶段之后,高温有利于玻璃的均匀均化。
5.玻璃液的冷却阶段:澄清均化后的玻璃液,温度高、粘度低,不适合玻璃成型,需要均匀冷却到成型温度,根据成型方法的不同,成型温度比澄清温度低200~300度。
1全氧燃烧全氧燃烧窑炉与传统助燃空气火焰窑炉相比不需要高大的蓄热室装置,因此窑炉投资费用大大降低。
最早采用全氧燃烧技术的是美国康宁公司,在一座日产30t普通玻璃的小型试验炉中使用。
全氧燃烧窑炉由于具有优良的环保效应,因此逐渐扩展到熔制能耗高且产量较大的硼硅酸盐玻璃或无碱玻璃生产中,加热喷嘴由2~4个增加到12~14个。
日、美等国为了普及全氧燃烧技术还开发出了提纯氧气的沸石氮气吸附剂,并形成所谓PSA(Pressureswingadsorption)氧气制备技术,其设备可靠性高,几乎不发生故障。